Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Toxicol Environ Health B Crit Rev ; 27(2): 55-72, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38146151

RESUMEN

Given the increasing concern surrounding ultraviolet (UV) radiation-induced skin damage, there has been a rise in demand for UV filters. Currently, UV-filters are considered emerging contaminants. The extensive production and use of UV filters have led to their widespread release into the aquatic environment. Thus, there is growing concern that UV filters may bioaccumulate and exhibit persistent properties within the environment, raising several safety health concerns. Octyl-methoxycinnamate (OMC) is extensively employed as a UV-B filter in the cosmetic industry. While initially designed to mitigate the adverse photobiological effects attributed to UV radiation, the safety of OMC has been questioned with some studies reporting toxic effects on environment. The aim of this review to provide an overview of the scientific information regarding the most widely used organic UV-filter (OMC), and its effects on biodiversity and aquatic environment.


Asunto(s)
Cosméticos , Protectores Solares , Protectores Solares/toxicidad , Protectores Solares/efectos de la radiación , Cinamatos/toxicidad , Rayos Ultravioleta/efectos adversos
2.
Environ Sci Technol ; 58(5): 2166-2184, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38275135

RESUMEN

Environmental pollutants have been recognized for their ability to induce various adverse outcomes in both the environment and human health, including inflammation, apoptosis, necrosis, pyroptosis, and autophagy. Understanding these biological mechanisms has played a crucial role in risk assessment and management efforts. However, the recent identification of ferroptosis as a form of programmed cell death has emerged as a critical mechanism underlying pollutant-induced toxicity. Numerous studies have demonstrated that fine particulates, heavy metals, and organic substances can trigger ferroptosis, which is closely intertwined with lipid, iron, and amino acid metabolism. Given the growing evidence linking ferroptosis to severe diseases such as heart failure, chronic obstructive pulmonary disease, liver injury, Parkinson's disease, Alzheimer's disease, and cancer, it is imperative to investigate the role of pollutant-induced ferroptosis. In this review, we comprehensively analyze various pollutant-induced ferroptosis pathways and intricate signaling molecules and elucidate their integration into the driving and braking axes. Furthermore, we discuss the potential hazards associated with pollutant-induced ferroptosis in various organs and four representative animal models. Finally, we provide an outlook on future research directions and strategies aimed at preventing pollutant-induced ferroptosis. By enhancing our understanding of this novel form of cell death and developing effective preventive measures, we can mitigate the adverse effects of environmental pollutants and safeguard human and environmental health.


Asunto(s)
Contaminantes Ambientales , Ferroptosis , Animales , Humanos , Ecotoxicología , Apoptosis , Muerte Celular , Contaminantes Ambientales/toxicidad
3.
J Toxicol Environ Health A ; 87(8): 342-356, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38310537

RESUMEN

The assessment of amphibian responses as bioindicators of exposure to chemical pollutants is an important tool for conservation of native species. This study aimed to investigate the effects of chronic aluminum (Al) and zinc (Zn) exposure on survival, body size, morphology (malformations), and immune system (leukocyte profile) in P. cuvieri tadpoles. Ecotoxicological analyses were performed utilizing chronic toxicity tests in which 210 tadpoles at the 25th Gosner developmental stage were exposed to Al and Zn. Individuals of P. cuvieri were maintained in glass containers containing various concentrations of aluminum sulfate (0.1, 0.2, or 0.3 mg/L) and zinc sulfate (0.18, 0.27 or 0.35 mg/L), and tests were performed in triplicate. After 14 days, amphibians were weighed, measured and survival rate, malformations in the oral and intestine apparatus, leukocyte profile, and ratio between neutrophils and lymphocytes determined. The differing concentrations of Al and Zn did not produce lethality in P. cuvieri where 95% of the animals survived 326 hr following metal exposure. Individuals exposed to Zn achieved greater body growth and weight gain compared to controls. Aluminum increased weight gain compared controls. These metals also produced malformations of the oral and intestine apparatus and enhanced occurrence of hemorrhages, especially at the highest doses. Lymphocytes were the predominant cells among leukocytes, with lymphopenia and neutrophilia observed following Al and Zn treatment, as evidenced by elevated neutrophil/lymphocyte ratio, an important indicator of stress in animals. Data suggest that further studies need to be carried out, even with metal concentrations higher than those prescribed by CONAMA, to ensure the conservation of this species.


Asunto(s)
Contaminantes Químicos del Agua , Zinc , Humanos , Animales , Zinc/farmacología , Zinc/toxicidad , Aluminio/farmacología , Larva , Anuros/fisiología , Metales , Sistema Inmunológico/química , Tamaño Corporal , Aumento de Peso , Contaminantes Químicos del Agua/toxicidad
4.
Ecotoxicol Environ Saf ; 282: 116718, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39024957

RESUMEN

Copper is one of the predominant water pollutants. Excessive exposure to copper can cause harm to animal health, affecting the central nervous system and causing blood abnormalities. Cuproptosis is a novel form of cell death that differs from previous programmed cell death methods. However, the impact of copper on the intestines remains unclear. Therefore, we investigated the effects of different concentrations of copper exposure on the intestinal proteome of Takifugu rubripes (T. rubripes). Relevant biomarkers were used to detect cuproptosis. We revealed the crosstalk relationship between cuproptosis and self-rescue at different concentrations, and discussed the feasibility of using potential cuproptosis indicators as anti-infection factors. We observed intestinal damage in the three copper exposure groups, especially in T. rubripes treated with 100 and 500 µg/L copper, with shedding and breakage of intestinal villus and fuzzy and loose structure of intestinal mucosa. The presence of copper stress not only causes cuproptosis but also oxidative damage caused by reactive oxygen species (ROS). The results of quantitative proteomics by TMT showed that compared to the 50 and 100 µg/L copper exposure groups, the expression of glutaminase, pyruvate kinase, and skin mucus lectin in the 500 µg/L group was significantly increased. The positive mediators COX5A and CTNNB1, as well as the negative mediators CD4 and FDXR, were found to be differentially expressed. Using the protein expression trends of cuproptosis indicator factors FDX1 and DLAT to indicate the concentration of copper ions in the environment. In addition, we found a new effect of promoting ferroptosis: providing additional copper ions can activate the phenomenon of ferroptosis. Our results expand our understanding of the potential health risks of copper in T. rubripes. At the same time, it is of great significance for the process of copper poisoning and the development of new environmental toxicology detection reagents.


Asunto(s)
Cobre , Proteoma , Takifugu , Contaminantes Químicos del Agua , Animales , Cobre/toxicidad , Proteoma/efectos de los fármacos , Takifugu/metabolismo , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Biomarcadores/metabolismo , Especies Reactivas de Oxígeno/metabolismo
5.
Molecules ; 29(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38474641

RESUMEN

The catalytic properties of cytochrome c (Cc) have captured great interest in respect to mitochondrial physiology and apoptosis, and hold potential for novel enzymatic bioremediation systems. Nevertheless, its contribution to the metabolism of environmental toxicants remains unstudied. Human exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with impactful diseases, and animal models have unveiled concerning signs of PAHs' toxicity to mitochondria. In this work, a series of eight PAHs with ionization potentials between 7.2 and 8.1 eV were used to challenge the catalytic ability of Cc and to evaluate the effect of vesicles containing cardiolipin mimicking mitochondrial membranes activating the peroxidase activity of Cc. With moderate levels of H2O2 and at pH 7.0, Cc catalyzed the oxidation of toxic PAHs, such as benzo[a]pyrene, anthracene, and benzo[a]anthracene, and the cardiolipin-containing membranes clearly increased the PAH conversions. Our results also demonstrate for the first time that Cc and Cc-cardiolipin complexes efficiently transformed the PAH metabolites 2-hydroxynaphthalene and 1-hydroxypyrene. In comparison to horseradish peroxidase, Cc was shown to reach more potent oxidizing states and react with PAHs with ionization potentials up to 7.70 eV, including pyrene and acenaphthene. Spectral assays indicated that anthracene binds to Cc, and docking simulations proposed possible binding sites positioning anthracene for oxidation. The results give support to the participation of Cc in the metabolism of PAHs, especially in mitochondria, and encourage further investigation of the molecular interaction between PAHs and Cc.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Animales , Humanos , Hidrocarburos Policíclicos Aromáticos/química , Citocromos c , Cardiolipinas , Peróxido de Hidrógeno , Antracenos
6.
Toxicol Mech Methods ; 34(7): 821-832, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38725267

RESUMEN

A vast variety of chemical compounds have been fabricated and commercialized, they not only result in industrial exposure during manufacturing and usage, but also have environmental impacts throughout their whole life cycle. Consequently, attempts to assess the risk of chemicals in terms of toxicology have never ceased. In-silico toxicology, also known as predictive toxicology, has advanced significantly over the last decade as a result of the drawbacks of experimental investigations. In this study, ProTox-III was applied to predict the toxicity of the ligands used for metal-organic framework (MOF) design and synthesis. Initially, 35 ligands, that have been frequently utilized for MOF synthesis and fabrication, were selected. Subsequently, canonical simplified molecular-input line-entry system (SMILES) of ligands were extracted from the PUBCHEM database and inserted into the ProTox-III online server. Ultimately, webserver outputs including LD50 and the probability of toxicological endpoints (cytotoxicity, carcinogenicity, mutagenicity, immunotoxicity, and ecotoxicity) were obtained and organized. According to retrieved LD50 data, the safest ligand was 5-hydroxyisophthalic. In contrast, the most hazardous ligand was 5-chlorobenzimidazole, with an LD50 of 8 mg/kg. Among evaluated endpoints, ecotoxicity was the most active and was detected in several imidazolate ligands. This data can open new horizons in design and development of green MOFs.


Asunto(s)
Simulación por Computador , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/toxicidad , Ligandos , Animales , Humanos , Dosificación Letal Mediana , Medición de Riesgo , Diseño de Fármacos , Pruebas de Toxicidad , Tecnología Química Verde
7.
Mass Spectrom Rev ; 41(3): 469-487, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33300181

RESUMEN

Mass spectrometry imaging (MSI) has been applied for label-free three-dimensional (3D) imaging from position array across the whole organism, which provides high-dimensional quantitative data of inorganic or organic compounds that may play an important role in the regulation of cellular signaling, including metals, metabolites, lipids, drugs, peptides, and proteins. While MSI is suitable for investigation of the spatial distribution of molecules, it has a limitation with visualization and quantification of multiple molecules. 3D-MSI, however, can be applied toward exploring metabolic pathway as well as the interactions of lipid-protein, protein-protein, and metal-protein in complex systems from subcellular to the whole organism through an untargeted methodology. In this review, we highlight the methods and applications of MS-based 3D imaging to address the complexity of molecular interaction from nano- to micrometer lateral resolution, with particular focus on: (a) common and hybrid 3D-MSI techniques; (b) quantitative MSI methodology, including the methods using a stable isotope labeling internal standard (SILIS) and SILIS-free approaches with tissue extinction coefficient or virtual calibration; (c) reconstruction of the 3D organ; (d) application of 3D-MSI for biomarker screening and environmental toxicological research. 3D-MSI quantitative analysis provides accurate spatial information and quantitative variation of biomolecules, which may be valuable for the exploration of the molecular mechanism of the disease progresses and toxicological assessment of environmental pollutants in the whole organism. Additionally, we also discuss the challenges and perspectives on the future of 3D quantitative MSI.


Asunto(s)
Imagenología Tridimensional , Calibración , Imagenología Tridimensional/métodos , Espectrometría de Masas/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
8.
Mutagenesis ; 38(1): 13-20, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36130095

RESUMEN

Interspecific comparison of DNA damage can provide information on the relative vulnerability of marine organisms to toxicants that induce oxidative genotoxicity. Hydrogen peroxide (H2O2) is an oxidative toxicant that causes DNA strand breaks and nucleotide oxidation and is used in multiple industries including Atlantic salmon aquaculture to treat infestations of ectoparasitic sea lice. H2O2 (up to 100 mM) can be released into the water after sea lice treatment, with potential consequences of exposure in nontarget marine organisms. The objective of the current study was to measure and compare differences in levels of H2O2-induced oxidative DNA damage in coelomocytes from Scottish sea urchins Echinus esculentus, Paracentrotus lividus, and Psammechinus miliaris. Coelomocytes were exposed to H2O2 (0-50 mM) for 10 min, cell concentration and viability were quantified, and DNA damage was measured by the fast micromethod, an alkaline unwinding DNA method, and the modified fast micromethod with nucleotide-specific enzymes. Cell viability was >92% in all exposures and did not differ from controls. Psammechinus miliaris coelomocytes had the highest oxidative DNA damage with 0.07 ± 0.01, 0.08 ± 0.01, and 0.07 ± 0.01 strand scission factors (mean ± SD) after incubation with phosphate-buffered saline, formamidopyrimidine-DNA glycosylase, and endonuclease-III, respectively, at 50 mM H2O2. Exposures to 0.5 mM H2O2 (100-fold dilution from recommended lice treatment concentration) induced oxidative DNA damage in all three species of sea urchins, suggesting interspecific differences in vulnerabilities to DNA damage and/or DNA repair mechanisms. Understanding impacts of environmental genotoxicants requires understanding species-specific susceptibilities to DNA damage, which can impact long-term stability in sea urchin populations in proximity to aquaculture farms.


Asunto(s)
Peróxido de Hidrógeno , Estrés Oxidativo , Animales , Peróxido de Hidrógeno/toxicidad , Erizos de Mar/genética , Reparación del ADN , Daño del ADN
9.
Neuroendocrinology ; 113(12): 1262-1282, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36075192

RESUMEN

INTRODUCTION: Flame retardants (FRs) are common bodily and environmental pollutants, creating concern about their potential toxicity. We and others have found that the commercial mixture FireMaster® 550 (FM 550) or its individual brominated (BFR) and organophosphate ester (OPFR) components are potential developmental neurotoxicants. Using Wistar rats, we previously reported that developmental exposure to FM 550 or its component classes produced sex- and compound-specific effects on adult socioemotional behaviors. The underlying mechanisms driving the behavioral phenotypes are unknown. METHODS: To further mechanistic understanding, here we conducted transcriptomics in parallel with a novel lipidomics approach using cortical tissues from newborn siblings of the rats in the published behavioral study. Inclusion of lipid composition is significant because it is rarely examined in developmental neurotoxicity studies. Pups were gestationally exposed via oral dosing to the dam to FM 550 or the BFR or OPFR components at environmentally relevant doses. RESULTS: The neonatal cortex was highly sexually dimorphic in lipid and transcriptome composition, and males were more significantly impacted by FR exposure. Multiple adverse modes of action for the BFRs and OPFRs on neurodevelopment were identified, with the OPFRs being more disruptive than the BFRs via multiple mechanisms including dysregulation of mitochondrial function and disruption of cholinergic and glutamatergic systems. Disrupted mitochondrial function by environmental factors has been linked to a higher risk of autism spectrum disorders and neurodegenerative disorders. Impacted lipid classes included ceramides, sphingomyelins, and triacylglycerides. Robust ceramide upregulation in the OPFR females could suggest a heightened risk of brain metabolic disease. CONCLUSIONS: This study reveals multiple mechanisms by which the components of a common FR mixture are developmentally neurotoxic and that the OPFRs may be the compounds of greatest concern.


Asunto(s)
Retardadores de Llama , Bifenilos Polibrominados , Masculino , Femenino , Ratas , Animales , Ratas Wistar , Organofosfatos/toxicidad , Retardadores de Llama/toxicidad , Lípidos
10.
Environ Res ; 235: 116456, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37343760

RESUMEN

The ever-increasing demand for food from the growing population has augmented the consumption of fertilizers in global agricultural practices. However, the excessive usage of chemical fertilizers with poor efficacy is drastically deteriorating ecosystem health through the degradation of soil fertility by diminishing soil microflora, environment contamination, and human health by inducing chemical remnants to the food chain. These challenges have been addressed by the integration of nanotechnological and biotechnological approaches resulting in nano-enabled biogenic fertilizers (NBF), which have revolutionized agriculture sector and food production. This review critically details the state-of-the-art NBF production, types, and mechanism involved in cultivating crop productivity/quality with insights into genetic, physiological, morphological, microbiological, and physiochemical attributes. Besides, it explores the associated challenges and future routes to promote the adoption of NBF for intelligent and sustainable agriculture. Furthermore, diverse applications of nanotechnology in precision agriculture including plant biosensors and its impact on agribusiness and environmental management are discussed.


Asunto(s)
Ecosistema , Fertilizantes , Humanos , Fertilizantes/análisis , Agricultura/métodos , Suelo , Plantas
11.
J Toxicol Environ Health A ; : 1-24, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37395093

RESUMEN

Fish early life stages are well known for their sensitivity to crude oil exposure. However, the effect of crude oil exposure on adults and their gametes during their spawning period is not well studied. Polar cod, a key arctic fish, may be at risk for crude oil exposure during this potentially sensitive life stage. Additionally, this species experiences lower food availability during their spawning season, with unknown combined consequences. In the present study, wild-caught polar cod were exposed to decreasing levels of a water-soluble fraction (WSF) of crude oil or control conditions and fed either at a low or high feed ration to assess the combined effect of both stressors. Samples were taken during late gonadal development, during active spawning (spawning window), and in the post-spawning period. Histology analysis of gonads from fish sampled during the spawning window showed that oil-exposed polar cod were more likely to have spawned compared to controls. Oil-exposed females had 947 differentially regulated hepatic genes, and their eggs had a higher polycyclic aromatic hydrocarbon body burden compared to controls. Feed ration did not consistently affect polar cod's response to oil exposure for the endpoints measured, however, did alone result in decreases in some sperm motility parameters. These results suggest that polar cod's spawning period is a sensitive life event to crude oil exposure, while feed limitation may play a minor role for this supposedly capital breeder. The effects of adult exposure to crude oil on gamete quality and the next generation warrant further investigation.

12.
J Emerg Med ; 64(2): 186-189, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36813645

RESUMEN

BACKGROUND: The Komodo dragon (Varanus komodoensis) is the world's largest living lizard and exists in private captivity worldwide. Bites to humans are rare and have been proposed to be both infectious and venomous. CASE REPORT: A 43-year-old zookeeper was bitten on the leg by a Komodo dragon and suffered local tissue damage with no excessive bleeding or systemic symptoms to suggest envenomation. No specific therapy was administered other than local wound irrigation. The patient was placed on prophylactic antibiotics and on follow-up, which revealed no local or systemic infections, and no other systemic complaints. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Although venomous lizard bites are uncommon, prompt recognition of possible envenomation and management of these bites is important. Komodo dragon bites may produce not only superficial lacerations but also deep tissue injury, but are unlikely to produce serious systemic effects; whereas Gila monster and beaded lizard bites may cause delayed angioedema, hypotension, and other systemic symptoms. Treatment in all cases is supportive.


Asunto(s)
Mordeduras y Picaduras , Lagartos , Animales , Humanos , Adulto
13.
Molecules ; 28(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38005396

RESUMEN

Creating new insecticide lead compounds based on the design and modification of natural products is a novel process, of which chlorfenapyr is a typical successful example. Chlorfenapyr is an arylpyrrole derivative that has high biological activity, a wide insecticidal spectrum, and a unique mode of action. For decades, a series of chlorfenapyr derivatives were designed and synthesized continuously, of which many highly active insecticidal compounds were discovered sequentially. However, due to the widespread application of chlorfenapyr and its degradation properties, some adverse effects, including pest resistance and environmental toxicity, occurred. In this review, a brief history of the discovery and development of chlorfenapyr is first introduced. Then, the synthesis, structural modification, structure activity relationship, and action mechanism of arylpyrroles are summarized. However, challenges and limitations still exist, especially in regard to the connection with pest resistance and environmental toxicology, which is discussed at the end of this review. This comprehensive summary of chlorfenapyr further promotes its progress and sensible application for pest management.


Asunto(s)
Insecticidas , Piretrinas , Ecotoxicología , Piretrinas/toxicidad , Insecticidas/farmacología , Control de Mosquitos
14.
Molecules ; 28(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37764374

RESUMEN

The plasma membrane lipid rafts are cholesterol- and sphingolipid-enriched domains that allow regularly distributed, sub-micro-sized structures englobing proteins to compartmentalize cellular processes. These membrane domains can be highly heterogeneous and dynamic, functioning as signal transduction platforms that amplify the local concentrations and signaling of individual components. Moreover, they participate in cell signaling routes that are known to be important targets of environmental toxicants affecting cell redox status and calcium homeostasis, immune regulation, and hormonal functions. In this work, the evidence that plasma membrane raft-like domains operate as hubs for toxicants' cellular actions is discussed, and suggestions for future research are provided. Several studies address the insertion of pesticides and other organic pollutants into membranes, their accumulation in lipid rafts, or lipid rafts' disruption by polychlorinated biphenyls (PCBs), benzo[a]pyrene (B[a]P), and even metals/metalloids. In hepatocytes, macrophages, or neurons, B[a]P, airborne particulate matter, and other toxicants caused rafts' protein and lipid remodeling, oxidative changes, or amyloidogenesis. Different studies investigated the role of the invaginated lipid rafts present in endothelial cells in mediating the vascular inflammatory effects of PCBs. Furthermore, in vitro and in vivo data strongly implicate raft-localized NADPH oxidases, the aryl hydrocarbon receptor, caveolin-1, and protein kinases in the toxic mechanisms of occupational and environmental chemicals.

15.
Bull Environ Contam Toxicol ; 111(2): 19, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37493828

RESUMEN

An integral analysis of the acute and chronic toxicity, bioaccumulation, sites of entry, and distribution of four trace metals: copper, iron, lead, and nickel, and the non-trace metal mercury were performed in the ciliate Paramecium caudatum. Mercury was the fastest metal accumulated, and the most toxic. The sensitivity of Paramecium caudatum to the five metals tested (Cu, Fe, Hg, Ni, and Zn) falls in the range of other ciliate species. We observed similarities between the toxicity of the five metals to the ciliate P. caudatum with the rotifer Euchlanis dilatata: (a) Mercury was the most toxic metal in terms of acute and body burdens. (b) Acute values were very similar in both species, Hg as the most toxic and Fe as the less toxic, (c) the vacuole/ingestion chronic tests were more sensitive than growth inhibition chronic tests. These analyses would ideally help generate safer guidelines for protecting aquatic biota.


Asunto(s)
Mercurio , Metales Pesados , Paramecium caudatum , Rotíferos , Oligoelementos , Contaminantes Químicos del Agua , Animales , Bioacumulación , Carga Corporal (Radioterapia) , Metales/análisis , Mercurio/análisis , Oligoelementos/análisis , Metales Pesados/análisis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
16.
J Environ Sci (China) ; 127: 465-482, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36522078

RESUMEN

Studies in recent years have shown that aquatic pollution by microplastics (MPs) can be considered to pose additional stress to amphibian populations. However, our knowledge of how MPs affect amphibians is very rudimentary, and even more limited is our understanding of their effects in combination with other emerging pollutants. Thus, we aimed to evaluate the possible toxicity of polyethylene MPs (PE-MPs) (alone or in combination with a mix of pollutants) on the health of Physalaemus cuvieri tadpoles. After 30 days of exposure, multiple biomarkers were measured, including morphological, biometric, and developmental indices, behavioral parameters, mutagenicity, cytotoxicity, antioxidant and cholinesterase responses, as well as the uptake and accumulation of PE-MPs in animals. Based on the results, there was no significant change in any of the parameters measured in tadpoles exposed to treatments, but induced stress was observed in tadpoles exposed to PE-MPs combined with the mixture of pollutants, reflecting significant changes in physiological and biochemical responses. Through principal component analysis (PCA) and integrated biomarker response (IBR) assessment, effects induced by pollutants in each test group were distinguished, confirming that the exposure of P. cuvieri tadpoles to the PE-MPs in combination with a mix of emerging pollutants induces an enhanced stress response, although the uptake and accumulation of PE-MPs in these animals was reduced. Thus, our study provides new insight into the danger to amphibians of MPs coexisting with other pollutants in aquatic environments.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Animales , Microplásticos , Polietileno/toxicidad , Polietileno/análisis , Plásticos/toxicidad , Larva , Contaminantes Ambientales/análisis , Contaminantes Químicos del Agua/análisis , Anuros
17.
Am Nat ; 200(1): 114-128, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35737988

RESUMEN

AbstractThis article argues that the concepts of "normal" reproductive development that biologists rely on are undergirded by heterosexism, ableism, and White supremacism, even if implicitly. We illustrate our argument by critically analyzing toxicology's use of reproductive fitness, focusing on the field of endocrine-disrupting chemicals (EDCs). Toxicology both informs and is informed by fundamental evolutionary and ecological questions as well as environmental health. Throughout, biologists overwhelmingly assume that "abnormal" reproductive physiologies both are generated by EDC exposure and necessarily threaten species survival. Such assumptions unwittingly obscure fundamental scientific insights while further discriminating against queer, trans, nonbinary, and differently abled human communities. We agree that scientists should be sounding the alarm over unavoidable, unevenly distributed, highly hazardous EDC exposures-which cause metabolic dysregulation, cancer, and death-but not because gonads and genitals look different. Instead, we encourage scientists to directly confront how chemical corporations profit from innumerable, irreversible harms to ecological and societal well-being, harms that may very well have nothing to do with gonads or genitals. We close with three specific suggestions to help scientists dismantle the human hierarchies embedded in biological frameworks, toward better science and environmental justice. By refusing the oppressive social ideologies assumed by prior research, toxicological and biological scientists will offer exciting new insights into evolutionary processes and urgent, justice-centered findings for environmental health.


Asunto(s)
Ecotoxicología , Reproducción , Humanos
18.
Ecol Appl ; 32(8): e2688, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35754197

RESUMEN

Urbanization is increasing at a rapid pace globally. Understanding the links among environmental characteristics, phenotypes, and fitness enables researchers to predict the impact of changing landscapes on individuals and populations. Although avian reproductive output is typically lower in urban compared with natural areas, the underlying reasons for this discrepancy may lie at the intersection of abiotic and biotic environmental and individual differences. Recent advances in urban ecology highlight the effect of heavy metal contamination on stress physiology. As high levels of glucocorticoid hormones decrease parental investment, these hormones might be the link to decreased reproductive success in areas of high environmental pollution. In this study, we aimed to identify which abiotic stressors are linked to avian reproductive output in urban areas and whether this link is mediated by individual hormone levels. We used fine-scaled estimates (2 m2 spatial resolution) of nighttime light, noise, and urban density to assess their impacts on the physiological condition of adult house sparrows (Passer domesticus). We measured circulating levels of lead and glucocorticoid concentrations in 40 breeding pairs of free-living house sparrows and related these physiological traits to reproductive success. Using structural equation modeling, we found that increased urban density levels linked directly to increased plasma corticosterone and lead concentrations that subsequently led to decreased fledgling mass. Sparrows with increased lead concentrations in plasma also had higher corticosterone levels. Although urban areas may be attractive due to decreased natural predators and available nesting sites, they may act as ecological traps that increase physiological damage and decrease fitness. To illustrate, avian development is strongly explained by parental corticosterone levels, which vary significantly in response to urban density and lead pollution. With fine-scale ecological mapping for a species with small home ranges, we demonstrated the presence and impacts of urban stressors in a small city with high human densities.


Asunto(s)
Gorriones , Animales , Humanos , Gorriones/fisiología , Plomo/toxicidad , Corticosterona , Glucocorticoides , Urbanización
19.
Environ Res ; 206: 112575, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-34932979

RESUMEN

While Indigenous food systems remain critical for community well-being, traditionally harvested foods are a potential source of toxic exposures. The Tsleil-Waututh Nation (TWN) is seeking to restore shellfish harvesting in Burrard Inlet (British Columbia [BC], Canada), where the cumulative effects of industrial activity have nearly eliminated safe harvesting. The Trans Mountain Expansion project would triple the capacity to transport oil through the inlet, threatening TWN's progress to restore shellfish harvesting. To inform ongoing efforts we assessed contamination by heavy metals (arsenic, cadmium, lead, and mercury) and 48 polycyclic aromatic hydrocarbons (PAHs) congeners in different shellfish species (Softshell clams, Varnish clams, and Dungeness crab) in three areas. We compared our results against local screening values (SVs) established by the TWN and BC Ministry of Environment and Climate Change Strategy, as well as provincial and national benchmarks. In total, we analyzed 18 composite samples of Softshell clams and Varnish clams (5 individuals per sample), as well as 17 individual crabs. We found chemical contamination in all species at all sites. PAHs were most frequently detected in Softshell clams, highest in the site closest to the pipeline terminus. Clams presented higher levels of contamination than crabs for PAHs, but not for heavy metals. For Softshell and Varnish clams, all heavy metals across study sites exceeded at least one of the population-specific SVs. Of the 14 PAHs detected, benzo(a)pyrene presented a median concentration in Softshell clams of 3.25 µ/kg, exceeding local SV for subsistence fisher. Our results call for further assessment of human health impacts related to food harvesting within Burrard Inlet and establishing a long-term coordinated program co-led by the TWN to monitor contamination and inform future harvesting programs. The study draws attention to the need to consider locally-relevant toxicity benchmarks, and include potential health impacts of food contamination in appraising development project proposals.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Bahías , Colombia Británica , Monitoreo del Ambiente , Contaminación de Alimentos/análisis , Inocuidad de los Alimentos , Humanos , Desarrollo Industrial , Hidrocarburos Policíclicos Aromáticos/análisis , Mariscos/análisis , Contaminantes Químicos del Agua/análisis
20.
Environ Res ; 205: 112574, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34919959

RESUMEN

In past decades, the industrial and technological developments have increased exponentially and accompanied by non-judicial and un-sustainable utilization of non-renewable resources. At the same time, the environmental branch of toxicology has gained significant attention in understanding the effect of toxic chemicals on human health. Environmental toxic agents cause several diseases, particularly high risk among children, pregnant women, geriatrics and clinical patients. Since air pollution affects human health and results in increased morbidity and mortality increased the toxicological studies focusing on industrial air pollution absorbed by the common people. Therefore, it is needed to design an automated Environmental Toxicology based Air Pollution Monitoring System. To resolve the limitations of traditional monitoring system and to reduce the overall cost, this paper designs an IoT enabled Environmental Toxicology for Air Pollution Monitoring using Artificial Intelligence technique (ETAPM-AIT) to improve human health. The proposed ETAPM-AIT model includes a set of IoT based sensor array to sense eight pollutants namely NH3, CO, NO2, CH4, CO2, PM2.5, temperature and humidity. The sensor array measures the pollutant level and transmits it to the cloud server via gateways for analytic process. The proposed model aims to report the status of air quality in real time by using cloud server and sends an alarm in the presence of hazardous pollutants level in the air. For the classification of air pollutants and determining air quality, Artificial Algae Algorithm (AAA) based Elman Neural Network (ENN) model is used as a classifier, which predicts the air quality in the forthcoming time stamps. The AAA is applied as a parameter tuning technique to optimally determine the parameter values of the ENN model. In-order to examine the air quality monitoring performance of the proposed ETAPM-AIT model, an extensive set of simulation analysis is performed and the results are inspected in 5, 15, 30 and 60 min of duration respectively. The experimental outcome highlights the optimal performance of the proposed ETAPM-AIT model over the recent techniques.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Inteligencia Artificial , Niño , Ecotoxicología , Monitoreo del Ambiente/métodos , Femenino , Humanos , Material Particulado/análisis , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA