RESUMEN
Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of disorders characterized by early-onset, often severe epileptic seizures and EEG abnormalities on a background of developmental impairment that tends to worsen as a consequence of epilepsy. DEEs may result from both nongenetic and genetic etiologies. Genetic DEEs have been associated with mutations in many genes involved in different functions including cell migration, proliferation, and organization, neuronal excitability, and synapse transmission and plasticity. Functional studies performed in different animal models and clinical trials on patients have contributed to elucidate pathophysiological mechanisms underlying many DEEs and have explored the efficacy of different treatments. Here, we provide an extensive review of the phenotypic spectrum included in the DEEs and of the genetic determinants and pathophysiological mechanisms underlying these conditions. We also provide a brief overview of the most effective treatment now available and of the emerging therapeutic approaches.
Asunto(s)
Epilepsia , Animales , Epilepsia/genética , Heterogeneidad Genética , MutaciónRESUMEN
One of the very fundamental attributes for telencephalic neural computation in mammals involves network activities oscillating beyond the initial trigger. The continuing and automated processing of transient inputs shall constitute the basis of cognition and intelligence but may lead to neuropsychiatric disorders such as epileptic seizures if carried so far as to engross part of or the whole telencephalic system. From a conventional view of the basic design of the telencephalic local circuitry, the GABAergic interneurons (INs) and glutamatergic pyramidal neurons (PNs) make negative feedback loops which would regulate the neural activities back to the original state. The drive for the most intriguing self-perpetuating telencephalic activities, then, has not been posed and characterized. We found activity-dependent deployment and delineated functional consequences of the electrical synapses directly linking INs and PNs in the amygdala, a prototypical telencephalic circuitry. These electrical synapses endow INs dual (a faster excitatory and a slower inhibitory) actions on PNs, providing a network-intrinsic excitatory drive that fuels the IN-PN interconnected circuitries and enables persistent oscillations with preservation of GABAergic negative feedback. Moreover, the entities of electrical synapses between INs and PNs are engaged in and disengaged from functioning in a highly dynamic way according to neural activities, which then determine the spatiotemporal scale of recruited oscillating networks. This study uncovers a special wide-range and context-dependent plasticity for wiring/rewiring of brain networks. Epileptogenesis or a wide spectrum of clinical disorders may ensue, however, from different scales of pathological extension of this unique form of telencephalic plasticity.
Asunto(s)
Sinapsis Eléctricas , Epilepsia , Animales , Humanos , Sinapsis/fisiología , Interneuronas/fisiología , Encéfalo , Epilepsia/patología , Convulsiones/patología , MamíferosRESUMEN
The mechanism underlying the transition from the pre-symptomatic to the symptomatic state is a crucial aspect of epileptogenesis. SYN2 is a member of a multigene family of synaptic vesicle phosphoproteins playing a fundamental role in controlling neurotransmitter release. Human SYN2 gene mutations are associated with epilepsy and autism spectrum disorder. Mice knocked out for synapsin II (SynII KO) are prone to epileptic seizures that appear after 2 months of age. However, the involvement of the endocannabinoid system, known to regulate seizure development and propagation, in the modulation of the excitatory/inhibitory balance in the epileptic hippocampal network of SynII KO mice has not been explored. In this study, we investigated the impact of endocannabinoids on glutamatergic and GABAergic synapses at hippocampal dentate gyrus granule cells in young pre-symptomatic (1-2 months old) and adult symptomatic (5-8 months old) SynII KO mice. We observed an increase in endocannabinoid-mediated depolarization-induced suppression of excitation in young SynII KO mice, compared to age-matched wild-type controls. In contrast, the endocannabinoid-mediated depolarization-induced suppression of inhibition remained unchanged in SynII KO mice at both ages. This selective alteration of excitatory synaptic transmission was accompanied by changes in hippocampal endocannabinoid levels and cannabinoid receptor type 1 distribution among glutamatergic and GABAergic synaptic terminals contacting the granule cells of the dentate gyrus. Finally, inhibition of type-1 cannabinoid receptors in young pre-symptomatic SynII KO mice induced seizures during a tail suspension test. Our results suggest that endocannabinoids contribute to maintaining network stability in a genetic mouse model of human epilepsy.
Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Sinapsinas , Animales , Ratones , Endocannabinoides , Ratones Noqueados , Fenotipo , Convulsiones , Sinapsis , Sinapsinas/genéticaRESUMEN
After the initial concepts of the constancy of the internal milieu or homeostasis, put forward by Claude Bernard and Walter Cannon, homeostasis emerged as a mechanism to control oscillations of biologically meaningful variables within narrow physiological ranges. This is a primary need in the central nervous system that is continuously subjected to a multitude of stimuli from the internal and external environments that affect its function and structure, allowing to adapt the individual to the ever-changing daily conditions. Preserving physiological levels of activity despite disturbances that could either depress neural computation or excessively stimulate neural activity is fundamental, and failure of these homeostatic mechanisms can lead to brain diseases. In this review, we cover the role and main mechanisms of homeostatic plasticity involving the regulation of excitability and synaptic strength from the single neuron to the network level. We analyze the relationships between homeostatic and Hebbian plasticity and the conditions under which the preservation of the excitatory/inhibitory balance fails, triggering epileptogenesis and eventually epilepsy. Several therapeutic strategies to cure epilepsy have been designed to strengthen homeostasis when endogenous homeostatic plasticity mechanisms have become insufficient or ineffective to contrast hyperactivity. We describe "on demand" gene therapy strategies including optogenetics, chemogenetics, and chemo-optogenetics, and particularly focus on new closed loop sensor-actuator strategies mimicking homeostatic plasticity that can be endogenously expressed to strengthen the homeostatic defenses against brain diseases.
RESUMEN
OBJECTIVE: To investigate ictal and interictal cortical involvement in epilepsy associated with hypothalamic hamartoma. We conducted a retrospective study of 34 patients with epilepsy and hypothalamic hamartoma, using data from long-term video-EEG-monitoring. METHODS: We analyzed onset and propagation of ictal and interictal scalp EEG and visualized the resulting networks of cortical involvement. According to clinical and EEG criteria we grouped patients in: (1) focal disease, (2) focal advanced disease, (3) extended disease. We compared networks between these groups and different seizure types. Eight patients underwent several video-EEGs, and we analyzed all to investigate epilepsy progression. RESULTS: Epileptic activity mainly involved frontal and temporal cortex regions. Involvement of frontal regions was more common in advanced stages of the disease, and strong fronto-temporal connections were observed in the ictal networks of patients in intermediate stages (25.0% (left) and 35.7% (right) of seizures with EEG correlate). Occurrence and timing of EEG-correlate significantly depended on the seizure type (Chi-2-test, p<<0.001). In patients with several EEGs, seizure activity increased by +0.67 seizures/day/month (mean). There were significant differences between patients with normal and impaired cognitive function, with the latter showing pronounced ictal involvement of fronto-temporal cortex areas (p<0.001). CONCLUSION: Overall, in epilepsy due to hypothalamic hamartoma, cortical involvement focuses on frontal and temporal regions and varies systematically with the stage of the disease, different seizure types and presence of impaired cognitive function. We propose that these data may help improve our general understanding of epileptogenesis and potentially provide insights for the surgical therapy of hypothalamic hamartomas.
RESUMEN
The triggers of status epilepticus (SE) in non-epileptic patients can vary widely, from idiopathic causes to exposure to chemoconvulsants. Regardless of its etiology, prolonged SE can cause significant brain damage, commonly resulting in the development of epilepsy, which is often accompanied by increased anxiety. GABAA receptor (GABAAR)-mediated inhibition has a central role among the mechanisms underlying brain damage and the ensuing epilepsy and anxiety. During SE, calcium influx primarily via ionotropic glutamate receptors activates signaling cascades which trigger a rapid internalization of synaptic GABAARs; this weakens inhibition, exacerbating seizures and excitotoxicity. GABAergic interneurons are more susceptible to excitotoxic death than principal neurons. During the latent period of epileptogenesis, the aberrant reorganization in synaptic interactions that follow interneuronal loss in injured brain regions, leads to the formation of hyperexcitable, seizurogenic neuronal circuits, along with disturbances in brain oscillatory rhythms. Reduction in the spontaneous, rhythmic "bursts" of IPSCs in basolateral amygdala neurons is likely to play a central role in anxiogenesis. Protecting interneurons during SE is key to preventing both epilepsy and anxiety. Antiglutamatergic treatments, including antagonism of calcium-permeable AMPA receptors, can be expected to control seizures and reduce excitotoxicity not only by directly suppressing hyperexcitation, but also by counteracting the internalization of synaptic GABAARs. Benzodiazepines, as delayed treatment of SE, have low efficacy due to the reduction and dispersion of their targets (the synaptic GABAARs), but also because themselves contribute to further reduction of available GABAARs at the synapse; furthermore, benzodiazepines may be completely ineffective in the immature brain.
Asunto(s)
Ansiedad , Receptores de GABA-A , Estado Epiléptico , Estado Epiléptico/metabolismo , Receptores de GABA-A/metabolismo , Animales , Humanos , Ansiedad/metabolismo , Inhibición Neural/fisiologíaRESUMEN
Epilepsy, a chronic neurological disorder characterized by recurrent seizures, affects millions of individuals worldwide. Despite extensive research, the underlying mechanisms leading to epileptogenesis, the process by which a normal brain develops epilepsy, remain elusive. We, here, explored the immune system and spleen responses triggered by pilocarpine-induced status epilepticus (SE) focusing on their role in the epileptogenesis that follows SE. Initial examination of spleen histopathology revealed transient disorganization of white pulp, in animals subjected to SE. This disorganization, attributed to immune activation, peaked at 1-day post-SE (1DPSE) but returned to control levels at 3DPSE. Alterations in peripheral blood lymphocyte populations, demonstrated a decrease following SE, accompanied by a reduction in CD3+ T-lymphocytes. Further investigations uncovered an increased abundance of T-lymphocytes in the piriform cortex and choroid plexus at 3DPSE, suggesting a specific mobilization toward the Central Nervous System. Notably, splenectomy mitigated brain reactive astrogliosis, neuroinflammation, and macrophage infiltration post-SE, particularly in the hippocampus and piriform cortex. Additionally, splenectomized animals exhibited reduced lymphatic follicle size in the deep cervical lymph nodes. Most significantly, splenectomy correlated with improved neuronal survival, substantiated by decreased neuronal loss and reduced degenerating neurons in the piriform cortex and hippocampal CA2-3 post-SE. Overall, these findings underscore the pivotal role of the spleen in orchestrating immune responses and neuroinflammation following pilocarpine-induced SE, implicating the peripheral immune system as a potential therapeutic target for mitigating neuronal degeneration in epilepsy.
Asunto(s)
Enfermedades Neuroinflamatorias , Pilocarpina , Bazo , Estado Epiléptico , Animales , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología , Bazo/inmunología , Bazo/patología , Masculino , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/inmunología , Esplenectomía , Ratas Sprague-Dawley , Hipocampo/patología , Modelos Animales de Enfermedad , Linfocitos T/inmunología , Corteza Piriforme/patología , Neuronas/patologíaRESUMEN
Blockade of Angiotensin type 1 receptor (AT1R) has potential therapeutic utility in the treatment of numerous detrimental consequences of epileptogenesis, including oxidative stress, neuroinflammation, and blood-brain barrier (BBB) dysfunction. We have recently shown that many of these pathological processes play a critical role in seizure onset and propagation in the Scn8a-N1768D mouse model. Here we investigate the efficacy and potential mechanism(s) of action of candesartan (CND), an FDA-approved angiotensin receptor blocker (ARB) indicated for hypertension, in improving outcomes in this model of pediatric epilepsy. We compared length of lifespan, seizure frequency, and BBB permeability in juvenile (D/D) and adult (D/+) mice treated with CND at times after seizure onset. We performed RNAseq on hippocampal tissue to quantify differences in genome-wide patterns of transcript abundance and inferred beneficial and detrimental effects of canonical pathways identified by enrichment methods in untreated and treated mice. Our results demonstrate that treatment with CND gives rise to increased survival, longer periods of seizure freedom, and diminished BBB permeability. CND treatment also partially reversed or 'normalized' disease-induced genome-wide gene expression profiles associated with inhibition of NF-κB, TNFα, IL-6, and TGF-ß signaling in juvenile and adult mice. Pathway analyses reveal that efficacy of CND is due to its known dual mechanism of action as both an AT1R antagonist and a PPARγ agonist. The robust effectiveness of CND across ages, sexes and mouse strains is a positive indication for its translation to humans and its suitability of use for clinical trials in children with SCN8A epilepsy.
Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II , Bencimidazoles , Compuestos de Bifenilo , Barrera Hematoencefálica , Modelos Animales de Enfermedad , Tetrazoles , Animales , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/uso terapéutico , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Tetrazoles/farmacología , Bencimidazoles/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Longevidad/efectos de los fármacos , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Epilepsia/metabolismo , Masculino , Ratones , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Técnicas de Sustitución del Gen , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.6/genética , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Femenino , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Convulsiones/metabolismo , Regulación de la Expresión Génica/efectos de los fármacosRESUMEN
OBJECTIVE: Many people with epilepsy experience comorbid anxiety and depression, and antidepressants remain a primary treatment for this. Emerging evidence suggests that these agents may modulate epileptogenesis to influence disease severity. Here, we assessed how treatment with the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine impacts epileptogenic, behavioral, and pathological sequelae following status epilepticus. METHODS: Male Wistar rats received kainic acid to induce status epilepticus (SE) or vehicle (sham). Animals then received either fluoxetine (10 mg/kg/day) or vehicle for 8 weeks via subcutaneous osmotic pump. Video-electroencephalography was recorded continuously until behavioral testing at day 56, including assessments of anxiety- and depression-like behavior and spatial cognition. Postmortem immunocytochemistry studies examined mossy fiber sprouting. RESULTS: Fluoxetine treatment significantly accelerated epileptogenesis following SE, reducing the average period to the first spontaneous seizure (from 32 days [vehicle] to 6 days [fluoxetine], p < .01). Also, fluoxetine exposure magnified the severity of the resultant epilepsy, increasing seizure frequency compared to vehicle (p < .01). Exposure to fluoxetine was associated with improved anxiety- and depression-like behaviors but significantly worsened cognition. Mossy fiber sprouting was more pronounced in fluoxetine-treated rats compared to vehicle (p < .0001). SIGNIFICANCE: Our studies demonstrate that, using a model exhibiting spontaneous seizures, epileptogenesis is accelerated and magnified by fluoxetine, an effect that may be related to more severe pathological neuroplasticity. The differential influence of fluoxetine on behavior indicates that different circuitry and mechanisms are responsible for these comorbidities. These findings suggest that caution should be exercised when prescribing SSRI antidepressants to people at risk of developing epilepsy.
Asunto(s)
Modelos Animales de Enfermedad , Fluoxetina , Ratas Wistar , Inhibidores Selectivos de la Recaptación de Serotonina , Animales , Fluoxetina/farmacología , Masculino , Ratas , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/inducido químicamente , Electroencefalografía/efectos de los fármacos , Ácido Kaínico , Epilepsia/tratamiento farmacológico , Epilepsia/inducido químicamente , Índice de Severidad de la Enfermedad , Ansiedad/tratamiento farmacológico , Fibras Musgosas del Hipocampo/efectos de los fármacos , Depresión/tratamiento farmacológicoRESUMEN
Stroke is a major contributor to mortality and morbidity worldwide and the most common cause of epilepsy in the elderly in high income nations. In recent years, it has become increasingly evident that both ischemic and hemorrhagic strokes induce dysfunction of the blood-brain barrier (BBB), and that this impairment can contribute to epileptogenesis. Nevertheless, studies directly comparing BBB dysfunction and poststroke epilepsy (PSE) are largely absent. Therefore, this review summarizes the role of BBB dysfunction in the development of PSE in animal models and clinical studies. There are multiple mechanisms whereby stroke induces BBB dysfunction, including increased transcytosis, tight junction dysfunction, spreading depolarizations, astrocyte and pericyte loss, reactive astrocytosis, angiogenesis, matrix metalloproteinase activation, neuroinflammation, adenosine triphosphate depletion, oxidative stress, and finally cell death. The degree to which these effects occur is dependent on the severity of the ischemia, whereby cell death is a more prominent mechanism of BBB disruption in regions of critical ischemia. BBB dysfunction can contribute to epileptogenesis by increasing the risk of hemorrhagic transformation, increasing stroke size and the amount of cerebral vasogenic edema, extravasation of excitatory compounds, and increasing neuroinflammation. Furthermore, albumin extravasation after BBB dysfunction contributes to epileptogenesis primarily via increased transforming growth factor ß signaling. Finally, seizures themselves induce BBB dysfunction, thereby contributing to epileptogenesis in a cyclical manner. In repairing this BBB dysfunction, pericyte migration via platelet-derived growth factor ß signaling is indispensable and required for reconstruction of the BBB, whereby astrocytes also play a role. Although animal stroke models have their limitations, they provide valuable insights into the development of potential therapeutics designed to restore the BBB after stroke, with the ultimate goal of improving outcomes and minimizing the occurrence of PSE. In pursuit of this goal, rapamycin, statins, losartan, semaglutide, and metformin show promise, whereby modulation of pericyte migration could also be beneficial.
Asunto(s)
Barrera Hematoencefálica , Epilepsia , Accidente Cerebrovascular , Barrera Hematoencefálica/fisiopatología , Barrera Hematoencefálica/patología , Humanos , Animales , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/complicaciones , Epilepsia/fisiopatología , Epilepsia/etiología , Epilepsia/metabolismo , Epilepsia/patologíaRESUMEN
OBJECTIVES: Acute symptomatic seizures (ASyS) and epileptiform abnormalities (EAs) on electroencephalography (EEG) are commonly encountered following acute brain injury. Their immediate and long-term management remains poorly investigated. We conducted an international survey to understand their current management. METHODS: The cross-sectional web-based survey of 21 fixed-response questions was based on a common clinical encounter: convulsive or suspected ASyS following an acute brain injury. Respondents selected the option that best matched their real-world practice. Respondents completing the survey were compared with those who accessed but did not complete it. RESULTS: A total of 783 individuals (44 countries) accessed the survey; 502 completed it. Almost everyone used anti-seizure medications (ASMs) for secondary prophylaxis after convulsive or electrographic ASyS (95.4% and 97.2%, respectively). ASM dose escalation after convulsive ASyS depends on continuous EEG (cEEG) findings: most often increased after electrographic seizures (78% of respondents), followed by lateralized periodic discharges (LPDs; 41%) and sporadic epileptiform discharges (sEDs; 17.5%). If cEEG is unrevealing, one in five respondents discontinue ASMs after a week. In the absence of convulsive and electrographic ASyS, a large proportion of respondents start ASMs due to LPD (66.7%) and sED (44%) on cEEG. At hospital discharge, most respondents (85%) continue ASM without dose change. The recommended duration of outpatient ASM use is as follows: 1-3 months (36%), 3-6 months (30%), 6-12 months (13%), >12 months (11%). Nearly one-third of respondents utilized ancillary testing before outpatient ASM taper, most commonly (79%) a <2 h EEG. Approximately half of respondents had driving restrictions recommended for 6 months after discharge. SIGNIFICANCE: ASM use for secondary prophylaxis after convulsive and electrographic ASyS is a universal practice and is continued upon discharge. Outpatient care, particularly the ASM duration, varies significantly. Wide practice heterogeneity in managing acute EAs reflects uncertainty about their significance and management. These results highlight the need for a structured outpatient follow-up and optimized care pathway for patients with ASyS.
Asunto(s)
Lesiones Encefálicas , Estado Epiléptico , Humanos , Estudios Transversales , Convulsiones/diagnóstico , Convulsiones/terapia , Electroencefalografía , Estudios RetrospectivosRESUMEN
Temporal Lobe Epilepsy (TLE) is a severe neurological condition characterized by recurrent seizures that often do not respond well to available anti-seizure medications. TLE has been associated with epileptogenesis, a process that starts during the latent period following a neurologic insult and is followed by chronic phase. Recent research has linked canonical Wnt signaling to the pathophysiology of epileptogenesis and TLE. Our previous study demonstrated differential regulation of canonical Wnt signaling during early and late stage post status epilepticus (SE) induction. Building on these findings, our current study utilized Wnt modulators: GSK-3ß inhibitor 6-bromoindirubin-3'-oxime (6-Bio) and disheveled inhibitor niclosamide and investigated their impact on canonical Wnt signaling during the early (30 days) and later stages (60 days) following SE induction. We assessed several parameters, including seizure frequency, astrogliosis, synaptic density, and neuronal counts in hippocampal tissue. We used immunohistochemistry and Nissl staining to evaluate gliosis, synaptic density, and neuronal counts in micro-dissected hippocampi. Western blotting was used to examine the expression of proteins involved in canonical Wnt/ß-catenin signaling, and real-time PCR was conducted to analyze their relative mRNA expression. Wnt modulators, 6-Bio and Niclosamide were found to reduce seizure frequency and various other parameters including behavioral parameters, hippocampal morphology, astrogliosis and synaptic density at different stages of TLE.
Asunto(s)
Epilepsia del Lóbulo Temporal , Gliosis , Indoles , Fármacos Neuroprotectores , Niclosamida , Oximas , Vía de Señalización Wnt , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/patología , Animales , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/fisiología , Masculino , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Oximas/farmacología , Oximas/uso terapéutico , Indoles/farmacología , Indoles/uso terapéutico , Gliosis/tratamiento farmacológico , Gliosis/patología , Gliosis/metabolismo , Niclosamida/farmacología , Niclosamida/uso terapéutico , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Ratas Sprague-Dawley , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/patología , RatasRESUMEN
BACKGROUND AND PURPOSE: Post-stroke epilepsy (PSE) is frequent. Better prediction of PSE would enable individualized management and improve trial design for epilepsy prevention. The aim was to assess the complementary value of continuous electroencephalography (EEG) data during the acute phase compared with clinical risk factors currently used to predict PSE. METHODS: A prospective cohort of 81 patients with ischaemic stroke who received early continuous EEG monitoring was studied to assess the association of early EEG seizures, other highly epileptogenic rhythmic and periodic patterns, and regional attenuation without delta (RAWOD, an EEG pattern of stroke severity) with PSE. Clinical risk factors were investigated using the SeLECT (stroke severity; large-artery atherosclerosis; early clinical seizures; cortical involvement; territory of middle cerebral artery) scores. RESULTS: Twelve (15%) patients developed PSE. The presence of any of the investigated patterns was associated with a risk of epilepsy of 46%, with a sensitivity and specificity of 83% and 78%. The association remained significant after adjusting for the SeLECT score (odds ratio 18.8, interquartile range 3.8-72.7). CONCLUSIONS: It was found that highly epileptogenic rhythmic and periodic patterns and RAWOD were associated with the development of PSE and complemented clinical risk factors. These findings indicate that continuous EEG provides useful information to determine patients at higher risk of developing PSE and could help individualize care.
Asunto(s)
Isquemia Encefálica , Epilepsia , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/complicaciones , Pronóstico , Isquemia Encefálica/complicaciones , Estudios Prospectivos , Convulsiones/etiología , Convulsiones/complicaciones , Epilepsia/complicaciones , Epilepsia/diagnóstico , Electroencefalografía , Accidente Cerebrovascular Isquémico/complicaciones , BiomarcadoresRESUMEN
Epileptogenesis in infants with tuberous sclerosis complex (TSC) is a gradual and dynamic process, leading to early onset and difficult-to-treat seizures. Several cellular, molecular and pathophysiologic mechanisms, including mammalian target of rapamycin (mTOR) dysregulation, GABAergic dysfunction and abnormal connectivity, may play a role in this epileptogenic process and may also contribute to the associated developmental encephalopathy. Disease-specific antiseizure medications or drugs targeting the mTOR pathway have proved to be effective in TSC-associated epilepsy. Pre-symptomatic administration of vigabatrin, a GABAergic drug, delays seizure onset and reduces the risk of a subsequent epileptic encephalopathy, such as infantile spasms syndrome or Lennox-Gastaut syndrome. Everolimus, a rapamycin-derived mTOR inhibitor, reduces seizure frequency, especially in younger patients. This evidence suggests that everolimus should be considered early in the course of epilepsy. Future trials are needed to optimize the use of everolimus and determine whether earlier correction of mTOR dysregulation can prevent progression to developmental and epileptic encephalopathies or mitigate their severity in infants with TSC. Clinical trials of several other potential antiseizure drugs (cannabidiol and ganaxolone) that target contributing mechanisms are also underway. This review provides an overview of the different biological mechanisms occurring in parallel and interacting throughout the life course, even beyond the epileptogenic process, in individuals with TSC. These complexities highlight the challenges faced in preventing and treating TSC-related developmental and epileptic encephalopathy.
Asunto(s)
Epilepsia , Esclerosis Tuberosa , Lactante , Humanos , Everolimus/uso terapéutico , Esclerosis Tuberosa/complicaciones , Epilepsia/tratamiento farmacológico , Epilepsia/etiología , Epilepsia/metabolismo , Convulsiones/tratamiento farmacológico , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo , Anticonvulsivantes/uso terapéuticoRESUMEN
INTRODUCTION: Seizures are a common complication of subarachnoid hemorrhage (SAH) in both acute and late stages: 10-20 % acute symptomatic seizures, 12-25 % epilepsy rate at five years. Our aim was to identify early electroencephalogram (EEG) and computed tomography (CT) findings that could predict long-term epilepsy after SAH. MATERIAL AND METHODS: This is a multicenter, retrospective, longitudinal study of adult patients with aneurysmal SAH admitted to two tertiary care hospitals between January 2011 to December 2022. Routine 30-minute EEG recording was performed in all subjects during admission period. Exclusion criteria were the presence of prior structural brain lesions and/or known epilepsy. We documented the presence of SAH-related cortical involvement in brain CT and focal electrographic abnormalities (epileptiform and non-epileptiform). Post-SAH epilepsy was defined as the occurrence of remote unprovoked seizures ≥ 7 days from the bleeding. RESULTS: We included 278 patients with a median follow-up of 2.4 years. The mean age was 57 (+/-12) years, 188 (68 %) were female and 49 (17.6 %) developed epilepsy with a median latency of 174 days (IQR 49-479). Cortical brain lesions were present in 189 (68 %) and focal EEG abnormalities were detected in 158 patients (39 epileptiform discharges, 119 non-epileptiform abnormalities). The median delay to the first EEG recording was 6 days (IQR 2-12). Multiple Cox regression analysis showed higher risk of long-term epilepsy in those patients with CT cortical involvement (HR 2.6 [1.3-5.2], p 0.009), EEG focal non-epileptiform abnormalities (HR 3.7 [1.6-8.2], p 0.002) and epileptiform discharges (HR 6.7 [2.8-15.8], p < 0.001). Concomitant use of anesthetics and/or antiseizure medication during EEG recording had no influence over its predictive capacity. ROC-curve analysis of the model showed good predictive capability at 5 years (AUC 0.80, 95 %CI 0.74-0.87). CONCLUSIONS: Focal electrographic abnormalities (both epileptiform and non-epileptiform abnormalities) and cortical involvement in neuroimaging predict the development of long-term epilepsy. In-patient EEG and CT findings could allow an early risk stratification and facilitate a personalized follow-up and management of SAH patients.
Asunto(s)
Electroencefalografía , Epilepsia , Hemorragia Subaracnoidea , Humanos , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/fisiopatología , Femenino , Masculino , Persona de Mediana Edad , Estudios Longitudinales , Estudios Retrospectivos , Anciano , Epilepsia/etiología , Epilepsia/diagnóstico , Epilepsia/diagnóstico por imagen , Epilepsia/fisiopatología , Adulto , Tomografía Computarizada por Rayos X , Neuroimagen , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatologíaRESUMEN
Non-human primates (NHPs) have played a crucial role in our understanding of epilepsy, given their striking similarities with humans. Through their use, we have gained a deeper understanding of the neurophysiology and pathophysiology of epileptic seizures, and they have proven invaluable allies in developing anti-seizure therapies. This review explores the history of NHPs as natural models of epilepsy, discusses the findings obtained after exposure to various chemoconvulsant drugs and focal electrical stimulation protocols that helped uncover important mechanisms related to epilepsy, examines diverse treatments to prevent and manage epilepsy, and addresses essential ethical issues in research. In this review, we aim to emphasize the important role of NHPs in epilepsy research and summarize the benefits and challenges associated with their use as models.
Asunto(s)
Epilepsia , Primates , Animales , Humanos , Modelos Animales de Enfermedad , Epilepsia/fisiopatologíaRESUMEN
This study used intra-hippocampal injections of Kainic Acid (KA) in Wistar rats to induce spontaneous recurrent seizures (SRS) after a 9-day latent period. A post-conditioning protocol with LPS, injected at the same site 72 h after the initial KA insult, was employed to trigger secondary competing processes. To evaluate the post-conditioning effect of LPS, 25 animals were divided into four groups: SAL-SAL (n = 6), KA-SAL (n = 6), SAL-LPS (n = 7), and KA-LPS (n = 6). SRS occurrence and seizure duration were quantified through video monitoring from days 9 to 17, along with other ictal behaviors, such as tail-chasing and wet-dog-shakes. Behavioral assessments revealed that the KA-LPS group had preserved sucrose preference and intact long-term memory in the object recognition test, indicating reduced depressive-like behavior and cognitive preservation compared to the KA-SAL group. The forced swim test showed increased depressive-like behavior in the SAL-LPS group, with LPS mitigating these effects in the KA group. The marble-burying test showed no significant differences among groups. Animals were euthanized on day 26, and hippocampal slices were analyzed using fluoro-jade staining for cell death and immunofluorescence staining for Iba-1 (microglia) and GFAP (astrocyte) labeling. The results support the hypothesis that epileptogenesis involves a cascade of plastic changes in neural networks and that precise, timely interventions can potentially interfere with this process.
RESUMEN
OPINION STATEMENT: Seizure activity is common in patients with primary and metastatic brain tumors, affecting more than 50% of cases over the course of their disease. Several mechanisms contribute to brain tumor-related epilepsy (BTRE), including a pro-inflammatory environment, excessive secretion of glutamate and an increase in neuronal excitatory tone, reduction of GABAergic inhibitory activity, and an increase in 2-hydroxygluturate production in isocitrate dehydrogenase mutant tumors. After a verified seizure in a brain tumor patient, the consensus is that BTRE has developed, and it is necessary to initiate an antiepileptic drug (AED). It is not recommended to initiate AED prophylaxis. Second- and third-generation AEDs are the preferred options for initiation, due to a lack of hepatic enzyme induction and reduced likelihood for drug-drug interactions, especially in regard to neoplastic treatment. The efficacy of appropriate AEDs for patients with BTRE is fairly equivalent, although some data suggests that levetiracetam may be slightly more active in suppressing seizures than other AEDs. The consensus among most Neuro-Oncology providers is to initiate levetiracetam monotherapy after a first seizure in a brain tumor patient, as long as the patient does not have any psychiatric co-morbidities. If levetiracetam is not tolerated well or is ineffective, other appropriate initial AED options for monotherapy or as an add-on anticonvulsant include lacosamide, valproic acid, briviracetam, lamotrigine, and perampanel.
Asunto(s)
Neoplasias Encefálicas , Epilepsia , Humanos , Anticonvulsivantes/efectos adversos , Levetiracetam/uso terapéutico , Epilepsia/tratamiento farmacológico , Epilepsia/etiología , Convulsiones/tratamiento farmacológico , Neoplasias Encefálicas/tratamiento farmacológicoRESUMEN
Arachnoid cysts are sacs within the arachnoid membrane, filled with cerebrospinal fluid, and overwhelmingly asymptomatic; however, they can also lead to neurological symptoms such as epilepsy. The dependence of AC on epilepsy has been a subject of controversy because of studies with mixed results on whether AC contributes to seizure activity. This is a narrative review for the synthesis of available present research on the pathophysiological mechanisms of epilepsy, clinical presentation, and treatment options in patients with epilepsy and ACs. Some find no impactful association between ACs and seizures, while others point out the probable role of ACs in Epileptogenesis. Endoscopic fenestration and similar surgical interventions were found quite effective at reducing the frequency of seizures for selected patients, although not all of them achieve complete seizure control. Such a decision needs to be tailored on the basis of considerations such as localization and size of cysts and general health conditions. Future research should investigate the genetic and molecular basis of ACs and, based on large prospective long-term studies, define the AC-epilepsy relationship and refine treatment strategies in affected individuals.
Asunto(s)
Quistes Aracnoideos , Epilepsia , Convulsiones , Quistes Aracnoideos/cirugía , Quistes Aracnoideos/complicaciones , Humanos , Epilepsia/cirugíaRESUMEN
Temporal lobe epilepsy (TLE) is a common form of refractory epilepsy in adulthood. The metabolic profile of epileptogenesis is still poorly investigated. Elucidation of such a metabolic profile using animal models of epilepsy could help identify new metabolites and pathways involved in the mechanisms of epileptogenesis process. In this study, we evaluated the metabolic profile during the epileptogenesis periods. Using a pilocarpine model of epilepsy, we analyzed the global metabolic profile of hippocampal extracts by untargeted metabolomics based on ultra-performance liquid chromatography-high-resolution mass spectrometry, at three time points (3 h, 1 week, and 2 weeks) after status epilepticus (SE) induction. We demonstrated that epileptogenesis periods presented different hippocampal metabolic profiles, including alterations of metabolic pathways of amino acids and lipid metabolism. Six putative metabolites (tryptophan, N-acetylornithine, N-acetyl-L-aspartate, glutamine, adenosine, and cholesterol) showed significant different levels during epileptogenesis compared to their respective controls. These putative metabolites could be associated with the imbalance of neurotransmitters, mitochondrial dysfunction, and cell loss observed during both epileptogenesis and epilepsy. With these findings, we provided an overview of hippocampal metabolic profiles during different stages of epileptogenesis that could help investigate pathways and respective metabolites as predictive tools in epilepsy.