Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(39): e2403062121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39302966

RESUMEN

The progression of many solid tumors is accompanied by temporal and spatial changes in the stiffness of the extracellular matrix (ECM). Cancer cells adapt to soft and stiff ECM through mechanisms that are not fully understood. It is well known that there is significant genetic heterogeneity from cell to cell in tumors, but how ECM stiffness as a parameter might interact with that genetic variation is not known. Here, we employed experimental evolution to study the response of genetically variable and clonal populations of tumor cells to variable ECM stiffness. Proliferation rates of genetically variable populations cultured on soft ECM increased over a period of several weeks, whereas clonal populations did not evolve. Tracking of DNA barcoded cell lineages revealed that soft ECM consistently selected for the same few variants. These data provide evidence that ECM stiffness exerts natural selection on genetically variable tumor populations. Soft-selected cells were highly migratory, with enriched oncogenic signatures and unusual behaviors such as spreading and traction force generation on ECMs with stiffness as low as 1 kPa. Rho-regulated cell spreading was found to be the directly selected trait, with yes-associated protein 1 translocation to the nucleus mediating fitness on soft ECM. Overall, these data show that genetic variation can drive cancer cell adaptation to ECM stiffness.


Asunto(s)
Matriz Extracelular , Variación Genética , Matriz Extracelular/metabolismo , Matriz Extracelular/genética , Humanos , Línea Celular Tumoral , Neoplasias/genética , Neoplasias/patología , Adaptación Fisiológica/genética , Proliferación Celular/genética , Movimiento Celular/genética
2.
J Cell Sci ; 137(1)2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38108421

RESUMEN

Cellular heterogeneity and extracellular matrix (ECM) stiffening have been shown to be drivers of breast cancer invasiveness. Here, we examine how stiffness-dependent crosstalk between cancer cells and mesenchymal stem cells (MSCs) within an evolving tumor microenvironment regulates cancer invasion. By analyzing previously published single-cell RNA sequencing datasets, we establish the existence of a subpopulation of cells in primary tumors, secondary sites and circulatory tumor cell clusters of highly aggressive triple-negative breast cancer (TNBC) that co-express MSC and cancer-associated fibroblast (CAF) markers. By using hydrogels with stiffnesses of 0.5, 2 and 5 kPa to mimic different stages of ECM stiffening, we show that conditioned medium from MDA-MB-231 TNBC cells cultured on 2 kPa gels, which mimic the pre-metastatic stroma, drives efficient MSC chemotaxis and induces stable differentiation of MSC-derived CAFs in a TGFß (TGFB1)- and contractility-dependent manner. In addition to enhancing cancer cell proliferation, MSC-derived CAFs on 2 kPa gels maximally boost local invasion and confer resistance to flow-induced shear stresses. Collectively, our results suggest that homing of MSCs at the pre-metastatic stage and their differentiation into CAFs actively drives breast cancer invasion and metastasis in TNBC.


Asunto(s)
Neoplasias de la Mama , Fibroblastos Asociados al Cáncer , Células Madre Mesenquimatosas , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Diferenciación Celular , Geles , Microambiente Tumoral/genética , Línea Celular Tumoral
3.
Exp Cell Res ; 437(2): 114014, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38547959

RESUMEN

Extracellular matrix (ECM) stiffness regulates development and homeostasis in vivo and affects both physiological and pathological processes. A variety of studies have demonstrated that mRNAs, such as Piezo1, integrin ß1, and Yes-associated protein (YAP)/tafazzin (TAZ), can sense the mechanical signals induced by ECM stiffness and transmit them from the extracellular space into the cytoplasm. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have been reported to play important roles in various cellular processes. Therefore, the interactions between ncRNAs and ECM stiffness, as well as the underlying molecular mechanisms, have become intriguing. In this review, we summarize recent findings on miRNAs and lncRNAs that interact with ECM stiffness. Several miRNAs and lncRNAs are involved in the progression of liver cancer, breast cancer, osteosarcoma, and cardiovascular diseases under the regulation of ECM stiffness. Through these ncRNAs, cellular behaviors including cell differentiation, proliferation, adhesion, migration, invasion, and epithelial-mesenchymal transition (EMT) are affected by ECM stiffness. We also integrate the ncRNA signaling pathways associated with ECM stiffness, in which typical signaling pathways like integrin ß1/TGFß1, phosphatidylinositol-3 kinase (PI3K)/AKT, and EMT are involved. Although our understanding of the relationships between ncRNAs and ECM stiffness is still limited, further investigations may provide new insights for disease treatment. ECM-associated ncRNAs may serve as disease biomarkers or be targeted by drugs.


Asunto(s)
MicroARNs , ARN Largo no Codificante , MicroARNs/genética , ARN Largo no Codificante/genética , Integrina beta1/metabolismo , Matriz Extracelular/metabolismo , Diferenciación Celular
4.
Nano Lett ; 23(17): 7950-7960, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37418659

RESUMEN

It is a big challenge to design a biomimetic physical microenvironment with greater similarity to in vivo tissue to observe real cell behaviors. We established a novel cell culture platform based on patterned equidistant micropillars with stiff and soft stiffnesses to mimic the changes that happened in the transition from normal to osteoporotic disease. We first demonstrated that the soft micropillar substrate decreased osteocyte synaptogenesis through synaptogyrin 1 and that this decrease was accompanied by impairment of cell mechanoperception and a decrease in cellular cytoskeletal rearrangement. We then found that the soft equidistant micropillar substrate reduced the osteocyte synaptogenesis mainly via the inactivation of Erk/MAPK signaling. We finally found that soft micropillar substrate-mediated synaptogenesis impacted the cell-to-cell communication and matrix mineralization of osteocytes. Taken together, this study provides evidence of cellular mechanical responses that are much more similar to those of real osteocytes at the bone tissue level.


Asunto(s)
Biomimética , Osteocitos , Huesos , Técnicas de Cultivo de Célula , Mecanotransducción Celular
5.
J Cell Sci ; 134(12)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34152388

RESUMEN

Cell cycle control is a key aspect of numerous physiological and pathological processes. The contribution of biophysical cues, such as stiffness or elasticity of the underlying extracellular matrix (ECM), is critically important in regulating cell cycle progression and proliferation. Indeed, increased ECM stiffness causes aberrant cell cycle progression and proliferation. However, the molecular mechanisms that control these stiffness-mediated cellular responses remain unclear. Here, we address this gap and show good evidence that lamellipodin (symbol RAPH1), previously known as a critical regulator of cell migration, stimulates ECM stiffness-mediated cyclin expression and intracellular stiffening in mouse embryonic fibroblasts. We observed that increased ECM stiffness upregulates lamellipodin expression. This is mediated by an integrin-dependent FAK-Cas-Rac signaling module and supports stiffness-mediated lamellipodin induction. Mechanistically, we find that lamellipodin overexpression increased, and lamellipodin knockdown reduced, stiffness-induced cell cyclin expression and cell proliferation, and intracellular stiffness. Overall, these results suggest that lamellipodin levels may be critical for regulating cell proliferation. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Ciclinas , Fibroblastos , Animales , Puntos de Control del Ciclo Celular , Proliferación Celular , Matriz Extracelular , Ratones , Transducción de Señal
6.
Respir Res ; 24(1): 242, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798767

RESUMEN

The pulmonary extracellular matrix (ECM) is a macromolecular structure that provides mechanical support, stability and elastic recoil for different pulmonary cells including the lung fibroblasts. The ECM plays an important role in lung development, remodeling, repair, and the maintenance of tissue homeostasis. Biomechanical and biochemical signals produced by the ECM regulate the phenotype and function of various cells including fibroblasts in the lungs. Fibroblasts are important lung structural cells responsible for the production and repair of different ECM proteins (e.g., collagen and fibronectin). During lung injury and in chronic lung diseases such as asthma, idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), an abnormal feedback between fibroblasts and the altered ECM disrupts tissue homeostasis and leads to a vicious cycle of fibrotic changes resulting in tissue remodeling. In line with this, using 3D hydrogel culture models with embedded lung fibroblasts have enabled the assessment of the various mechanisms involved in driving defective (fibrotic) fibroblast function in the lung's 3D ECM environment. In this review, we provide a summary of various studies that used these 3D hydrogel models to assess the regulation of the ECM on lung fibroblast phenotype and function in altered lung ECM homeostasis in health and in chronic respiratory disease.


Asunto(s)
Hidrogeles , Fibrosis Pulmonar Idiopática , Humanos , Hidrogeles/análisis , Hidrogeles/metabolismo , Pulmón/metabolismo , Matriz Extracelular/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis , Fibroblastos/metabolismo
7.
Rev Endocr Metab Disord ; 24(2): 207-220, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36385696

RESUMEN

Mechanical forces are the indispensable constituent of environmental cues, such as gravity, barometric pressure, vibration, and contact with bodies, which are involved in pattern and organogenesis, providing mechanical input to tissues and determining the ultimate fate of cells. Extracellular matrix (ECM) stiffness, the slow elastic force, carries the external physical force load onto the cell or outputs the internal force exerted by the cell and its neighbors into the environment. Accumulating evidence illustrates the pivotal role of ECM stiffness in the regulation of organogenesis, maintenance of tissue homeostasis, and the development of multiple diseases, which is largely fulfilled through its systematical impact on cellular metabolism. This review summarizes the establishment and regulation of ECM stiffness, the mechanisms underlying how ECM stiffness is sensed by cells and signals to modulate diverse cell metabolic pathways, and the physiological and pathological significance of the ECM stiffness-cell metabolism axis.


Asunto(s)
Matriz Extracelular , Transducción de Señal , Humanos , Matriz Extracelular/metabolismo , Mecanotransducción Celular/fisiología
8.
Arch Biochem Biophys ; 742: 109624, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37146866

RESUMEN

Intercellular communication is pivotal in various stages of cancer progression. For smart and effective communication, cancer cells employ diverse modes of messaging that may be further fine-tuned by the microenvironmental changes. Extracellular matrix (ECM) stiffening due to excess deposition and crosslinking of collagen is one of the crucial tumor-microenvironmental changes that influence a plethora of cellular processes, including cell-cell communication. We herein studied the crosstalk between exosomes and tunneling nanotubes (TNT), the two distinct means of cell-cell communication under varying ECM-stiffness conditions. We show that exosomes promote the formation of tunneling nanotubes in breast cancer cells, which results in cellular internet. Interestingly, exosomes drastically increased the fraction of cells connected by TNT; however, they elicited no effect on the number of TNTs per pair of connected cells or the length of TNT. The observed pro-TNT effects of exosomes were found to be ECM-stiffness dependent. ECM-stiffness tuned exosomes were found to promote TNT formation predominantly via the 'cell dislodgment model'. At the molecular level, exosomal thrombospondin-1 was identified as a critical pro-TNT factor. These findings underline the influence of ECM stiffening on two diverse modes of cell communication and their interdependence, which may have significant implications in cancer biomedical research.


Asunto(s)
Neoplasias de la Mama , Nanotubos , Humanos , Femenino , Comunicación Celular , Matriz Extracelular , Trombospondinas
9.
Cell Commun Signal ; 21(1): 22, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36691027

RESUMEN

The integrity of the structure and function of the endometrium is essential for the maintenance of fertility. However, the repair mechanisms of uterine injury remain largely unknown. Here, we showed that the disturbance of mechanical cue homeostasis occurs after uterine injury. Applying a multimodal approach, we identified YAP as a sensor of biophysical forces that drives endometrial regeneration. Through protein activation level analysis of the combinatorial space of mechanical force strength and of the presence of particular kinase inhibitors and gene silencing reagents, we demonstrated that mechanical cues related to extracellular matrix rigidity can turn off the Rap1a switch, leading to the inactivation of ARHGAP35and then induced activation of RhoA, which in turn depends on the polymerization of the agonist protein F-actin to activate YAP. Further study confirmed that mechanotransduction significantly accelerates remodeling of the uterus by promoting the proliferation of endometrial stromal cells in vitro and in vivo. These studies provide new insights into the dynamic regulatory mechanisms behind uterine remodeling and the function of mechanotransduction. Video Abstract.


Asunto(s)
Actinas , Proteínas Adaptadoras Transductoras de Señales , Femenino , Humanos , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transducción de Señal/genética , Proteínas Señalizadoras YAP , Mecanotransducción Celular/fisiología , Matriz Extracelular/metabolismo , Útero/metabolismo
10.
Breast Cancer Res Treat ; 193(2): 331-348, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35338412

RESUMEN

PURPOSE: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer that is frequently treated with chemotherapy. However, many patients exhibit either de novo chemoresistance or ultimately develop resistance to chemotherapy, leading to significantly high mortality rates. Therefore, increasing the efficacy of chemotherapy has potential to improve patient outcomes. METHODS: Here, we performed whole transcriptome sequencing (both RNA and small RNA-sequencing), coupled with network simulations and patient survival data analyses to build a novel miRNA-mRNA interaction network governing chemoresistance in TNBC. We performed cell proliferation assay, Western blotting, RNAi/miRNA mimic experiments, FN coating, 3D cultures, and ChIP assays to validate the interactions in the network, and their functional roles in chemoresistance. We developed xenograft models to test the therapeutic potential of the identified key miRNA/proteins in potentiating chemoresponse in vivo. We also analyzed several patient datasets to evaluate the clinical relevance of our findings. RESULTS: We identified fibronectin (FN1) as a central chemoresistance driver gene. Overexpressing miR-326 reversed FN1-driven chemoresistance by targeting FN1 receptor, ITGA5. miR-326 was downregulated by increased hypoxia/HIF1A and ECM stiffness in chemoresistant tumors, leading to upregulation of ITGA5 and activation of the downstream FAK/Src signaling pathways. Overexpression of miR-326 or inhibition of ITGA5 overcame FN1-driven chemotherapy resistance in vitro by inhibiting FAK/Src pathway and potentiated the efficacy of chemotherapy in vivo. Importantly, lower expression of miR-326 or higher levels of predicted miR-326 target genes was significantly associated with worse overall survival in chemotherapy-treated TNBC patients. CONCLUSION: FN1 is central in chemoresistance. In chemoresistant tumors, hypoxia and resulting ECM stiffness repress the expression of the tumor suppressor miRNA, miR-326. Hence, re-expression of miR-326 or inhibition of its target ITGA5 reverses FN1-driven chemoresistance making them attractive therapeutic approaches to enhance chemotherapy response in TNBCs.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Integrinas , MicroARNs , Neoplasias de la Mama Triple Negativas , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Integrinas/genética , MicroARNs/genética , Transducción de Señal , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética
11.
J Cell Physiol ; 236(5): 3770-3779, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33078410

RESUMEN

Transient receptor potential vanilloid 4 (TRPV4) channels are mechanosensitive ion channels that regulate systemic endothelial cell (EC) functions such as vasodilation, permeability, and angiogenesis. TRPV4 is expressed in retinal ganglion cells, Müller glia, pigment epithelium, microvascular ECs, and modulates cell volume regulation, calcium homeostasis, and survival. TRPV4-mediated physiological or pathological retinal angiogenesis remains poorly understood. Here, we demonstrate that TRPV4 is expressed, functional, and mechanosensitive in retinal ECs. The genetic deletion of TRPV4 did not affect postnatal developmental angiogenesis but increased pathological neovascularization in response to oxygen-induced retinopathy (OIR). Retinal vessels from TRPV4 knockout mice subjected to OIR exhibited neovascular tufts that projected into the vitreous humor and displayed reduced pericyte coverage compared with wild-type mice. These results suggest that TRPV4 is a regulator of retinal angiogenesis, its deletion augments pathological retinal angiogenesis, and that TRPV4 could be a novel target for the development of therapies against neovascular ocular diseases.


Asunto(s)
Eliminación de Gen , Neovascularización Fisiológica , Neovascularización Retiniana/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Células Endoteliales/metabolismo , Humanos , Mecanotransducción Celular , Ratones Endogámicos C57BL , Microvasos/patología , Oxígeno , Pericitos/patología , Retina/patología
12.
Cell Mol Life Sci ; 77(20): 4143-4161, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31912196

RESUMEN

Myofibroblasts are the major cell type that is responsible for increase in the mechanical stiffness in fibrotic tissues. It has well documented that the TGF-ß/Smad axis is required for myofibroblast differentiation under the rigid substrate condition. However, the mechanism driving myofibroblast differentiation in soft substrates remains unknown. In this research, we demonstrated that interaction of yes-associated protein (YAP) and acetylated microtubule via dynein, a microtubule motor protein drives nuclear localization of YAP in the soft matrix, which in turn increased TGF-ß1-induced transcriptional activity of Smad for myofibroblast differentiation. Pharmacological and genetical disruption of dynein impaired the nuclear translocation of YAP and decreased the TGF-ß1-induced Smad activity even though phosphorylation and nuclear localization of Smad occurred normally in α-tubulin acetyltransferase 1 (α-TAT1) knockout cell. Moreover, microtubule acetylation prominently appeared in the fibroblast-like cells nearby the blood vessel in the fibrotic liver induced by CCl4 administration, which was conversely decreased by TGF-ß receptor inhibitor. As a result, quantitative inhibition of microtubule acetylation may be suggested as a new target for overcoming fibrotic diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Dineínas/metabolismo , Fibroblastos/metabolismo , Microtúbulos/metabolismo , Transporte de Proteínas/fisiología , Acetilación , Animales , Diferenciación Celular/fisiología , Línea Celular , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Fosforilación/fisiología , Transducción de Señal/fisiología , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Señalizadoras YAP
14.
J Theor Biol ; 457: 124-136, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30144408

RESUMEN

A key challenge in cell and tissue morphogenesis is to understand how a crucial balance between cell proliferation and apoptosis maintains an evolving tissue structure. These processes are mutually non-exclusive and require stiffness monitoring of the host substrate. Adhered cells actively mechanosense the tension in the extracellular matrix (ECM). They collectively alter self-organization and generate a host of tissue patterns. Using an in silico elastic fiber-network in two dimensions, we simulate cell-ECM composite structures and characterize features of the emerging tissue patterns during successive cell proliferation and apoptosis. Our data reveals that, in general, cell viability is a function of the cell-induced effective ECM stiffness supported by intercellular cooperativity. Translating this into a remodeling tissue, we find that average cell cycle duration in concert with the locally stressed regions of the ECM promote heterogeneous proliferation and apoptosis inducing finger-like protrusions along the tissue periphery - a feature normally observed during tumorigenesis. Further, we find that recovery of a scratch wound is delayed for cells harbored on a compliant or (and) in a highly collagen depleted ECM.


Asunto(s)
Apoptosis , Carcinogénesis/metabolismo , Proliferación Celular , Matriz Extracelular/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Animales , Carcinogénesis/patología , Supervivencia Celular , Matriz Extracelular/patología , Humanos , Neoplasias/patología
15.
Exp Cell Res ; 343(1): 42-53, 2016 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-26524510

RESUMEN

Signalling from the extracellular matrix (ECM) is a fundamental cellular input that sustains proliferation, opposes cell death and regulates differentiation. Through integrins, cells perceive both the chemical composition and physical properties of the ECM. In particular, cell behaviour is profoundly influenced by the mechanical elasticity or stiffness of the ECM, which regulates the ability of cells to develop forces through their contractile actomyosin cytoskeleton and to mature focal adhesions. This mechanosensing ability affects fundamental cellular functions, such that alterations of ECM stiffness is nowadays considered not a simple consequence of pathology, but a causative input driving aberrant cell behaviours. We here discuss recent advances on how mechanical signals intersect nuclear transcription and in particular the activity of YAP/TAZ transcriptional coactivators, known downstream transducers of the Hippo pathway and important effectors of ECM mechanical cues.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Uniones Célula-Matriz/metabolismo , Factores de Transcripción/metabolismo , Aciltransferasas , Animales , Humanos , Mecanotransducción Celular/fisiología , Fosfoproteínas/metabolismo , Proteínas Señalizadoras YAP
16.
Am J Physiol Heart Circ Physiol ; 309(4): H532-42, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26092987

RESUMEN

Cardiac myofibroblast differentiation, as one of the most important cellular responses to heart injury, plays a critical role in cardiac remodeling and failure. While biochemical cues for this have been extensively investigated, the role of mechanical cues, e.g., extracellular matrix stiffness and mechanical strain, has also been found to mediate cardiac myofibroblast differentiation. Cardiac fibroblasts in vivo are typically subjected to a specific spatiotemporally changed mechanical microenvironment. When exposed to abnormal mechanical conditions (e.g., increased extracellular matrix stiffness or strain), cardiac fibroblasts can undergo myofibroblast differentiation. To date, the impact of mechanical cues on cardiac myofibroblast differentiation has been studied both in vitro and in vivo. Most of the related in vitro research into this has been mainly undertaken in two-dimensional cell culture systems, although a few three-dimensional studies that exist revealed an important role of dimensionality. However, despite remarkable advances, the comprehensive mechanisms for mechanoregulation of cardiac myofibroblast differentiation remain elusive. In this review, we introduce important parameters for evaluating cardiac myofibroblast differentiation and then discuss the development of both in vitro (two and three dimensional) and in vivo studies on mechanoregulation of cardiac myofibroblast differentiation. An understanding of the development of cardiac myofibroblast differentiation in response to changing mechanical microenvironment will underlie potential targets for future therapy of cardiac fibrosis and failure.


Asunto(s)
Diferenciación Celular , Miocardio/metabolismo , Miofibroblastos/citología , Estrés Mecánico , Animales , Matriz Extracelular/metabolismo , Fibrosis/metabolismo , Fibrosis/terapia , Humanos , Miocardio/citología , Miocardio/patología , Miofibroblastos/metabolismo , Miofibroblastos/fisiología , Ingeniería de Tejidos
17.
Anim Cells Syst (Seoul) ; 28(1): 417-427, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220629

RESUMEN

Calcium ions (Ca2+) play pivotal roles in regulating numerous cellular functions, including metabolism and growth, in normal and cancerous cells. Consequently, Ca2+ signaling is a vital determinant of cell fate and influences both cell survival and death. These intracellular signals are susceptible to modulation by various factors, including changes in the extracellular environment, which leads to mechanical alterations. However, the effect of extracellular matrix (ECM) stiffness variations on intracellular Ca2+ signaling remains underexplored. In this study, we aimed to elucidate the mechanisms of Ca2+ regulation through the mitochondria, which are crucial to Ca2+ homeostasis. We investigated how Ca2+ regulatory mechanisms adapt to different levels of ECM stiffness by simultaneously imaging the mitochondria and endoplasmic reticulum (ER) in live cells using genetically encoded biosensors. Our findings revealed that the uptake of mitochondrial Ca2+ through Voltage-Dependent Anion Channel 1 (VDAC1), facilitated by intracellular tubulin, is influenced by ECM stiffness. Unraveling these Ca2+ regulatory mechanisms under various conditions offers a novel perspective for advancing biomedical studies involving Ca2+ signaling.

18.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167205, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38696846

RESUMEN

Procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (Plod2) is a key collagen lysyl hydroxylase mediating the formation of collagen fiber and stabilized collagen cross-links, and has been identified in several forms of fibrosis. However, the potential role and regulatory mechanism of Plod2 in liver fibrosis remain unclear yet. Mouse liver fibrosis models were induced by injecting carbon tetrachloride (CCl4) intraperitoneally. The morphology and alignment of collagen was observed under transmission and scanning electron microscopy, and extracellular matrix (ECM) stiffness was measured by atomic force microscopy. Large amounts of densely packed fibrillar collagen fibers produced by myofibroblasts (MFs) were deposited in fibrotic liver of mice reaching very large diameters in the cross section, accompanied with ECM stiffening, which was positively correlated with collagen-crosslinking. The expression of Plod2 was dynamically up-regulated in fibrotic liver of mouse and human. In MFs transfection of Plod2 siRNA made collagen fibers more orderly and linear aligned which can be easily degraded and protected from ECM stiffness. Administration of Plod2 siRNA preventatively or therapeutically in CCl4 mice reduced the average size of collagen bundles in transverse section, increased collagen solubility, decreases the levels of crosslinking products hydroxylysylpyridinoline and lysylpyridinoline, prevented ECM stiffening and alleviated liver fibrosis. Altogether, Plod2 mediates the formation of stabilized profibrotic collagen cross-links in MFs, leading to the alteration of collagen solubility and ECM stiffness, and eventually aggravates liver fibrosis, which provide potential target for the treatment of liver disease.


Asunto(s)
Tetracloruro de Carbono , Colágeno , Matriz Extracelular , Cirrosis Hepática , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa , Animales , Humanos , Masculino , Ratones , Tetracloruro de Carbono/toxicidad , Colágeno/metabolismo , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo , Miofibroblastos/patología , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética
19.
FEBS Open Bio ; 14(5): 867-882, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38538106

RESUMEN

The extracellular matrix (ECM) regulates carcinogenesis by interacting with cancer cells via cell surface receptors. Discoidin Domain Receptor 2 (DDR2) is a collagen-activated receptor implicated in cell survival, growth, and differentiation. Dysregulated DDR2 expression has been identified in various cancer types, making it as a promising therapeutic target. Additionally, cancer cells exhibit mechanosensing abilities, detecting changes in ECM stiffness, which is particularly important for carcinogenesis given the observed ECM stiffening in numerous cancer types. Despite these, whether collagen-activated DDR2 signaling and ECM stiffness-induced mechanosensing exert similar effects on cancer cell behavior and whether they operate through analogous mechanisms remain elusive. To address these questions, we performed bulk RNA sequencing (RNA-seq) on human SH-SY5Y neuroblastoma cells cultured on collagen-coated substrates. Our results show that DDR2 downregulation induces significant changes in the cell transcriptome, with changes in expression of 15% of the genome, specifically affecting the genes associated with cell division and differentiation. We validated the RNA-seq results by showing that DDR2 knockdown redirects the cell fate from proliferation to senescence. Like DDR2 knockdown, increasing substrate stiffness diminishes cell proliferation. Surprisingly, RNA-seq indicates that substrate stiffness has no detectable effect on the transcriptome. Furthermore, DDR2 knockdown influences cellular responses to substrate stiffness changes, highlighting a crosstalk between these two ECM-induced signaling pathways. Based on our results, we propose that the ECM could activate DDR2 signaling and mechanosensing in cancer cells to orchestrate their cell fate through distinct mechanisms, with or without involving gene expression, thus providing novel mechanistic insights into cancer progression.


Asunto(s)
Receptor con Dominio Discoidina 2 , Neuroblastoma , Transducción de Señal , Transcriptoma , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Receptor con Dominio Discoidina 2/metabolismo , Receptor con Dominio Discoidina 2/genética , Transcriptoma/genética , Transducción de Señal/genética , Línea Celular Tumoral , Matriz Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Mecanotransducción Celular/genética , Diferenciación Celular/genética , Proliferación Celular/genética
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123994, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354672

RESUMEN

Cancer progression often accompanies the stiffening of extracellular matrix (ECM) in and around the tumor, owing to extra deposition and cross-linking of collagen. Stiff ECM has been linked with poor prognosis and is known to fuel invasion and metastasis, notably in breast cancer. However, the underlying biochemical or metabolic changes and the cognate molecular signatures remain elusive. Here, we explored Raman spectroscopy to unveil the spectral fingerprints of breast cancer cells in response to extracellular mechanical cues. Using stiffness-tuneable hydrogels, we showed that cells grown on stiff ECM displayed morphological changes with high proliferation. We further demonstrated that Raman Spectroscopy, a label-free and non-invasive technique, could provide comprehensive information about the biochemical environment of breast cancer cells in response to varying ECM stiffness. Raman spectroscopic analysis classified the cells into distinct clusters based on principal component-based linear discriminant analysis (PC-LDA). Multivariate curve resolution-alternating least squares (MCR-ALS) analysis indicated that cells cultured on stiff ECM exhibited elevated nucleic acid content and lesser lipids. Interestingly, increased intensity of Raman bands corresponding to cytochrome-c was also observed in stiff ECM conditions, suggesting mitochondrial modulation. The key findings harboured by spectral profiles were also corroborated by transmission electron microscopy, confirming altered metabolic status as reflected by increased mitochondria number and decreased lipid droplets in response to ECM stiffening. Collectively, these findings not only give the spectral signatures for mechanoresponse but also provide the landscape of biochemical changes in response to ECM stiffening.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Colágeno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA