Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38869008

RESUMEN

Cofilin, an actin-severing protein, plays key roles in muscle sarcomere addition and maintenance. Our previous work found that Drosophila cofilin (DmCFL) knockdown in muscle causes progressive deterioration of muscle structure and function and produces features seen in nemaline myopathy caused by cofilin mutations. We hypothesized that disruption of actin cytoskeleton dynamics by DmCFL knockdown would impact other aspects of muscle development, and, thus, conducted an RNA-sequencing analysis that unexpectedly revealed upregulated expression of numerous neuromuscular junction (NMJ) genes. We found that DmCFL is enriched in the muscle postsynaptic compartment and that DmCFL muscle knockdown causes F-actin disorganization in this subcellular domain prior to the sarcomere defects observed later in development. Despite NMJ gene expression changes, we found no significant changes in gross presynaptic Bruchpilot active zones or total postsynaptic glutamate receptor levels. However, DmCFL knockdown resulted in mislocalization of GluRIIA class glutamate receptors in more deteriorated muscles and strongly impaired NMJ transmission strength. These findings expand our understanding of the roles of cofilin in muscle to include NMJ structural development and suggest that NMJ defects may contribute to the pathophysiology of nemaline myopathy.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Unión Neuromuscular , Transmisión Sináptica , Animales , Unión Neuromuscular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Factores Despolimerizantes de la Actina/metabolismo , Factores Despolimerizantes de la Actina/genética , Actinas/metabolismo , Sarcómeros/metabolismo , Técnicas de Silenciamiento del Gen , Citoesqueleto de Actina/metabolismo , Miopatías Nemalínicas/metabolismo , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología
2.
FASEB J ; 38(5): e23518, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38441532

RESUMEN

NUDC (nuclear distribution protein C) is a mitotic protein involved in nuclear migration and cytokinesis across species. Considered a cytoplasmic dynein (henceforth dynein) cofactor, NUDC was shown to associate with the dynein motor complex during neuronal migration. NUDC is also expressed in postmitotic vertebrate rod photoreceptors where its function is unknown. Here, we examined the role of NUDC in postmitotic rod photoreceptors by studying the consequences of a conditional NUDC knockout in mouse rods (rNudC-/- ). Loss of NUDC in rods led to complete photoreceptor cell death at 6 weeks of age. By 3 weeks of age, rNudC-/- function was diminished, and rhodopsin and mitochondria were mislocalized, consistent with dynein inhibition. Levels of outer segment proteins were reduced, but LIS1 (lissencephaly protein 1), a well-characterized dynein cofactor, was unaffected. Transmission electron microscopy revealed ultrastructural defects within the rods of rNudC-/- by 3 weeks of age. We investigated whether NUDC interacts with the actin modulator cofilin 1 (CFL1) and found that in rods, CFL1 is localized in close proximity to NUDC. In addition to its potential role in dynein trafficking within rods, loss of NUDC also resulted in increased levels of phosphorylated CFL1 (pCFL1), which would purportedly prevent depolymerization of actin. The absence of NUDC also induced an inflammatory response in Müller glia and microglia across the neural retina by 3 weeks of age. Taken together, our data illustrate the critical role of NUDC in actin cytoskeletal maintenance and dynein-mediated protein trafficking in a postmitotic rod photoreceptor.


Asunto(s)
Actinas , Dineínas , Animales , Ratones , Transporte Biológico , Muerte Celular , Dineínas/genética , Células Fotorreceptoras Retinianas Bastones
3.
Artículo en Inglés | MEDLINE | ID: mdl-38385694

RESUMEN

RATIONALE: Sarcoidosis is a systemic granulomatous disorder associated with hypergammaglobulinemia and the presence of autoantibodies. The specific antigens initiating granulomatous inflammation in sarcoidosis are unknown and there is no specific test available to diagnose sarcoidosis. To discover novel sarcoidosis antigens, we developed a high-throughput T7 phage display library derived from the sarcoidosis cDNA and identified numerous clones differentiating sarcoidosis from other respiratory diseases. After clone sequencing and homology search, we identified two epitopes (Cofilinµ and Chain A) that specifically bind to serum IgGs of sarcoidosis patients. OBJECTIVES: To develop and validate an epitope-specific IgG-based immunoassay specific for sarcoidosis. METHODS: We chemically synthesized both immunoepitopes (Cofilinµ and Chain A), and generated rabbit polyclonal antibodies against both neoantigens. After extensive standardization, we developed a direct peptide ELISA and measured epitope-specific IgG in sera of 386 subjects including, healthy controls (n=100), three sarcoidosis cohorts (n=186), pulmonary tuberculosis (n=70) and lung cancer (n=30). MEASUREMENTS AND MAIN RESULTS: To develop a model to classify sarcoidosis from other groups, data were analyzed using five-fold cross-validation when adjusting for confounders. The Cofilinµ IgGs model yielded a mean sensitivity, specificity, and positive and negative predictive value (PPV, NPV) of 0.97, 0.9, 0.9 and 0.96, respectively. Those same measures for Chain A IgG antibody were 0.9, 0.83, 0.84 and 0.9 respectively. Combining both biomarkers improved AUC, sensitivity, specificity, PPV and NPV. CONCLUSIONS: These results provide a novel immunoassay for sarcoidosis. The discovery of two neoantigens facilitates the development of biospecific drug discovery and the sarcoidosis-specific model.

4.
J Neurochem ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946488

RESUMEN

A growth cone is a highly motile tip of an extending axon that is crucial for neural network formation. Three-dimensional-structured illumination microscopy, a type of super-resolution light microscopy with a resolution that overcomes the optical diffraction limitation (ca. 200 nm) of conventional light microscopy, is well suited for studying the molecular dynamics of intracellular events. Using this technique, we discovered a novel type of filopodia distributed along the z-axis ("z-filopodia") within the growth cone. Z-filopodia were typically oriented in the direction of axon growth, not attached to the substratum, protruded spontaneously without microtubule invasion, and had a lifetime that was considerably shorter than that of conventional filopodia. Z-filopodia formation and dynamics were regulated by actin-regulatory proteins, such as vasodilator-stimulated phosphoprotein, fascin, and cofilin. Chromophore-assisted laser inactivation of cofilin induced the rapid turnover of z-filopodia. An axon guidance receptor, neuropilin-1, was concentrated in z-filopodia and was transported together with them, whereas its ligand, semaphorin-3A, was selectively bound to them. Membrane domains associated with z-filopodia were also specialized and resembled those of lipid rafts, and their behaviors were closely related to those of neuropilin-1. The results suggest that z-filopodia have unique turnover properties, and unlike xy-filopodia, do not function as force-generating structures for axon extension.

5.
Int J Cancer ; 155(7): 1290-1302, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38738971

RESUMEN

Peroxiredoxin 1 (PRDX1) is an important member of the peroxiredoxin family (PRDX) and is upregulated in a variety of tumors. Previous studies have found that high PRDX1 expression is closely related to the metastasis of oral squamous cell carcinoma (OSCC), but the specific molecular mechanism is elusive. To elucidate the role of PRDX1 in the metastasis process of OSCC, we evaluated the expression of PRDX1 in OSCC clinical specimens and its impact on the prognosis of OSCC patients. Then, the effect of PRDX1 on OSCC metastasis and cytoskeletal reconstruction was explored in vitro and in nude mouse tongue cancer models, and the molecular mechanisms were also investigated. PRDX1 can directly interact with the actin-binding protein Cofilin, inhibiting the phosphorylation of its Ser3 site, accelerating the depolymerization and turnover of actin, promoting OSCC cell movement, and aggravating the invasion and metastasis of OSCC. In clinical samples and mouse tongue cancer models, PRDX1 also increased lymph node metastasis of OSCC and was negatively correlated with the phosphorylation of Cofilin; PRDX1 also reduced the overall survival rate of OSCC patients. In summary, our study identified that PRDX1 may be a potential therapeutic target to inhibit OSCC metastasis.


Asunto(s)
Carcinoma de Células Escamosas , Ratones Desnudos , Neoplasias de la Boca , Peroxirredoxinas , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Humanos , Animales , Ratones , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/secundario , Línea Celular Tumoral , Masculino , Femenino , Pronóstico , Fosforilación , Movimiento Celular , Metástasis Linfática , Persona de Mediana Edad , Factores Despolimerizantes de la Actina/metabolismo , Neoplasias de la Lengua/patología , Neoplasias de la Lengua/metabolismo , Neoplasias de la Lengua/genética , Regulación Neoplásica de la Expresión Génica , Cofilina 1/metabolismo , Ratones Endogámicos BALB C
6.
Biochem Biophys Res Commun ; 695: 149394, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38157629

RESUMEN

In addition to its role in pyroptosis and inflammatory cytokine maturation, caspase-4 (CASP4) also contributes to the fusion of phagosomes with lysosomes and cell migration. However, its role in cell division remains elusive. In this study, we demonstrate that CASP4 is indispensable for proper cell division in epithelial cells. Knockout of CASP4 (CASP4 KO) in HepG2 cells led to delayed cell proliferation, increased cell size, and increased multinucleation. In mitosis, CASP4 KO cells showed multipolar spindles, asymmetric spindle positioning, and chromosome segregation errors, ultimately increasing DNA content and chromosome number. We also found that phalloidin, a marker of filamentous actin, increased in CASP4 KO cells owing to suppressed actin depolymerization. Moreover, the levels of actin polymerization-related proteins, including Rho-associated protein kinase1 (ROCK1), LIM kinase1 (LIMK1), and phosphorylated cofilin, significantly increased in CASP4 KO cells. These results suggest that CASP4 contributes to proper cell division through actin depolymerization.


Asunto(s)
Factores Despolimerizantes de la Actina , Actinas , Actinas/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Movimiento Celular , Mitosis , Células Epiteliales/metabolismo , Quinasas Lim/genética , Fosforilación
7.
Horm Behav ; 161: 105516, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38428223

RESUMEN

Studies in ovariectomized (OVX) female rodents suggest that G protein-coupled estrogen receptor (GPER) is a key regulator of memory, yet little is known about its importance to memory in males or the cellular mechanisms underlying its mnemonic effects in either sex. In OVX mice, bilateral infusion of the GPER agonist G-1 into the dorsal hippocampus (DH) enhances object recognition and spatial memory consolidation in a manner dependent on rapid activation of c-Jun N-terminal kinase (JNK) signaling, cofilin phosphorylation, and actin polymerization in the DH. However, the effects of GPER on memory consolidation and DH cell signaling in males are unknown. Thus, the present study first assessed effects of DH infusion of G-1 or the GPER antagonist G-15 on object recognition and spatial memory consolidation in gonadectomized (GDX) male mice. As in OVX mice, immediate post-training bilateral DH infusion of G-1 enhanced, whereas G-15 impaired, memory consolidation in the object recognition and object placement tasks. However, G-1 did not increase levels of phosphorylated JNK (p46, p54) or cofilin in the DH 5, 15, or 30 min after infusion, nor did it affect phosphorylation of ERK (p42, p44), PI3K, or Akt. Levels of phospho-cAMP-responsive element binding protein (CREB) were elevated in the DH 30 min following G-1 infusion, indicating that GPER in males activates a yet unknown signaling mechanism that triggers CREB-mediated gene transcription. Our findings show for the first time that GPER in the DH regulates memory consolidation in males and suggests sex differences in underlying signaling mechanisms.


Asunto(s)
Hipocampo , Consolidación de la Memoria , Quinolinas , Receptores Acoplados a Proteínas G , Transducción de Señal , Animales , Masculino , Consolidación de la Memoria/fisiología , Consolidación de la Memoria/efectos de los fármacos , Femenino , Ratones , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Transducción de Señal/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Ovariectomía , Orquiectomía , Ciclopentanos/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ratones Endogámicos C57BL
8.
Immunol Invest ; : 1-17, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721960

RESUMEN

The anti-tumor capacity of natural killer (NK) cells heavily relies on their ability to migrate towards their target cells. This process is based on dynamic actinrearrangement, so-called actin treadmilling, andis tightly regulated by proteins such as cofilin-1. The aim of the present study was to identify the role of cofilin-1 (CFL-1) in the migratory behavior of NK cells and to investigate a possible impact of an obesity-associated micromilieu on these cells, as it is known that obesity correlates with various impaired NK cell functions. CFL-1 was knocked-down via transfection of NK-92 cells with respective siRNAs. Obesity associated micromilieu was mimicked by incubation of NK-92 cells with adipocyte-conditioned medium from human preadipocyte SGBS cells or leptin. Effects on CFL-1 levels, the degree of phosphorylation to the inactive pCFL-1 as well as NK-92 cell motility were analyzed. Surprisingly, siRNA-mediated CFL-1 knockdown led to a significant increase of migration, as determined by enhanced velocity and accumulated distance of migration. No effect on CFL-1 nor pCFL-1 expression levels, proportion of phosphorylation and cell migratory behavior could be demonstrated under the influence of an obesity-associated microenvironment. In conclusion, the results indicate a significant effect of a CFL-1 knockdown on NK cell motility.

9.
Mol Divers ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689175

RESUMEN

The understanding of the molecular basis of complex diseases like hepatocellular carcinoma (HCC) needs large datasets of multiple genes and proteins involved in different phenomenon of its development. This study focuses on the molecular basis of HCC and the development of therapeutic strategies. We analyzed a dataset of 5475 genes (Homo sapiens) involved in HCC hallmarks, involving comprehensive data on multiple genes and frequently mutated genes. As HCC is characterized by metastasis, angiogenesis, and oxidative stress, exploration of genes associated with them has been targeted. Through gene ontology, functional characterization, and pathway enrichment analysis, we identified target proteins such as Lysyl oxidase, Survivin, Cofilin, and Cathepsin B. A library of curcumin analogs was used to target these proteins. Tetrahrydrocurcumin showed promising binding affinities for all four proteins, suggesting its potential as an inhibitor against these proteins for HCC therapy.

10.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338936

RESUMEN

Traumatic brain injury (TBI) is a major cause of mortality and disability around the world, for which no treatment has been found. Nociceptin/Orphanin FQ (N/OFQ) and the nociceptin opioid peptide (NOP) receptor are rapidly increased in response to fluid percussion, stab injury, and controlled cortical impact (CCI) TBI. TBI-induced upregulation of N/OFQ contributes to cerebrovascular impairment, increased excitotoxicity, and neurobehavioral deficits. Our objective was to identify changes in N/OFQ and NOP receptor peptide, protein, and mRNA relative to the expression of injury markers and extracellular regulated kinase (ERK) 24 h following mild (mTBI) and moderate TBI (ModTBI) in wildtype (WT) and NOP receptor-knockout (KO) rats. N/OFQ was quantified by radioimmunoassay, mRNA expression was assessed using real-time PCR and protein levels were determined by immunoblot analysis. This study revealed increased N/OFQ mRNA and peptide levels in the CSF and ipsilateral tissue of WT, but not KO, rats 24 h post-TBI; NOP receptor mRNA increased after ModTBI. Cofilin-1 activation increased in the brain tissue of WT but not KO rats, ERK activation increased in all rats following ModTBI; no changes in injury marker levels were noted in brain tissue at this time. In conclusion, this study elucidates transcriptional and translational changes in the N/OFQ-NOP receptor system relative to TBI-induced neurological deficits and initiation of signaling cascades that support the investigation of the NOP receptor as a therapeutic target for TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Receptor de Nociceptina , Nociceptina , Animales , Ratas , Analgésicos Opioides , Lesiones Traumáticas del Encéfalo/genética , Péptidos Opioides/metabolismo , Receptores Opioides/metabolismo , ARN Mensajero/metabolismo
11.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2489-2500, 2024 May.
Artículo en Zh | MEDLINE | ID: mdl-38812153

RESUMEN

This study aims to reveal the molecular mechanism of Chaijin Jieyu Anshen Tablets(CJJYAS) in regulating the abnormal anterior cingulate cortex(ACC)-ventral hippocampus(vHPC) glutaminergic neural circuit to alleviate synaptic remodeling of ventral hippocampal neurons in depressed rats. Firstly, the study used chemogenetics to localize glutaminergic adeno-associated virus(AAV) into the ACC brain region of rats. The model of depressed rats was established by chronic unpredictable mild stress(CUMS) combined with independent feeding. The rats were randomly divided into control group, model group, AAV empty group, AAV group, AAV+ glucocorticoid receptors(GR) blocker group, AAV+chemokine receptor 1(CX3CR1) blocker group, and AAV+CJJYAS group. Depressive-like behaviors of rats were evaluated by open-field, forced-swimming, and Morris water maze tests, combined with an animal behavior analysis system. The morphological and structural changes of ACC and vHPC neurons in rats were observed by hematoxylin-eosin(HE) staining. Immunofluorescence and nuclear phosphoprotein(c-Fos) were used to detect glutaminergic neural circuit activation of ACC-vHPC in rats. The changes in dendrites, synaptic spines, and synaptic submicrostructure of vHPC neurons were observed by Golgi staining and transmission electron microscopy, respectively. The expressions of synaptic remodeling-related proteins N-methyl-D-asprtate receptor 2A(GRIN2A), N-methyl-D-asprtate receptor 2B(GRIN2B), Ca~(2+)/calmodulin-dependent protein kinase Ⅱ(CaMKⅡ), mitogen-activated protein kinase-activated protein kinase 2(MK2), and a ubiquitous actin-binding protein(cofilin) in vHPC glutaminergic neurons of rats were detected by immunofluorescence and Western blot, respectively. The results indicated that the activated glutaminergic AAV aggravated the depressive-like behaviors phenotype of rats in the model group and deteriorated the damage of morphology and structure of ACC and vHPC neurons and synaptic ultrastructure. However, both GR and CX3CR1 bloc-kers could reverse the abnormal changes to varying degrees, suggesting that the abnormal activation of ACC-vHPC glutaminergic neural circuit mediated by GR/CX3CR1 signals in gliocytes in the ACC brain region may be closely related to the occurrence and development of depression. Interestingly, CJJYAS significantly inhibited the activation of the ACC-vHPC glutaminergic neural circuit induced by AAV and the elevated Glu level. Furthermore, CJJYAS could also effectively reverse the aggravation of depressive-like behaviors and synaptic remodeling of vHPC neurons of rats in the model group induced by the activated AAV. Additionally, the findings suggested that the molecular mechanism of CJJYAS in improving synaptic damage of vHPC neurons might be related to the regulation of synaptic remodeling-related signals such as NR/CaMKⅡ and MK2/cofilin. In conclusion, this research confirms that CJJYAS effectively regulates the abnormal ACC-vHPC glutaminergic neural circuit and alleviates the synaptic remodeling of vHPC glutaminergic neurons in depressed rats, and the molecular mechanism might be associated with the regulation of synapse-related NR/CaMKⅡ and MK2/cofilin signaling pathways, which may be the crucial mechanism of its antidepressant effect.


Asunto(s)
Depresión , Medicamentos Herbarios Chinos , Giro del Cíngulo , Hipocampo , Neuronas , Ratas Sprague-Dawley , Animales , Ratas , Masculino , Neuronas/metabolismo , Hipocampo/metabolismo , Depresión/metabolismo , Depresión/fisiopatología , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Giro del Cíngulo/metabolismo , Giro del Cíngulo/fisiopatología , Sinapsis/metabolismo , Plasticidad Neuronal , Humanos
12.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38203312

RESUMEN

Diet-related lipotoxic stress is a significant driver of skeletal muscle insulin resistance (IR) and type 2 diabetes (T2D) onset. ß2-adrenergic receptor (ß-AR) agonism promotes insulin sensitivity in vivo under lipotoxic stress conditions. Here, we established an in vitro paradigm of lipotoxic stress using palmitate (Palm) in rat skeletal muscle cells to determine if ß-AR agonism could cooperate with double C-2-like domain beta (DOC2B) enrichment to promote skeletal muscle insulin sensitivity under Palm-stress conditions. Previously, human T2D skeletal muscles were shown to be deficient for DOC2B, and DOC2B enrichment resisted IR in vivo. Our Palm-stress paradigm induced IR and ß-AR resistance, reduced DOC2B protein levels, triggered cytoskeletal cofilin phosphorylation, and reduced GLUT4 translocation to the plasma membrane (PM). By enhancing DOC2B levels in rat skeletal muscle, we showed that the deleterious effects of palmitate exposure upon cofilin, insulin, and ß-AR-stimulated GLUT4 trafficking to the PM and glucose uptake were preventable. In conclusion, we revealed a useful in vitro paradigm of Palm-induced stress to test for factors that can prevent/reverse skeletal muscle dysfunctions related to obesity/pre-T2D. Discerning strategies to enrich DOC2B and promote ß-AR agonism can resist skeletal muscle IR and halt progression to T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Animales , Ratas , Músculo Esquelético , Factores Despolimerizantes de la Actina , Palmitatos/farmacología , Glucosa , Proteínas de Unión al Calcio , Proteínas del Tejido Nervioso
14.
Cells ; 13(2)2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38247879

RESUMEN

This comprehensive review explores the complex role of cofilin, an actin-binding protein, across various neurodegenerative diseases (Alzheimer's, Parkinson's, schizophrenia, amyotrophic lateral sclerosis (ALS), Huntington's) and stroke. Cofilin is an essential protein in cytoskeletal dynamics, and any dysregulation could lead to potentially serious complications. Cofilin's involvement is underscored by its impact on pathological hallmarks like Aß plaques and α-synuclein aggregates, triggering synaptic dysfunction, dendritic spine loss, and impaired neuronal plasticity, leading to cognitive decline. In Parkinson's disease, cofilin collaborates with α-synuclein, exacerbating neurotoxicity and impairing mitochondrial and axonal function. ALS and frontotemporal dementia showcase cofilin's association with genetic factors like C9ORF72, affecting actin dynamics and contributing to neurotoxicity. Huntington's disease brings cofilin into focus by impairing microglial migration and influencing synaptic plasticity through AMPA receptor regulation. Alzheimer's, Parkinson's, and schizophrenia exhibit 14-3-3 proteins in cofilin dysregulation as a shared pathological mechanism. In the case of stroke, cofilin takes center stage, mediating neurotoxicity and neuronal cell death. Notably, there is a potential overlap in the pathologies and involvement of cofilin in various diseases. In this context, referencing cofilin dysfunction could provide valuable insights into the common pathologies associated with the aforementioned conditions. Moreover, this review explores promising therapeutic interventions, including cofilin inhibitors and gene therapy, demonstrating efficacy in preclinical models. Challenges in inhibitor development, brain delivery, tissue/cell specificity, and long-term safety are acknowledged, emphasizing the need for precision drug therapy. The call to action involves collaborative research, biomarker identification, and advancing translational efforts. Cofilin emerges as a pivotal player, offering potential as a therapeutic target. However, unraveling its complexities requires concerted multidisciplinary efforts for nuanced and effective interventions across the intricate landscape of neurodegenerative diseases and stroke, presenting a hopeful avenue for improved patient care.


Asunto(s)
Factores Despolimerizantes de la Actina , Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Enfermedad de Parkinson , Accidente Cerebrovascular , Humanos , alfa-Sinucleína , Accidente Cerebrovascular/metabolismo
15.
Sci Rep ; 14(1): 10241, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702365

RESUMEN

Within the bloodstream, monocytes must traverse the microvasculature to prevent leukostasis, which is the entrapment of monocytes within the confines of the microvasculature. Using the model cell line, THP-1, and VCAM-1 coated channels to simulate the microvasculature surface, we demonstrate that monocytes predominantly adopt an amoeboid phenotype, which is characterized by the formation of blebs. As opposed to cortical actin flow in leader blebs, cell movement is correlated with myosin contraction at the cell rear. It was previously documented that cofilin-1 promotes cortical actin turnover at leader bleb necks in melanoma cells. In monocytes, our data suggest that cofilin-1 promotes the local upregulation of myosin contractility through actin cytoskeleton remodeling. In support of this concept, cofilin-1 is found to localize to a single cell edge. Moreover, the widespread upregulation of myosin contractility was found to inhibit migration. Thus, monocytes within the microvasculature may avoid entrapment by adopting an amoeboid mode of migration.


Asunto(s)
Citoesqueleto de Actina , Movimiento Celular , Cofilina 1 , Monocitos , Humanos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Cofilina 1/metabolismo , Monocitos/metabolismo , Miosinas/metabolismo , Células THP-1 , Molécula 1 de Adhesión Celular Vascular/metabolismo
16.
J Biomed Res ; : 1-14, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38828848

RESUMEN

Although the p21-activated kinase 2 (PAK2) is an essential serine/threonine protein kinase, its role in lung squamous cell carcinoma (LUSC) progression has yet to be fully understood. We analyzed PAK2 mRNA levels and DNA copy numbers as well as protein levels by quantitative real-time PCR and immunohistochemical staining, respectively, in human LUSC tissues and adjacent normal tissues. Then, we used colony formation assays, cell counting kit-8 assays, matrigel invasion assays, wound healing assays and xenograft models in nude mice to investigate the functions of PAK2 in LUSC progression. We demonstrated that the mRNA levels, DNA copy numbers, and protein levels of PAK2 were up-regulated in human LUSC tissues than in adjacent normal tissues. In addition, a higher PAK2 expression was correlated with a poorer prognosis in LUSC patients. In the in vitro study, we found that PAK2 promoted cell growth, migration, invasion, EMT process, and cell morphology regulation in LUSC cells. Furthermore, PAK2 enhanced tumor cell proliferation, migration, and invasion by regulating actin dynamics through the LIMK1/cofilin signaling. Our findings implicated that the PAK2/LIMK1/cofilin signaling pathway is likely a potential clinical marker and therapeutic target for LUSC.

17.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38256947

RESUMEN

Neuroinflammation after intracerebral hemorrhage (ICH) is a crucial factor that determines the extent of the injury. Cofilin is a cytoskeleton-associated protein that drives neuroinflammation and microglia activation. A novel cofilin inhibitor (CI) synthesized and developed in our lab has turned out to be a potential therapeutic agent for targeting cofilin-mediated neuroinflammation in an in vitro model of ICH and traumatic brain injury. The current study aims to examine the therapeutic potential of CI in a mouse collagenase model of ICH and examine the neurobehavioral outcomes and its mechanism of action. Male mice were subjected to intrastriatal collagenase injection to induce ICH, and sham mice received needle insertion. Various concentrations (25, 50, and 100 mg/kg) of CI were administered to different cohorts of the animals as a single intravenous injection 3 h following ICH and intraperitoneally every 12 h for 3 days. The animals were tested for neurobehavioral parameters for up to 7 days and sacrificed to collect brains for hematoma volume measurement, Western blotting, and immunohistochemistry. Blood was collected for cofilin, TNF-α, and IL-1ß assessments. The results indicated that 50 mg/kg CI improved neurological outcomes, reversed post-stroke cognitive impairment, accelerated hematoma resolution, mitigated cofilin rods/aggregates, and reduced microglial and astrocyte activation in mice with ICH. Microglia morphological analysis demonstrated that CI restored the homeostasis ramification pattern of microglia in mice treated with CI. CI suppressed endoplasmic reticulum stress-related neuroinflammation by inhibiting inflammasomes and cell death signaling pathways. We also showed that CI prevented synaptic loss by reviving the pre- and post-synaptic markers. Our results unveil a novel therapeutic approach to treating ICH and open a window for using CI in clinical practice.

18.
Cell Rep ; 43(3): 113866, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38416638

RESUMEN

To mount an adaptive immune response, dendritic cells must migrate to lymph nodes to present antigens to T cells. Critical to 3D migration is the nucleus, which is the size-limiting barrier for migration through the extracellular matrix. Here, we show that inflammatory activation of dendritic cells leads to the nucleus becoming spherically deformed and enables dendritic cells to overcome the typical 2- to 3-µm diameter limit for 3D migration through gaps in the extracellular matrix. We show that the nuclear shape change is partially attained through reduced cell adhesion, whereas improved 3D migration is achieved through reprogramming of the actin cytoskeleton. Specifically, our data point to a model whereby the phosphorylation of cofilin-1 at serine 41 drives the assembly of a cofilin-actomyosin ring proximal to the nucleus and enhances migration through 3D collagen gels. In summary, these data describe signaling events through which dendritic cells deform their nucleus and enhance their migratory capacity.


Asunto(s)
Factores Despolimerizantes de la Actina , Actomiosina , Factores Despolimerizantes de la Actina/metabolismo , Movimiento Celular/fisiología , Actomiosina/metabolismo , Citocinesis , Cofilina 1/metabolismo , Matriz Extracelular/metabolismo , Células Dendríticas/metabolismo
19.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38659736

RESUMEN

Intracellular actin networks assemble through the addition of ATP-actin subunits at the growing barbed ends of actin filaments. This is followed by "aging" of the filament via ATP hydrolysis and subsequent phosphate release. Aged ADP-actin subunits thus "treadmill" through the filament before being released back into the cytoplasmic monomer pool as a result of depolymerization at filament pointed ends. The necessity for aging before filament disassembly is reinforced by preferential binding of cofilin to aged ADP-actin subunits over newly-assembled ADP-Pi actin subunits in the filament. Consequently, investigations into how cofilin influences pointed-end depolymerization have, thus far, focused exclusively on aged ADP-actin filaments. Using microfluidics-assisted Total Internal Reflection Fluorescence (mf-TIRF) microscopy, we reveal that, similar to their effects on ADP filaments, cofilin and cyclase-associated protein (CAP) also promote pointed-end depolymerization of ADP-Pi filaments. Interestingly, the maximal rates of ADP-Pi filament depolymerization by CAP and cofilin together remain approximately 20-40 times lower than for ADP filaments. Further, we find that the promotion of ADP-Pi pointed-end depolymerization is conserved for all three mammalian cofilin isoforms. Taken together, the mechanisms presented here open the possibility of newly-assembled actin filaments being directly disassembled from their pointed-ends, thus bypassing the slow step of Pi release in the aging process.

20.
Life Sci ; 347: 122609, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38580197

RESUMEN

LIM domains kinase 2 (LIMK2) is a 72 kDa protein that regulates actin and cytoskeleton reorganization. Once phosphorylated by its upstream activator (ROCK1), LIMK2 can phosphorylate cofilin to inactivate it. This relieves the levering stress on actin and allows polymerization to occur. Actin rearrangement is essential in regulating cell cycle progression, apoptosis, and migration. Dysregulation of the ROCK1/LIMK2/cofilin pathway has been reported to link to the development of various solid cancers such as breast, lung, and prostate cancer and liquid cancer like leukemia. This review aims to assess the findings from multiple reported in vitro, in vivo, and clinical studies on the potential tumour-regulatory role of LIMK2 in different human cancers. The findings of the selected literature unraveled that activated AKT, EGF, and TGF-ß pathways can upregulate the activities of the ROCK1/LIMK2/cofilin pathway. Besides cofilin, LIMK2 can modulate the cellular levels of other proteins, such as TPPP1, to promote microtubule polymerization. The tumour suppressor protein p53 can transactivate LIMK2b, a splice variant of LIMK2, to induce cell cycle arrest and allow DNA repair to occur before the cell enters the next phase of the cell cycle. Additionally, several non-coding RNAs, such as miR-135a and miR-939-5p, could also epigenetically regulate the expression of LIMK2. Since the expression of LIMK2 is dysregulated in several human cancers, measuring the tissue expression of LIMK2 could potentially help diagnose cancer and predict patient prognosis. As LIMK2 could play tumour-promoting and tumour-inhibiting roles in cancer development, more investigation should be conducted to carefully evaluate whether introducing a LIMK2 inhibitor in cancer patients could slow cancer progression without posing clinical harms.


Asunto(s)
Quinasas Lim , Neoplasias , Humanos , Quinasas Lim/metabolismo , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Animales , Transducción de Señal , Regulación Neoplásica de la Expresión Génica , Quinasas Asociadas a rho/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA