Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.627
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 82(22): 4368-4385.e6, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36400010

RESUMEN

Efflux is a common mechanism of resistance to antibiotics. We show that efflux itself promotes accumulation of antibiotic-resistance mutations (ARMs). This phenomenon was initially discovered in a bacterial swarm where the linked phenotypes of high efflux and high mutation frequencies spatially segregated to the edge, driven there by motility. We have uncovered and validated a global regulatory network connecting high efflux to downregulation of specific DNA-repair pathways even in non-swarming states. The efflux-DNA repair link was corroborated in a clinical "resistome" database: genomes with mutations that increase efflux exhibit a significant increase in ARMs. Accordingly, efflux inhibitors decreased evolvability to antibiotic resistance. Swarms also revealed how bacterial populations serve as a reservoir of ARMs even in the absence of antibiotic selection pressure. High efflux at the edge births mutants that, despite compromised fitness, survive there because of reduced competition. This finding is relevant to biofilms where efflux activity is high.


Asunto(s)
Antibacterianos , Bacterias , Farmacorresistencia Microbiana , Transporte Biológico , Antibacterianos/farmacología , Bacterias/genética
2.
Proc Natl Acad Sci U S A ; 120(9): e2204933120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36812208

RESUMEN

N6-methyladenosine (m6A) regulates mRNA metabolism. While it has been implicated in the development of the mammalian brain and in cognition, the role of m6A in synaptic plasticity, especially during cognitive decline, is not fully understood. In this study, we employed methylated RNA immunoprecipitation sequencing to obtain the m6A epitranscriptome of the hippocampal subregions CA1, CA3, and the dentate gyrus and the anterior cingulate cortex (ACC) in young and aged mice. We observed a decrease in m6A levels in aged animals. Comparative analysis of cingulate cortex (CC) brain tissue from cognitively intact human subjects and Alzheimer's disease (AD) patients showed decreased m6A RNA methylation in AD patients. m6A changes common to brains of aged mice and AD patients were found in transcripts linked to synaptic function including calcium/calmodulin-dependent protein kinase 2 (CAMKII) and AMPA-selective glutamate receptor 1 (Glua1). We used proximity ligation assays to show that reduced m6A levels result in decreased synaptic protein synthesis as exemplified by CAMKII and GLUA1. Moreover, reduced m6A levels impaired synaptic function. Our results suggest that m6A RNA methylation controls synaptic protein synthesis and may play a role in cognitive decline associated with aging and AD.


Asunto(s)
Enfermedad de Alzheimer , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Humanos , Ratones , Animales , Anciano , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hipocampo/metabolismo , Enfermedad de Alzheimer/metabolismo , Envejecimiento/metabolismo , ARN/metabolismo , Mamíferos/genética
3.
Trends Genet ; 38(8): 789-792, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35466008

RESUMEN

Recent landmark discoveries have underpinned the physiological importance of intron retention (IR) across multiple domains of life and revealed an unexpected breath of functions in a large variety of biological processes. Despite significant progress in the field, some challenges remain. Once solved, opportunities will arise for discovering more functions of IR.


Asunto(s)
Empalme Alternativo , Fenómenos Biológicos , Intrones/genética
4.
J Virol ; : e0020524, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258909

RESUMEN

During infection, the giant phiKZ phage forms a specialized structure at the center of the host cell called the phage nucleus. This structure is crucial for safeguarding viral DNA against bacterial nucleases and for segregating the transcriptional activities of late genes. Here, we describe a morphological entity, the early phage infection (EPI) vesicle, which appears to be responsible for earlier gene segregation at the beginning of the infection process. Using cryo-electron microscopy, electron tomography (ET), and fluorescence microscopy with membrane-specific dyes, we demonstrated that the EPI vesicle is enclosed in a lipid bilayer originating, apparently, from the inner membrane of the bacterial cell. Our investigations further disclose that the phiKZ EPI vesicle contains both viral DNA and viral RNA polymerase (vRNAP). We have observed that the EPI vesicle migrates from the cell pole to the center of the bacterial cell together with ChmA, the primary protein of the phage nucleus. The phage DNA is transported into the phage nucleus after phage maturation, but the EPI vesicle remains outside. We hypothesized that the EPI vesicle acts as a membrane transport agent, efficiently delivering phage DNA to the phage nucleus while protecting it from the nucleases of the bacterium. IMPORTANCE: Our study shed light on the processes of phage phiKZ early infection stage, expanding our understanding of possible strategies for the development of phage infection. We show that phiKZ virion content during injection is packed inside special membrane structures called early phage infection (EPI) membrane vesicles originating from the bacterial inner cell membrane. We demonstrated the EPI vesicle fulfilled the role of the safety transport unit for the phage genome to the phage nucleus, where the phage DNA would be replicated and protected from bacterial immune systems.

5.
BMC Bioinformatics ; 25(1): 216, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890584

RESUMEN

BACKGROUND: Recognition of enhancer-promoter Interactions (EPIs) is crucial for human development. EPIs in the genome play a key role in regulating transcription. However, experimental approaches for classifying EPIs are too expensive in terms of effort, time, and resources. Therefore, more and more studies are being done on developing computational techniques, particularly using deep learning and other machine learning techniques, to address such problems. Unfortunately, the majority of current computational methods are based on convolutional neural networks, recurrent neural networks, or a combination of them, which don't take into consideration contextual details and the long-range interactions between the enhancer and promoter sequences. A new transformer-based model called EPI-Trans is presented in this study to overcome the aforementioned limitations. The multi-head attention mechanism in the transformer model automatically learns features that represent the long interrelationships between enhancer and promoter sequences. Furthermore, a generic model is created with transferability that can be utilized as a pre-trained model for various cell lines. Moreover, the parameters of the generic model are fine-tuned using a particular cell line dataset to improve performance. RESULTS: Based on the results obtained from six benchmark cell lines, the average AUROC for the specific, generic, and best models is 94.2%, 95%, and 95.7%, while the average AUPR is 80.5%, 66.1%, and 79.6% respectively. CONCLUSIONS: This study proposed a transformer-based deep learning model for EPI prediction. The comparative results on certain cell lines show that EPI-Trans outperforms other cutting-edge techniques and can provide superior performance on the challenge of recognizing EPI.


Asunto(s)
Aprendizaje Profundo , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Humanos , Biología Computacional/métodos , Línea Celular , Redes Neurales de la Computación
6.
Glycobiology ; 34(6)2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38760939

RESUMEN

Genetic deficiency of alpha-L-iduronidase causes mucopolysaccharidosis type I (MPS-I) disease, due to accumulation of glycosaminoglycans (GAGs) including chondroitin/dermatan sulfate (CS/DS) and heparan sulfate (HS) in cells. Currently, patients are treated by infusion of recombinant iduronidase or by hematopoietic stem cell transplantation. An alternative approach is to reduce the L-iduronidase substrate, through limiting the biosynthesis of iduronic acid. Our earlier study demonstrated that ebselen attenuated GAGs accumulation in MPS-I cells, through inhibiting iduronic acid producing enzymes. However, ebselen has multiple pharmacological effects, which prevents its application for MPS-I. Thus, we continued the study by looking for novel inhibitors of dermatan sulfate epimerase 1 (DS-epi1), the main responsible enzyme for production of iduronic acid in CS/DS chains. Based on virtual screening of chemicals towards chondroitinase AC, we constructed a library with 1,064 compounds that were tested for DS-epi1 inhibition. Seventeen compounds were identified to be able to inhibit 27%-86% of DS-epi1 activity at 10 µM. Two compounds were selected for further investigation based on the structure properties. The results show that both inhibitors had a comparable level in inhibition of DS-epi1while they had negligible effect on HS epimerase. The two inhibitors were able to reduce iduronic acid biosynthesis in CS/DS and GAG accumulation in WT and MPS-I fibroblasts. Docking of the inhibitors into DS-epi1 structure shows high affinity binding of both compounds to the active site. The collected data indicate that these hit compounds may be further elaborated to a potential lead drug used for attenuation of GAGs accumulation in MPS-I patients.


Asunto(s)
Inhibidores Enzimáticos , Fibroblastos , Glicosaminoglicanos , Mucopolisacaridosis I , Mucopolisacaridosis I/tratamiento farmacológico , Mucopolisacaridosis I/metabolismo , Mucopolisacaridosis I/patología , Humanos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Glicosaminoglicanos/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Carbohidrato Epimerasas/metabolismo , Carbohidrato Epimerasas/antagonistas & inhibidores , Carbohidrato Epimerasas/genética , Simulación del Acoplamiento Molecular , Antígenos de Neoplasias , Proteínas de Unión al ADN , Proteínas de Neoplasias
7.
Cancer Metastasis Rev ; 42(2): 427-443, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37286865

RESUMEN

The last few years have seen an increasing number of discoveries which collectively demonstrate that histone and DNA modifying enzyme modulate different stages of metastasis. Moreover, epigenomic alterations can now be measured at multiple scales of analysis and are detectable in human tumors or liquid biopsies. Malignant cell clones with a proclivity for relapse in certain organs may arise in the primary tumor as a consequence of epigenomic alterations which cause a loss in lineage integrity. These alterations may occur due to genetic aberrations acquired during tumor progression or concomitant to therapeutic response. Moreover, evolution of the stroma can also alter the epigenome of cancer cells. In this review, we highlight current knowledge with a particular emphasis on leveraging chromatin and DNA modifying mechanisms as biomarkers of disseminated disease and as therapeutic targets to treat metastatic cancers.


Asunto(s)
Epigenómica , Neoplasias , Humanos , Histonas/genética , Histonas/metabolismo , Neoplasias/genética , Neoplasias/terapia , Metilación de ADN , ADN , Epigénesis Genética
8.
Am J Hum Genet ; 108(6): 965-982, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33932343

RESUMEN

Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we performed a whole-exome sequencing analysis of 13,487 epilepsy-affected individuals and 15,678 control individuals. While prior Epi25 studies focused on gene-based collapsing analyses, we asked how the pattern of variation within genes differs by epilepsy type. Specifically, we compared the genetic architectures of severe developmental and epileptic encephalopathies (DEEs) and two generally less severe epilepsies, genetic generalized epilepsy and non-acquired focal epilepsy (NAFE). Our gene-based rare variant collapsing analysis used geographic ancestry-based clustering that included broader ancestries than previously possible and revealed novel associations. Using the missense intolerance ratio (MTR), we found that variants in DEE-affected individuals are in significantly more intolerant genic sub-regions than those in NAFE-affected individuals. Only previously reported pathogenic variants absent in available genomic datasets showed a significant burden in epilepsy-affected individuals compared with control individuals, and the ultra-rare pathogenic variants associated with DEE were located in more intolerant genic sub-regions than variants associated with non-DEE epilepsies. MTR filtering improved the yield of ultra-rare pathogenic variants in affected individuals compared with control individuals. Finally, analysis of variants in genes without a disease association revealed a significant burden of loss-of-function variants in the genes most intolerant to such variation, indicating additional epilepsy-risk genes yet to be discovered. Taken together, our study suggests that genic and sub-genic intolerance are critical characteristics for interpreting the effects of variation in genes that influence epilepsy.


Asunto(s)
Epilepsia/genética , Epilepsia/patología , Secuenciación del Exoma/métodos , Exoma , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Variación Genética , Estudios de Casos y Controles , Estudios de Cohortes , Epilepsia/clasificación , Pruebas Genéticas , Humanos , Fenotipo
9.
Magn Reson Med ; 91(6): 2403-2416, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38263908

RESUMEN

PURPOSE: The study aims to assess the potential of referenceless methods of EPI ghost correction to accelerate the acquisition of in vivo diffusion tensor cardiovascular magnetic resonance (DT-CMR) data using both computational simulations and data from in vivo experiments. METHODS: Three referenceless EPI ghost correction methods were evaluated on mid-ventricular short axis DT-CMR spin echo and STEAM datasets from 20 healthy subjects at 3T. The reduced field of view excitation technique was used to automatically quantify the Nyquist ghosts, and DT-CMR images were fit to a linear ghost model for correction. RESULTS: Numerical simulation showed the singular value decomposition (SVD) method is the least sensitive to noise, followed by Ghost/Object method and entropy-based method. In vivo experiments showed significant ghost reduction for all correction methods, with referenceless methods outperforming navigator methods for both spin echo and STEAM sequences at b = 32, 150, 450, and 600 smm - 2 $$ {\mathrm{smm}}^{-2} $$ . It is worth noting that as the strength of the diffusion encoding increases, the performance gap between the referenceless method and the navigator-based method diminishes. CONCLUSION: Referenceless ghost correction effectively reduces Nyquist ghost in DT-CMR data, showing promise for enhancing the accuracy and efficiency of measurements in clinical practice without the need for any additional reference scans.


Asunto(s)
Imagen Eco-Planar , Procesamiento de Imagen Asistido por Computador , Humanos , Imagen Eco-Planar/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Relación Señal-Ruido , Fantasmas de Imagen , Espectroscopía de Resonancia Magnética , Artefactos , Encéfalo , Algoritmos
10.
Magn Reson Med ; 92(5): 1898-1912, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38817204

RESUMEN

PURPOSE: To compare MR axon radius estimation in human white matter using a multiband spiral sequence combined with field monitoring to the current state-of-the-art echo-planar imaging (EPI)-based approach. METHODS: A custom multiband spiral sequence was used for diffusion-weighted imaging at ultra-high b $$ b $$ -values. Field monitoring and higher order image reconstruction were employed to greatly reduce artifacts in spiral images. Diffusion weighting parameters were chosen to match a state-of-the art EPI-based axon radius mapping protocol. The spiral approach was compared to the EPI approach by comparing the image signal-to-noise ratio (SNR) and performing a test-retest study to assess the respective variability and repeatability of axon radius mapping. Effective axon radius estimates were compared over white matter voxels and along the left corticospinal tract. RESULTS: Increased SNR and reduced artifacts in spiral images led to reduced variability in resulting axon radius maps, especially in low-SNR regions. Test-retest variability was reduced by a factor of approximately 1.5 using the spiral approach. Reduced repeatability due to significant bias was found for some subjects in both spiral and EPI approaches, and attributed to scanner instability, pointing to a previously unknown limitation of the state-of-the-art approach. CONCLUSION: Combining spiral readouts with field monitoring improved mapping of the effective axon radius compared to the conventional EPI approach.


Asunto(s)
Axones , Procesamiento de Imagen Asistido por Computador , Relación Señal-Ruido , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Adulto , Reproducibilidad de los Resultados , Masculino , Algoritmos , Imagen Eco-Planar/métodos , Femenino , Imagen de Difusión por Resonancia Magnética/métodos , Artefactos , Encéfalo/diagnóstico por imagen
11.
Magn Reson Med ; 92(1): 82-97, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38308081

RESUMEN

PURPOSE: To develop a method for dynamic ∆ B 0 $$ \Delta {B}_0 $$ mapping and distortion correction. METHODS: A blip-rewound EPI trajectory was developed to acquire multiple 2D EPI images in a single readout with an interleaved order, which allows a short TE difference. A joint multi-echo reconstruction was utilized to exploit the shared information between EPI images. The reconstructed images from each readout are combined to produce a final magnitude image. A ∆ B 0 $$ \Delta {B}_0 $$ map is calculated from the phase of these images for distortion correction. The efficacy of the proposed method is assessed with phantom and in vivo experiments. The performance of the proposed method in the presence of subject motion is also investigated. RESULTS: Compared to conventional multi-echo EPI, the proposed method allows dynamic ∆ B 0 $$ \Delta {B}_0 $$ mapping at matched resolution with a much shorter TR. Phantom and in vivo results show that the proposed method can provide a comparable magnitude image as conventional single-shot EPI. The ∆ B 0 $$ \Delta {B}_0 $$ maps calculated from the proposed method are consistent with conventional multi-echo EPI in the phantom experiment. For in vivo experiments, the proposed method provides a more accurate estimation of ∆ B 0 $$ \Delta {B}_0 $$ than conventional multi-echo EPI, which is prone to phase wrapping problems due to the long TE difference. In-vivo scan with subject motion shows the proposed dynamic field mapping method can improve the temporal stability of EPI time series compared to gradient echo (GRE) based static field mapping. CONCLUSION: The proposed method allows accurate dynamic ∆ B 0 $$ \Delta {B}_0 $$ mapping for robust distortion correction without compromising spatial or temporal resolution.


Asunto(s)
Algoritmos , Imagen Eco-Planar , Fantasmas de Imagen , Humanos , Imagen Eco-Planar/métodos , Artefactos , Reproducibilidad de los Resultados , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Sensibilidad y Especificidad
12.
Magn Reson Med ; 92(3): 997-1010, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38778631

RESUMEN

PURPOSE: QSM provides insight into healthy brain aging and neuropathologies such as multiple sclerosis (MS), traumatic brain injuries, brain tumors, and neurodegenerative diseases. Phase data for QSM are usually acquired from 3D gradient-echo (3D GRE) scans with long acquisition times that are detrimental to patient comfort and susceptible to patient motion. This is particularly true for scans requiring whole-brain coverage and submillimeter resolutions. In this work, we use a multishot 3D echo plannar imaging (3D EPI) sequence with shot-selective 2D CAIPIRIHANA to acquire high-resolution, whole-brain data for QSM with minimal distortion and blurring. METHODS: To test clinical viability, the 3D EPI sequence was used to image a cohort of MS patients at 1-mm isotropic resolution at 3 T. Additionally, 3D EPI data of healthy subjects were acquired at 1-mm, 0.78-mm, and 0.65-mm isotropic resolution with varying echo train lengths (ETLs) and compared with a reference 3D GRE acquisition. RESULTS: The appearance of the susceptibility maps and the susceptibility values for segmented regions of interest were comparable between 3D EPI and 3D GRE acquisitions for both healthy and MS participants. Additionally, all lesions visible in the MS patients on the 3D GRE susceptibility maps were also visible on the 3D EPI susceptibility maps. The interplay among acquisition time, resolution, echo train length, and the effect of distortion on the calculated susceptibility maps was investigated. CONCLUSION: We demonstrate that the 3D EPI sequence is capable of rapidly acquiring submillimeter resolutions and providing high-quality, clinically relevant susceptibility maps.


Asunto(s)
Encéfalo , Imagen Eco-Planar , Imagenología Tridimensional , Esclerosis Múltiple , Humanos , Imagenología Tridimensional/métodos , Esclerosis Múltiple/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen Eco-Planar/métodos , Adulto , Masculino , Femenino , Algoritmos , Persona de Mediana Edad , Mapeo Encefálico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Interpretación de Imagen Asistida por Computador/métodos
13.
Magn Reson Med ; 91(4): 1498-1511, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38173292

RESUMEN

PURPOSE: To demonstrate slowly varying, erroneous magnetic field gradients for oscillating readouts due to the mechanically resonant behavior of gradient systems. METHODS: Projections of a static phantom were acquired using a one-dimensional (1D) EPI sequence with varying EPI frequencies ranging from 1121 to 1580 Hz on clinical 3T systems (30 mT/m, 200 T/m/s). Phase due to static B0 inhomogeneities was eliminated by a complex division of two separate scans with different polarities of the EPI readout. The temporal evolution of phase was evaluated and related to the mechanical resonances of the gradient systems derived from the gradient modulation transfer function. Additionally, the impact of temporally varying mechanical resonance effects on EPI was evaluated using an echo-planar spectroscopic imaging sequence. RESULTS: A beat phenomenon resulting in a slowly varying phase was observed. Its temporal frequency was given by the difference between the EPI frequency and the mechanical resonance frequency of the activated gradient axis. The maximum erroneous, oscillating phase during phase encoding was ±0.5 rad for an EPI frequency of 1281 Hz. Echo-planar spectroscopic imaging images showed the resulting time-dependent stretching/compression of the FOV. CONCLUSION: Oscillating readouts such as those used in EPI can result in low-frequency, erroneous phase contributions, which are explained by the beat phenomenon. Therefore, EPI phase-correction approaches may need to include beat effects for accurate image reconstruction.


Asunto(s)
Compresión de Datos , Imagen Eco-Planar , Imagen Eco-Planar/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Campos Magnéticos , Encéfalo
14.
Magn Reson Med ; 91(6): 2443-2458, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38361309

RESUMEN

PURPOSE: The 3D multi-shot EPI imaging offers several benefits including higher SNR and high isotropic resolution compared to 2D single shot EPI. However, it suffers from shot-to-shot inconsistencies arising from physiologically induced phase variations and bulk motion. This work proposed a motion compensated structured low-rank (mcSLR) reconstruction method to address both issues for 3D multi-shot EPI. METHODS: Structured low-rank reconstruction has been successfully used in previous work to deal with inter-shot phase variations for 3D multi-shot EPI imaging. It circumvents the estimation of phase variations by reconstructing an individual image for each phase state which are then sum-of-squares combined, exploiting their linear interdependency encoded in structured low-rank constraints. However, structured low-rank constraints become less effective in the presence of inter-shot motion, which corrupts image magnitude consistency and invalidates the linear relationship between shots. Thus, this work jointly models inter-shot phase variations and motion corruptions by incorporating rigid motion compensation for structured low-rank reconstruction, where motion estimates are obtained in a fully data-driven way without relying on external hardware or imaging navigators. RESULTS: Simulation and in vivo experiments at 7T have demonstrated that the mcSLR method can effectively reduce image artifacts and improve the robustness of 3D multi-shot EPI, outperforming existing methods which only address inter-shot phase variations or motion, but not both. CONCLUSION: The proposed mcSLR reconstruction compensates for rigid motion, and thus improves the validity of structured low-rank constraints, resulting in improved robustness of 3D multi-shot EPI to both inter-shot motion and phase variations.


Asunto(s)
Algoritmos , Encéfalo , Imagenología Tridimensional/métodos , Movimiento (Física) , Imagen Eco-Planar/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Artefactos , Imagen de Difusión por Resonancia Magnética/métodos
15.
Magn Reson Med ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164832

RESUMEN

PURPOSE: Data for QSM are typically acquired using multi-echo 3D gradient echo (GRE), but EPI can be used to accelerate QSM and provide shorter acquisition times. So far, EPI-QSM has been limited to single-echo acquisitions, which, for 3D GRE, are known to be less accurate than multi-echo sequences. Therefore, we compared single-echo and multi-echo EPI-QSM reconstructions across a range of parallel imaging and multiband acceleration factors. METHODS: Using 2D single-shot EPI in the brain, we compared QSM from single-echo and multi-echo acquisitions across combined parallel-imaging and multiband acceleration factors ranging from 2 to 16, with volume pulse TRs from 21.7 to 3.2 s, respectively. For single-echo versus multi-echo reconstructions, we investigated the effect of acceleration factors on regional susceptibility values, temporal noise, and image quality. We introduce a novel masking method based on thresholding the magnitude of the local field gradients to improve brain masking in challenging regions. RESULTS: At 1.6-mm isotropic resolution, high-quality QSM was achieved using multi-echo 2D EPI with a combined acceleration factor of 16 and a TR of 3.2 s, which enables functional applications. With these high acceleration factors, single-echo reconstructions are inaccurate and artefacted, rendering them unusable. Multi-echo acquisitions greatly improve QSM quality, particularly at higher acceleration factors, provide more consistent regional susceptibility values across acceleration factors, and decrease temporal noise compared with single-echo QSM reconstructions. CONCLUSION: Multi-echo acquisition is more robust for EPI-QSM across parallel imaging and multiband acceleration factors than single-echo acquisition. Multi-echo EPI can be used for highly accelerated acquisition while preserving QSM accuracy and quality relative to gold-standard 3D-GRE QSM.

16.
Magn Reson Med ; 92(5): 1952-1964, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38888135

RESUMEN

PURPOSE: To develop and demonstrate a fast 3D fMRI acquisition technique with high spatial resolution over a reduced FOV, named k-t 3D reduced FOV imaging (3D-rFOVI). METHODS: Based on 3D gradient-echo EPI, k-t 3D-rFOVI used a 2D RF pulse to reduce the FOV in the in-plane phase-encoding direction, boosting spatial resolution without increasing echo train length. For image acceleration, full sampling was applied in the central k-space region along the through-slab direction (kz) for all time frames, while randomized undersampling was used in outer kz regions at different time frames. Images were acquired at 3T and reconstructed using a method based on partial separability. fMRI detection sensitivity of k-t 3D-rFOVI was quantitively analyzed with simulation data. Human visual fMRI experiments were performed to evaluate k-t 3D-rFOVI and compare it with a commercial multiband EPI sequence. RESULTS: The simulation data showed that k-t 3D-rFOVI can detect 100% of fMRI activations with an acceleration factor (R) of 2 and ˜80% with R = 6. In the human fMRI data acquired with 1.5-mm spatial resolution and 800-ms volume TR (TRvol), k-t 3D-rFOVI with R = 4 detected 46% more activated voxels in the visual cortex than the multiband EPI. Additional fMRI experiments showed that k-t 3D-rFOVI can achieve TRvol of 480 ms with R = 6, while reliably detecting visual activation. CONCLUSIONS: k-t 3D-rFOVI can simultaneously achieve a high spatial resolution (1.5-mm isotropically) and short TRvol (480-ms) at 3T. It offers a robust acquisition technique for fast fMRI studies over a focused brain volume.


Asunto(s)
Algoritmos , Encéfalo , Imagenología Tridimensional , Imagen por Resonancia Magnética , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Adulto , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Eco-Planar/métodos , Simulación por Computador , Masculino , Femenino
17.
Magn Reson Med ; 92(4): 1456-1470, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38748853

RESUMEN

PURPOSE: To develop a 3D, high-sensitivity CEST mapping technique based on the 3D stack-of-spirals (SOS) gradient echo readout, the proposed approach was compared with conventional acquisition techniques and evaluated for its efficacy in concurrently mapping of guanidino (Guan) and amide CEST in human brain at 3 T, leveraging the polynomial Lorentzian line-shape fitting (PLOF) method. METHODS: Saturation time and recovery delay were optimized to achieve maximum CEST time efficiency. The 3DSOS method was compared with segmented 3D EPI (3DEPI), turbo spin echo, and gradient- and spin-echo techniques. Image quality, temporal SNR (tSNR), and test-retest reliability were assessed. Maps of Guan and amide CEST derived from 3DSOS were demonstrated on a low-grade glioma patient. RESULTS: The optimized recovery delay/saturation time was determined to be 1.4/2 s for Guan and amide CEST. In addition to nearly doubling the slice number, the gradient echo techniques also outperformed spin echo sequences in tSNR: 3DEPI (193.8 ± 6.6), 3DSOS (173.9 ± 5.6), and GRASE (141.0 ± 2.7). 3DSOS, compared with 3DEPI, demonstrated comparable GuanCEST signal in gray matter (GM) (3DSOS: [2.14%-2.59%] vs. 3DEPI: [2.15%-2.61%]), and white matter (WM) (3DSOS: [1.49%-2.11%] vs. 3DEPI: [1.64%-2.09%]). 3DSOS also achieves significantly higher amideCEST in both GM (3DSOS: [2.29%-3.00%] vs. 3DEPI: [2.06%-2.92%]) and WM (3DSOS: [2.23%-2.66%] vs. 3DEPI: [1.95%-2.57%]). 3DSOS outperforms 3DEPI in terms of scan-rescan reliability (correlation coefficient: 3DSOS: 0.58-0.96 vs. 3DEPI: -0.02 to 0.75) and robustness to motion as well. CONCLUSION: The 3DSOS CEST technique shows promise for whole-cerebrum CEST imaging, offering uniform contrast and robustness against motion artifacts.


Asunto(s)
Amidas , Encéfalo , Imagenología Tridimensional , Imagen por Resonancia Magnética , Humanos , Amidas/química , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Reproducibilidad de los Resultados , Imagen Eco-Planar/métodos , Glioma/diagnóstico por imagen , Algoritmos , Relación Señal-Ruido , Neoplasias Encefálicas/diagnóstico por imagen , Adulto , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Femenino , Guanidina/química
18.
Magn Reson Med ; 92(6): 2328-2342, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38987985

RESUMEN

PURPOSE: The transverse relaxation time T 2 $$ {}_2 $$ holds significant relevance in clinical applications and research studies. Conventional T 2 $$ {}_2 $$ mapping approaches rely on spin-echo sequences, which require lengthy acquisition times and involve high radiofrequency (RF) power deposition. An alternative gradient echo (GRE) phase-based T 2 $$ {}_2 $$ mapping method, utilizing steady-state acquisitions at one small RF spoil phase increment, was recently demonstrated. Here, a modified magnitude- and phase-based T 2 $$ {}_2 $$ mapping approach is proposed, which improves T 2 $$ {\mathrm{T}}_2 $$ estimations by simultaneous fitting of T 1 $$ {\mathrm{T}}_1 $$ and signal amplitude ( A ∝ P D $$ A\propto PD $$ ) at three or more RF spoiling phase increments, instead of assuming a fixed T 1 $$ {\mathrm{T}}_1 $$ value. METHODS: The feasibility of the magnitude-phase-based method was assessed by simulations, in phantom and in vivo experiments using skipped-CAIPI three-dimensional-echo-planar imaging (3D-EPI) for rapid GRE imaging. T 2 $$ {\mathrm{T}}_2 $$ , T 1 $$ {\mathrm{T}}_1 $$ and PD estimations obtained by our method were compared to T 2 $$ {\mathrm{T}}_2 $$ of the phase-based method and T 1 $$ {\mathrm{T}}_1 $$ and PD of spoiled GRE-based multi-parameter mapping using a multi-echo version of the same sequence. RESULTS: The agreement of the proposed T 2 $$ {\mathrm{T}}_2 $$ with ground truth and reference T 2 $$ {\mathrm{T}}_2 $$ values was higher than that of phase-based T 2 $$ {\mathrm{T}}_2 $$ in simulations and in phantom data. While phase-based T 2 $$ {\mathrm{T}}_2 $$ overestimation increases with actual T 2 $$ {\mathrm{T}}_2 $$ and T 1 $$ {\mathrm{T}}_1 $$ , the proposed method is accurate over a large range of physiologically meaningful T 2 $$ {\mathrm{T}}_2 $$ and T 1 $$ {\mathrm{T}}_1 $$ values. At the same time, precision is improved. In vivo results were in line with these observations. CONCLUSION: Accurate magnitude-phase-based T 2 $$ {}_2 $$ mapping is feasible in less than 5 min scan time for 1 mm nominal isotropic whole-head coverage at 3T and 7T.


Asunto(s)
Algoritmos , Encéfalo , Imagen por Resonancia Magnética , Fantasmas de Imagen , Ondas de Radio , Humanos , Imagen por Resonancia Magnética/economía , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Reproducibilidad de los Resultados
19.
Magn Reson Med ; 92(6): 2294-2311, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38988040

RESUMEN

PURPOSE: To explore the high signal-to-noise ratio (SNR) efficiency of interleaved multishot 3D-EPI with standard image reconstruction for fast and robust high-resolution whole-brain quantitative susceptibility (QSM) and R 2 ∗ $$ {R}_2^{\ast } $$ mapping at 7 and 3T. METHODS: Single- and multi-TE segmented 3D-EPI is combined with conventional CAIPIRINHA undersampling for up to 72-fold effective gradient echo (GRE) imaging acceleration. Across multiple averages, scan parameters are varied (e.g., dual-polarity frequency-encoding) to additionally correct for B 0 $$ {\mathrm{B}}_0 $$ -induced artifacts, geometric distortions and motion retrospectively. A comparison to established GRE protocols is made. Resolutions range from 1.4 mm isotropic (1 multi-TE average in 36 s) up to 0.4 mm isotropic (2 single-TE averages in approximately 6 min) with whole-head coverage. RESULTS: Only 1-4 averages are needed for sufficient SNR with 3D-EPI, depending on resolution and field strength. Fast scanning and small voxels together with retrospective corrections result in substantially reduced image artifacts, which improves susceptibility and R 2 ∗ $$ {R}_2^{\ast } $$ mapping. Additionally, much finer details are obtained in susceptibility-weighted image projections through significantly reduced partial voluming. CONCLUSION: Using interleaved multishot 3D-EPI, single-TE and multi-TE data can readily be acquired 10 times faster than with conventional, accelerated GRE imaging. Even 0.4 mm isotropic whole-head QSM within 6 min becomes feasible at 7T. At 3T, motion-robust 0.8 mm isotropic whole-brain QSM and R 2 ∗ $$ {R}_2^{\ast } $$ mapping with no apparent distortion in less than 7 min becomes clinically feasible. Stronger gradient systems may allow for even higher effective acceleration rates through larger EPI factors while maintaining optimal contrast.


Asunto(s)
Algoritmos , Artefactos , Encéfalo , Imagen Eco-Planar , Imagenología Tridimensional , Relación Señal-Ruido , Humanos , Imagenología Tridimensional/métodos , Encéfalo/diagnóstico por imagen , Imagen Eco-Planar/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Masculino , Mapeo Encefálico/métodos , Adulto , Femenino
20.
Magn Reson Med ; 91(6): 2310-2319, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38156825

RESUMEN

PURPOSE: This study aimed to evaluate the potential of 3D EPI for improving the reliability of T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted data and quantification of R 2 * $$ {\mathrm{R}}_2^{\ast } $$ decay rate and susceptibility (χ) compared with conventional gradient-echo (GRE)-based acquisition. METHODS: Eight healthy subjects in a wide age range were recruited. Each subject received repeated scans for both GRE and EPI acquisitions with an isotropic 1 mm resolution at 3 T. Maps of R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and χ were quantified, and their interscan differences were used to evaluate the test-retest reliability. Interprotocol differences of R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and χ between GRE and EPI were also measured voxel by voxel and in selected regions of interest to test the consistency between the two acquisition methods. RESULTS: The quantifications of R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and χ using EPI protocols showed increased test-retest reliability with higher EPI factors up to 5 as performed in the experiment and were consistent with those based on GRE. CONCLUSION: The result suggests that multishot multi-echo 3D EPI can be a useful alternative acquisition method for T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted MRI and quantification of R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and χ with reduced scan time, improved test-retest reliability, and similar accuracy compared with commonly used 3D GRE.


Asunto(s)
Imagen Eco-Planar , Imagen por Resonancia Magnética , Humanos , Imagen Eco-Planar/métodos , Reproducibilidad de los Resultados , Voluntarios Sanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA