Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.148
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(8): 1356-1372.e26, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35395179

RESUMEN

Tumor-resident intracellular microbiota is an emerging tumor component that has been documented for a variety of cancer types with unclear biological functions. Here, we explored the functional significance of these intratumor bacteria, primarily using a murine spontaneous breast-tumor model MMTV-PyMT. We found that depletion of intratumor bacteria significantly reduced lung metastasis without affecting primary tumor growth. During metastatic colonization, intratumor bacteria carried by circulating tumor cells promoted host-cell survival by enhancing resistance to fluid shear stress by reorganizing actin cytoskeleton. We further showed that intratumor administration of selected bacteria strains isolated from tumor-resident microbiota promoted metastasis in two murine tumor models with significantly different levels of metastasis potential. Our findings suggest that tumor-resident microbiota, albeit at low biomass, play an important role in promoting cancer metastasis, intervention of which might therefore be worth exploring for advancing oncology care.


Asunto(s)
Neoplasias de la Mama , Microbiota , Metástasis de la Neoplasia , Animales , Neoplasias de la Mama/microbiología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Pulmonares/patología , Ratones , Células Neoplásicas Circulantes/patología
2.
Cell ; 184(3): 615-627.e17, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33453153

RESUMEN

The microbiota shields the host against infections in a process known as colonization resistance. How infections themselves shape this fundamental process remains largely unknown. Here, we show that gut microbiota from previously infected hosts display enhanced resistance to infection. This long-term functional remodeling is associated with altered bile acid metabolism leading to the expansion of taxa that utilize the sulfonic acid taurine. Notably, supplying exogenous taurine alone is sufficient to induce this alteration in microbiota function and enhance resistance. Mechanistically, taurine potentiates the microbiota's production of sulfide, an inhibitor of cellular respiration, which is key to host invasion by numerous pathogens. As such, pharmaceutical sequestration of sulfide perturbs the microbiota's composition and promotes pathogen invasion. Together, this work reveals a process by which the host, triggered by infection, can deploy taurine as a nutrient to nourish and train the microbiota, promoting its resistance to subsequent infection.


Asunto(s)
Microbioma Gastrointestinal , Interacciones Huésped-Patógeno , Animales , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Recuento de Colonia Microbiana , Microbioma Gastrointestinal/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Inmunidad , Ratones Endogámicos C57BL , Sulfuros/metabolismo , Taurina/farmacología
3.
Cell ; 181(7): 1533-1546.e13, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32631492

RESUMEN

The gut microbiome is the resident microbial community of the gastrointestinal tract. This community is highly diverse, but how microbial diversity confers resistance or susceptibility to intestinal pathogens is poorly understood. Using transplantation of human microbiomes into several animal models of infection, we show that key microbiome species shape the chemical environment of the gut through the activity of the enzyme bile salt hydrolase. The activity of this enzyme reduced colonization by the major human diarrheal pathogen Vibrio cholerae by degrading the bile salt taurocholate that activates the expression of virulence genes. The absence of these functions and species permits increased infection loads on a personal microbiome-specific basis. These findings suggest new targets for individualized preventative strategies of V. cholerae infection through modulating the structure and function of the gut microbiome.


Asunto(s)
Cólera/metabolismo , Susceptibilidad a Enfermedades/microbiología , Microbioma Gastrointestinal/fisiología , Adulto , Animales , Ácidos y Sales Biliares , Cólera/microbiología , Modelos Animales de Enfermedad , Trasplante de Microbiota Fecal/métodos , Femenino , Interacciones Huésped-Patógeno/fisiología , Humanos , Hidrolasas/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota , Ácido Taurocólico/metabolismo , Vibrio cholerae/patogenicidad , Vibrio cholerae/fisiología , Virulencia
4.
Cell ; 183(2): 324-334.e5, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33007265

RESUMEN

Infants born by vaginal delivery are colonized with maternal fecal microbes. Cesarean section (CS) birth disturbs mother-to-neonate transmission. In this study (NCT03568734), we evaluated whether disturbed intestinal microbiota development could be restored in term CS-born infants by postnatal, orally delivered fecal microbiota transplantation (FMT). We recruited 17 mothers, of whom seven were selected after careful screening. Their infants received a diluted fecal sample from their own mothers, taken 3 weeks prior to delivery. All seven infants had an uneventful clinical course during the 3-month follow-up and showed no adverse effects. The temporal development of the fecal microbiota composition of FMT-treated CS-born infants no longer resembled that of untreated CS-born infants but showed significant similarity to that of vaginally born infants. This proof-of-concept study demonstrates that the intestinal microbiota of CS-born infants can be restored postnatally by maternal FMT. However, this should only be done after careful clinical and microbiological screening.


Asunto(s)
Trasplante de Microbiota Fecal/métodos , Heces/microbiología , Microbioma Gastrointestinal/fisiología , Adulto , Cesárea/efectos adversos , Parto Obstétrico , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Microbiota/fisiología , Madres , Embarazo , Prueba de Estudio Conceptual , Vagina/microbiología
5.
Cell ; 172(6): 1216-1227, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29522743

RESUMEN

The composite members of the microbiota face a range of selective pressures and must adapt to persist in the host. We highlight recent work characterizing the evolution and transfer of genetic information across nested scales of host-associated microbiota, which enable resilience to biotic and abiotic perturbations. At the strain level, we consider the preservation and diversification of adaptive information in progeny lineages. At the community level, we consider genetic exchange between distinct microbes in the ecosystem. Finally, we frame microbiomes as open systems subject to acquisition of novel information from foreign ecosystems through invasion by outsider microbes.


Asunto(s)
Evolución Molecular , Variación Genética , Metagenoma/genética , Microbiota/genética , Animales , Ecosistema , Transferencia de Gen Horizontal , Especificidad del Huésped , Humanos
6.
Annu Rev Cell Dev Biol ; 35: 213-237, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31412210

RESUMEN

Microorganisms often live in habitats characterized by fluid flow, from lakes and oceans to soil and the human body. Bacteria and plankton experience a broad range of flows, from the chaotic motion characteristic of turbulence to smooth flows at boundaries and in confined environments. Flow creates forces and torques that affect the movement, behavior, and spatial distribution of microorganisms and shapes the chemical landscape on which they rely for nutrient acquisition and communication. Methodological advances and closer interactions between physicists and biologists have begun to reveal the importance of flow-microorganism interactions and the adaptations of microorganisms to flow. Here we review selected examples of such interactions from bacteria, phytoplankton, larvae, and zooplankton. We hope that this article will serve as a blueprint for a more in-depth consideration of the effects of flow in the biology of microorganisms and that this discussion will stimulate further multidisciplinary effort in understanding this important component of microorganism habitats.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Fenómenos Biomecánicos , Plancton/fisiología , Microbiología del Agua , Animales , Biopelículas , Invertebrados/crecimiento & desarrollo , Invertebrados/fisiología , Percepción de Quorum
7.
Immunity ; 56(1): 43-57.e10, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36630917

RESUMEN

There is growing recognition that regionalization of bacterial colonization and immunity along the intestinal tract has an important role in health and disease. Yet, the mechanisms underlying intestinal regionalization and its dysregulation in disease are not well understood. This study found that regional epithelial expression of the transcription factor GATA4 controls bacterial colonization and inflammatory tissue immunity in the proximal small intestine by regulating retinol metabolism and luminal IgA. Furthermore, in mice without jejunal GATA4 expression, the commensal segmented filamentous bacteria promoted pathogenic inflammatory immune responses that disrupted barrier function and increased mortality upon Citrobacter rodentium infection. In celiac disease patients, low GATA4 expression was associated with metabolic alterations, mucosal Actinobacillus, and increased IL-17 immunity. Taken together, these results reveal broad impacts of GATA4-regulated intestinal regionalization on bacterial colonization and tissue immunity, highlighting an elaborate interdependence of intestinal metabolism, immunity, and microbiota in homeostasis and disease.


Asunto(s)
Infecciones por Enterobacteriaceae , Factor de Transcripción GATA4 , Microbioma Gastrointestinal , Mucosa Intestinal , Animales , Humanos , Ratones , Actinobacillus , Microbioma Gastrointestinal/inmunología , Factor de Transcripción GATA4/metabolismo , Inmunidad Mucosa , Interleucina-17/inmunología , Interleucina-17/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Intestino Delgado , Simbiosis
8.
Cell ; 169(3): 538-546.e12, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28431251

RESUMEN

Applying synthetic biology to engineer gut-resident microbes provides new avenues to investigate microbe-host interactions, perform diagnostics, and deliver therapeutics. Here, we describe a platform for engineering Bacteroides, the most abundant genus in the Western microbiota, which includes a process for high-throughput strain modification. We have identified a novel phage promoter and translational tuning strategy and achieved an unprecedented level of expression that enables imaging of fluorescent-protein-expressing Bacteroides stably colonizing the mouse gut. A detailed characterization of the phage promoter has provided a set of constitutive promoters that span over four logs of strength without detectable fitness burden within the gut over 14 days. These promoters function predictably over a 1,000,000-fold expression range in phylogenetically diverse Bacteroides species. With these promoters, unique fluorescent signatures were encoded to allow differentiation of six species within the gut. Fluorescent protein-based differentiation of isogenic strains revealed that priority of gut colonization determines colonic crypt occupancy.


Asunto(s)
Bacteroides/clasificación , Bacteroides/genética , Microbioma Gastrointestinal , Ingeniería Genética , Animales , Bacteroides/aislamiento & purificación , Vida Libre de Gérmenes , Proteínas Fluorescentes Verdes/genética , Ratones , Regiones Promotoras Genéticas
9.
Mol Cell ; 78(4): 597-613, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32208169

RESUMEN

Commensal microbial communities inhabit biological niches in the mammalian host, where they impact the host's physiology through induction of "colonization resistance" against infections by a multitude of molecular mechanisms. These colonization-regulating activities involve microbe-microbe and microbe-host interactions, which induce, through utilization of complex bacterial networks, competition over nutrients, inhibition by antimicrobial peptides, stimulation of the host immune system, and promotion of mucus and intestinal epithelial barrier integrity. Distinct virulent pathogens overcome this colonization resistance and host immunity as part of a hostile takeover of the host niche, leading to clinically overt infection. The following review provides a mechanistic overview of the role of commensal microbes in modulating colonization resistance and pathogenic infections and means by which infectious agents may overcome such inhibition. Last, we outline evidence, unknowns, and challenges in developing strategies to harness this knowledge to treat infections by microbiota transfer, phage therapy, or supplementation by rationally defined bacterial consortia.


Asunto(s)
Bacterias/inmunología , Farmacorresistencia Microbiana/inmunología , Interacciones Huésped-Patógeno/inmunología , Infecciones/inmunología , Infecciones/microbiología , Microbiota , Virulencia/inmunología , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Humanos , Infecciones/metabolismo , Microbiota/efectos de los fármacos
10.
EMBO J ; 42(13): e112559, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37259596

RESUMEN

Metastatic colonization of distant organs accounts for over 90% of deaths related to solid cancers, yet the molecular determinants of metastasis remain poorly understood. Here, we unveil a mechanism of colonization in the aggressive basal-like subtype of breast cancer that is driven by the NAD+ metabolic enzyme nicotinamide N-methyltransferase (NNMT). We demonstrate that NNMT imprints a basal genetic program into cancer cells, enhancing their plasticity. In line, NNMT expression is associated with poor clinical outcomes in patients with breast cancer. Accordingly, ablation of NNMT dramatically suppresses metastasis formation in pre-clinical mouse models. Mechanistically, NNMT depletion results in a methyl overflow that increases histone H3K9 trimethylation (H3K9me3) and DNA methylation at the promoters of PR/SET Domain-5 (PRDM5) and extracellular matrix-related genes. PRDM5 emerged in this study as a pro-metastatic gene acting via induction of cancer-cell intrinsic transcription of collagens. Depletion of PRDM5 in tumor cells decreases COL1A1 deposition and impairs metastatic colonization of the lungs. These findings reveal a critical activity of the NNMT-PRDM5-COL1A1 axis for cancer cell plasticity and metastasis in basal-like breast cancer.


Asunto(s)
Neoplasias , Nicotinamida N-Metiltransferasa , Animales , Ratones , Nicotinamida N-Metiltransferasa/genética , Nicotinamida N-Metiltransferasa/metabolismo , Neoplasias/metabolismo , Metilación de ADN , Epigénesis Genética
11.
EMBO J ; 42(7): e111112, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36799040

RESUMEN

Brain metastasis, most commonly originating from lung cancer, increases cancer morbidity and mortality. Although metastatic colonization is the rate-limiting and most complex step of the metastatic cascade, the underlying mechanisms are poorly understood. Here, in vivo genome-wide CRISPR-Cas9 screening revealed that loss of interferon-induced transmembrane protein 1 (IFITM1) promotes brain colonization of human lung cancer cells. Incipient brain metastatic cancer cells with high expression of IFITM1 secrete microglia-activating complement component 3 and enhance the cytolytic activity of CD8+ T cells by increasing the expression and membrane localization of major histocompatibility complex class I. After activation, microglia (of the innate immune system) and cytotoxic CD8+ T lymphocytes (of the adaptive immune system) were found to jointly eliminate cancer cells by releasing interferon-gamma and inducing phagocytosis and T-cell-mediated killing. In human cancer clinical trials, immune checkpoint blockade therapy response was significantly correlated with IFITM1 expression, and IFITM1 enhanced the brain metastasis suppression efficacy of PD-1 blockade in mice. Our results exemplify a novel mechanism through which metastatic cancer cells overcome the innate and adaptive immune responses to colonize the brain, and suggest that a combination therapy increasing IFITM1 expression in metastatic cells with PD-1 blockade may be a promising strategy to reduce metastasis.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Linfocitos T CD8-positivos , Receptor de Muerte Celular Programada 1 , Neoplasias Pulmonares/patología , Encéfalo/patología
12.
Trends Immunol ; 45(7): 495-510, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38908962

RESUMEN

Over the past decade our research has implemented a multimodal approach to human lymphopoiesis, combining clonal-scale mapping of lymphoid developmental architecture with the monitoring of dynamic changes in the pattern of lymphocyte generation across ontogeny. We propose that lymphopoiesis stems from founder populations of CD127/interleukin (IL)7R- or CD127/IL7R+ early lymphoid progenitors (ELPs) polarized respectively toward the T-natural killer (NK)/innate lymphoid cell (ILC) or B lineages, arising from newly characterized CD117lo multi-lymphoid progenitors (MLPs). Recent data on the lifelong lymphocyte dynamics of healthy donors suggest that, after birth, lymphopoiesis may become increasingly oriented toward the production of B lymphocytes. Stemming from this, we posit that there are three major developmental transitions, the first occurring during the neonatal period, the next at puberty, and the last during aging.


Asunto(s)
Envejecimiento , Linfopoyesis , Humanos , Envejecimiento/inmunología , Células Progenitoras Linfoides/citología , Células Progenitoras Linfoides/metabolismo , Células Progenitoras Linfoides/inmunología , Linfocitos B/inmunología , Animales , Diferenciación Celular , Células Asesinas Naturales/inmunología
13.
Immunity ; 49(3): 545-559.e5, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30193848

RESUMEN

Although the mammalian microbiota is well contained within the intestine, it profoundly shapes development and metabolism of almost every host organ. We questioned the range and depth of microbial metabolite penetration into the host, and how this is modulated by intestinal immunity. Chemically identical microbial and host metabolites were distinguished by stable isotope tracing from 13C-labeled live non-replicating Escherichia coli, differentiating 12C host isotopes with high-resolution mass spectrometry. Hundreds of endogenous microbial compounds penetrated 23 host tissues and fluids after intestinal exposure: subsequent 12C host metabolome signatures included lipidemia, reduced glycolysis, and inflammation. Penetrant bacterial metabolites from the small intestine were rapidly cleared into the urine, whereas induced antibodies curtailed microbial metabolite exposure by accelerating intestinal bacterial transit into the colon where metabolite transport mechanisms are limiting. Pervasive penetration of microbial molecules can cause extensive host tissue responses: these are limited by immune and non-immune intestinal mucosal adaptations to the microbiota.


Asunto(s)
Anticuerpos/metabolismo , Microbioma Gastrointestinal/fisiología , Glucólisis/inmunología , Hiperlipidemias/inmunología , Inflamación/inmunología , Mamíferos/inmunología , Animales , Anticuerpos/inmunología , Radioisótopos de Carbono/análisis , Interacciones Huésped-Patógeno , Inmunidad , Cadenas Pesadas de Inmunoglobulina/genética , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
14.
Immunity ; 49(6): 1103-1115.e6, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30566883

RESUMEN

Retinoic acid (RA), a vitamin A metabolite, regulates transcriptional programs that drive protective or pathogenic immune responses in the intestine, in a manner dependent on RA concentration. Vitamin A is obtained from diet and is metabolized by intestinal epithelial cells (IECs), which operate in intimate association with microbes and immune cells. Here we found that commensal bacteria belonging to class Clostridia modulate RA concentration in the gut by suppressing the expression of retinol dehydrogenase 7 (Rdh7) in IECs. Rdh7 expression and associated RA amounts were lower in the intestinal tissue of conventional mice, as compared to germ-free mice. Deletion of Rdh7 in IECs diminished RA signaling in immune cells, reduced the IL-22-dependent antimicrobial response, and enhanced resistance to colonization by Salmonella Typhimurium. Our findings define a regulatory circuit wherein bacterial regulation of IEC-intrinsic RA synthesis protects microbial communities in the gut from excessive immune activity, achieving a balance that prevents colonization by enteric pathogens.


Asunto(s)
Disbiosis/metabolismo , Células Epiteliales/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/metabolismo , Tretinoina/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Disbiosis/microbiología , Células Epiteliales/microbiología , Interacciones Microbiota-Huesped , Mucosa Intestinal/citología , Mucosa Intestinal/microbiología , Linfocitos/metabolismo , Linfocitos/microbiología , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota/genética , Microbiota/fisiología , ARN Ribosómico 16S/genética , Salmonella typhimurium/genética , Salmonella typhimurium/fisiología , Simbiosis , Interleucina-22
15.
Proc Natl Acad Sci U S A ; 121(28): e2302924121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38950368

RESUMEN

The human colonization of the Canary Islands represents the sole known expansion of Berber communities into the Atlantic Ocean and is an example of marine dispersal carried out by an African population. While this island colonization shows similarities to the populating of other islands across the world, several questions still need to be answered before this case can be included in wider debates regarding patterns of initial colonization and human settlement, human-environment interactions, and the emergence of island identities. Specifically, the chronology of the first human settlement of the Canary Islands remains disputed due to differing estimates of the timing of its first colonization. This absence of a consensus has resulted in divergent hypotheses regarding the motivations that led early settlers to migrate to the islands, e.g., ecological or demographic. Distinct motivations would imply differences in the strategies and dynamics of colonization; thus, identifying them is crucial to understanding how these populations developed in such environments. In response, the current study assembles a comprehensive dataset of the most reliable radiocarbon dates, which were used for building Bayesian models of colonization. The findings suggest that i) the Romans most likely discovered the islands around the 1st century BCE; ii) Berber groups from western North Africa first set foot on one of the islands closest to the African mainland sometime between the 1st and 3rd centuries CE; iii) Roman and Berber societies did not live simultaneously in the Canary Islands; and iv) the Berber people rapidly spread throughout the archipelago.


Asunto(s)
Migración Humana , Humanos , España , Migración Humana/historia , Teorema de Bayes , Historia Antigua , Datación Radiométrica
16.
Proc Natl Acad Sci U S A ; 121(5): e2314215121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38261621

RESUMEN

The competition-colonization (CC) trade-off is a well-studied coexistence mechanism for metacommunities. In this setting, it is believed that the coexistence of all species requires their traits to satisfy restrictive conditions limiting their similarity. To investigate whether diverse metacommunities can assemble in a CC trade-off model, we study their assembly from a probabilistic perspective. From a pool of species with parameters (corresponding to traits) sampled at random, we compute the probability that any number of species coexist and characterize the set of species that emerges through assembly. Remarkably, almost exactly half of the species in a large pool typically coexist, with no saturation as the size of the pool grows, and with little dependence on the underlying distribution of traits. Through a mix of analytical results and simulations, we show that this unlimited niche packing emerges as assembly actively moves communities toward overdispersed configurations in niche space. Our findings also apply to a realistic assembly scenario where species invade one at a time from a fixed regional pool. When diversity arises de novo in the metacommunity, richness still grows without bound, but more slowly. Together, our results suggest that the CC trade-off can support the robust emergence of diverse communities, even when coexistence of the full species pool is exceedingly unlikely.


Asunto(s)
Vendajes , Fenotipo , Probabilidad
17.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38935572

RESUMEN

Two important characteristics of metapopulations are extinction-(re)colonization dynamics and gene flow between subpopulations. These processes can cause strong shifts in genome-wide allele frequencies that are generally not observed in "classical" (large, stable, and panmictic) populations. Subpopulations founded by one or a few individuals, the so-called propagule model, are initially expected to show intermediate allele frequencies at polymorphic sites until natural selection and genetic drift drive allele frequencies toward a mutation-selection-drift equilibrium characterized by a negative exponential-like distribution of the site frequency spectrum. We followed changes in site frequency spectrum distribution in a natural metapopulation of the cyclically parthenogenetic pond-dwelling microcrustacean Daphnia magna using biannual pool-seq samples collected over a 5-yr period from 118 ponds occupied by subpopulations of known age. As expected under the propagule model, site frequency spectra in newly founded subpopulations trended toward intermediate allele frequencies and shifted toward right-skewed distributions as the populations aged. Immigration and subsequent hybrid vigor altered this dynamic. We show that the analysis of site frequency spectrum dynamics is a powerful approach to understand evolution in metapopulations. It allowed us to disentangle evolutionary processes occurring in a natural metapopulation, where many subpopulations evolve in parallel. Thereby, stochastic processes like founder and immigration events lead to a pattern of subpopulation divergence, while genetic drift leads to converging site frequency spectrum distributions in the persisting subpopulations. The observed processes are well explained by the propagule model and highlight that metapopulations evolve differently from classical populations.


Asunto(s)
Daphnia , Frecuencia de los Genes , Flujo Genético , Selección Genética , Animales , Daphnia/genética , Flujo Génico , Modelos Genéticos , Genética de Población/métodos , Dinámica Poblacional , Genoma , Evolución Biológica , Evolución Molecular
18.
Proc Natl Acad Sci U S A ; 119(49): e2212533119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442106

RESUMEN

Malassezia form the dominant eukaryotic microbial community on the human skin. The Malassezia genus possesses a repertoire of secretory hydrolytic enzymes involved in protein and lipid metabolism which alter the external cutaneous environment. The exact role of most Malassezia secreted enzymes, including those in interaction with the epithelial surface, is not well characterized. In this study, we compared the expression level of secreted proteases, lipases, phospholipases, and sphingomyelinases of Malassezia globosa in healthy subjects and seborrheic dermatitis or atopic dermatitis patients. We observed upregulated gene expression of the previously characterized secretory aspartyl protease MGSAP1 in both diseased groups, in lesional and non-lesional skin sites, as compared to healthy subjects. To explore the functional roles of MGSAP1 in skin disease, we generated a knockout mutant of the homologous protease MFSAP1 in the genetically tractable Malassezia furfur. We observed the loss of MFSAP1 resulted in dramatic changes in the cell adhesion and dispersal in both culture and a human 3D reconstituted epidermis model. In a murine model of Malassezia colonization, we further demonstrated Mfsap1 contributes to inflammation as observed by reduced edema and inflammatory cell infiltration with the knockout mutant versus wildtype. Taken together, we show that this dominant secretory Malassezia aspartyl protease has an important role in enabling a planktonic cellular state that can potentially aid in colonization and additionally as a virulence factor in barrier-compromised skin, further highlighting the importance of considering the contextual relevance when evaluating the functions of secreted microbial enzymes.


Asunto(s)
Proteasas de Ácido Aspártico , Dermatitis Atópica , Malassezia , Humanos , Animales , Ratones , Péptido Hidrolasas/genética , Malassezia/genética , Inflamación , Ácido Aspártico Endopeptidasas
19.
Proc Natl Acad Sci U S A ; 119(40): e2121248119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161958

RESUMEN

The slender wild oat (Avena barbata) was widely studied in California using allozymes in the 1970s and interpreted as a case of ecotypic adaptation to contrasting moisture environments. However, common garden studies suggested that the moist-associated ("mesic") ecotype had high fitness in both moist and dry habitats, thus predicting an adaptive spread into areas occupied by the dry associated ("xeric") ecotype. To test this prediction, we revisited 100 populations of A. barbata that were screened genetically 40 y ago. As expected, mesic allozyme and morphological markers are much more common than in the 1970s. The less-fit xeric ecotype, while still widespread, has declined markedly in range and frequency. Genotyping by sequencing of modern populations reveals striking genetic uniformity within each of the two ecotypes. In recombinants between the two ecotypes, the mesic allele at a major fitness quantitative trait locus (QTL) shows a high frequency but so do many other genomic regions not identified as fitness QTL. Additional introduced genotypes are diverse and more widespread than in the past, and our results show that these have spread into the former range of the xeric ecotype to an even greater extent than the mesic ecotype has. While these results confirm the prediction of contemporary evolution from common gardens, they also suggest that much of the change has been driven by additional waves of introduced genotypes.


Asunto(s)
Avena , Ecotipo , Isoenzimas , Adaptación Fisiológica/genética , Alelos , Avena/genética , California , Flujo Genético , Aptitud Genética , Genotipo , Isoenzimas/genética , Sitios de Carácter Cuantitativo
20.
Proc Natl Acad Sci U S A ; 119(39): e2203273119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122226

RESUMEN

Microglia are the central nervous system (CNS)-resident macrophages involved in neural inflammation, neurogenesis, and neural activity regulation. Previous studies have shown that naturally occurring neuronal apoptosis plays a critical role in regulating microglial colonization of the brain in zebrafish. However, the molecular signaling cascades underlying neuronal apoptosis-mediated microglial colonization and the regulation of these cascades remain undefined. Here, we show that basic leucine zipper (b-Zip) transcription factors, Mafba and Mafbb, two zebrafish orthologs of mammalian MAFB, are key regulators in neuronal apoptosis-mediated microglial colonization of the brain in zebrafish. We document that the loss of Mafba and Mafbb function perturbs microglial colonization of the brain. We further demonstrate that Mafba and Mafbb act cell-autonomously and cooperatively to orchestrate microglial colonization, at least in part, by regulating the expression of G protein-coupled receptor 34a (Gpr34a), which directs peripheral macrophage recruitment into the brain through sensing the lysophosphatidylserine (lysoPS) released by the apoptotic neurons. Our study reveals that Mafba and Mafbb regulate neuronal apoptosis-mediated microglial colonization of the brain in zebrafish via the lysoPS-Gpr34a pathway.


Asunto(s)
Microglía , Pez Cebra , Animales , Encéfalo/fisiología , Quimiotaxis , Factores de Transcripción Maf , Mamíferos/metabolismo , Microglía/metabolismo , Proteínas Oncogénicas , Factores de Transcripción/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA