Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Br J Nutr ; 121(12): 1345-1356, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30940241

RESUMEN

Perinatal maternal high-fat diet (HFD) increases susceptibility to obesity and fatty liver diseases in adult offspring, which can be attenuated by the potent hypolipidaemic action of fish oil (FO), an n-3 PUFA source, during adult life. Previously, we described that adolescent HFD offspring showed resistance to FO hypolipidaemic effects, although FO promoted hepatic molecular changes suggestive of reduced lipid accumulation. Here, we investigated whether this FO intervention only during the adolescence period could affect offspring metabolism in adulthood. Then, female Wistar rats received isoenergetic, standard (STD: 9 % fat) or high-fat (HFD: 28·6 % fat) diet before mating, and throughout pregnancy and lactation. After weaning, male offspring received the standard diet; and from 25 to 45 d old they received oral administration of soyabean oil or FO. At 150 d old, serum and hepatic metabolic parameters were evaluated. Maternal HFD adult offspring showed increased body weight, visceral adiposity, hyperleptinaemia and decreased hepatic pSTAT3/STAT3 ratio, suggestive of hepatic leptin resistance. FO intake only during the adolescence period reduced visceral adiposity and serum leptin, regardless of maternal diet. Maternal HFD promoted dyslipidaemia and hepatic TAG accumulation, which was correlated with reduced hepatic carnitine palmitoyl transferase-1a content, suggesting lipid oxidation impairment. FO intake did not change serum lipids; however, it restored hepatic TAG content and hepatic markers of lipid oxidation to STD offspring levels. Therefore, we concluded that FO intake exclusively during adolescence programmed STD offspring and reprogrammed HFD offspring male rats to a healthier metabolic phenotype in adult life, reducing visceral adiposity, serum leptin and hepatic TAG content in offspring adulthood.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Dislipidemias/prevención & control , Aceites de Pescado/administración & dosificación , Efectos Tardíos de la Exposición Prenatal/prevención & control , Animales , Dislipidemias/etiología , Ácidos Grasos Omega-3/metabolismo , Femenino , Grasa Intraabdominal/metabolismo , Leptina/sangre , Hígado/metabolismo , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Embarazo , Efectos Tardíos de la Exposición Prenatal/etiología , Ratas , Ratas Wistar , Triglicéridos/metabolismo
2.
Br J Nutr ; 119(1): 12-21, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29227215

RESUMEN

This study aimed to determine the effects of supplementing the diet of adult Nile tilapia Oreochromis niloticus with phosphatidylcholine (PC) on growth performance, body composition, fatty acid composition and gene expression. Genetically Improved Farmed Tilapia fish with an initial body weight of 83·1 (sd 2·9) g were divided into six groups. Each group was hand-fed a semi-purified diet containing 1·7 (control diet), 4·0, 6·5, 11·5, 21·3 or 41·0 g PC/kg diet for 68 d. Supplemental PC improved the feed efficiency rate, which was highest in the 11·5 g PC/kg diet. Weight gain and specific growth rate were unaffected. Dietary PC increased PC content in the liver and decreased crude fat content in the liver, viscera and body. SFA and MUFA increased and PUFA decreased in muscle with increasing dietary PC. Cytoplasmic phospholipase A 2 and secreted phospholipase A 2 mRNA expression were up-regulated in the brain and heart in PC-supplemented fish. PC reduced fatty acid synthase mRNA expression in the liver and visceral tissue but increased expression in muscle. Hormone-sensitive lipase and lipoprotein lipase expression increased in the liver with increasing dietary PC. Growth hormone mRNA expression was reduced in the brain and insulin-like growth factor-1 mRNA expression in liver reduced with PC above 6·5 g/kg. Our results demonstrate that dietary supplementation with PC improves feed efficiency and reduces liver fat in adult Nile tilapia, without increasing weight gain, representing a novel dietary approach to reduce feed requirements and improve the health of Nile tilapia.


Asunto(s)
Cíclidos/genética , Suplementos Dietéticos , Lecitinas/metabolismo , Fosfatidilcolinas/metabolismo , Alimentación Animal , Animales , Composición Corporal , Encéfalo/metabolismo , Caseínas/química , Ácido Graso Sintasas/metabolismo , Ácidos Grasos/química , Gelatina/química , Perfilación de la Expresión Génica , Hormona del Crecimiento/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Metabolismo de los Lípidos , Lípidos/química , Lipoproteína Lipasa/metabolismo , Masculino , Músculos/metabolismo , Miocardio/metabolismo , ARN Mensajero/metabolismo , Glycine max/química , Esterol Esterasa/metabolismo
3.
Br J Nutr ; 118(11): 881-888, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29173220

RESUMEN

Two experiments were designed to investigate the effects of Mn source and concentration on the mRNA expression and enzymatic activities of fatty acid synthase (FAS) and malic enzyme (ME) in cultured primary broiler hepatocytes. In Expt 1, primary broiler hepatocytes were treated with 0 (control), 0·25, 0·50 or 0·75 mmol/l of Mn as inorganic manganese chloride (MnCl2.4H2O) for 24 and 48 h. In Expt 2, primary broiler hepatocytes were incubated with 0 (control), 0·25 or 0·50 mmol/l of Mn as either manganese chloride or Mn-amino acid chelate for 48 h. The mRNA levels and activities of FAS and ME in the hepatocytes were measured in Expts 1 and 2. The results in Expt 1 showed that only at 48 h mRNA expression levels of FAS and ME in the hepatocytes decreased linearly (P0·33) on any of the measured cellular parameters. The results suggested that Mn might reduce cell damage and regulate FAS and ME expression at a transcriptional level in primary cultured broiler hepatocytes.


Asunto(s)
Ácido Graso Sintasas/metabolismo , Hepatocitos/enzimología , Malato Deshidrogenasa/metabolismo , Manganeso/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Pollos , Ácido Graso Sintasas/genética , Regulación de la Expresión Génica , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Malato Deshidrogenasa/genética , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Br J Nutr ; 118(6): 411-422, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28980889

RESUMEN

Four isonitrogenous and isoenergetic purified diets containing free arachidonic acid (ARA) or EPA (control group), 0·30 % ARA, 0·30 % EPA and 0·30 % ARA+EPA (equivalent) were designed to feed juvenile grass carp (10·21 (sd 0·10) g) for 10 weeks. Only the EPA group presented better growth performance compared with the control group (P<0·05). Dietary ARA and EPA were incorporated into polar lipids more than non-polar lipids in hepatopancreas but not intraperitoneal fat (IPF) tissue. Fish fed ARA and EPA showed an increase of serum superoxide dismutase and catalase activities, and decrease of glutathione peroxidase activity and malondialdehyde contents (P<0·05). The hepatopancreatic TAG levels decreased both in ARA and EPA groups (P<0·05), accompanied by the decrease of lipoprotein lipase (LPL) activity in the ARA group (P<0·05). Fatty acid synthase (FAS), diacylglycerol O-acyltransferase and apoE gene expression in the hepatopancreas decreased in fish fed ARA and EPA, but only the ARA group exhibited increased mRNA level of adipose TAG lipase (ATGL) (P<0·05). Decreased IPF index and adipocyte sizes were found in the ARA group (P<0·05). Meanwhile, the ARA group showed decreased expression levels of adipogenic genes CCAAT enhancer-binding protein α, LPL and FAS, and increased levels of the lipid catabolic genes PPAR α, ATGL, hormone-sensitive lipase and carnitine palmitoyltransferase 1 (CPT-1) in IPF, whereas the EPA group only increased PPAR α and CPT-1 mRNA expression and showed less levels than the ARA group. Overall, dietary EPA is beneficial to the growth performance, whereas ARA is more potent in inducing lipolysis and inhibiting adipogenesis, especially in IPF. Meanwhile, dietary ARA and EPA showed the similar preference in esterification and the improvement in antioxidant response.


Asunto(s)
Antioxidantes/metabolismo , Ácido Araquidónico/administración & dosificación , Composición Corporal , Carpas/fisiología , Ácido Eicosapentaenoico/administración & dosificación , Metabolismo de los Lípidos , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Alimentación Animal/análisis , Animales , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Dieta/veterinaria , Glutatión Peroxidasa/sangre , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/metabolismo , Lipoproteína Lipasa/sangre , Malondialdehído/sangre , ARN Mensajero/genética , ARN Mensajero/metabolismo , Superóxido Dismutasa/sangre
5.
Br J Nutr ; 118(8): 570-579, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28946929

RESUMEN

The present study explored the mechanisms of dietary Zn influencing Zn and lipid deposition in the fore- and mid- intestine in yellow catfish Pelteobagrus fulvidraco, and investigated whether the mechanism was intestinal-region dependent. For this purpose, yellow catfish were fed three diets containing Zn levels of 8·83, 19·20 and 146·65 mg Zn/kg, respectively. Growth performance, intestinal TAG and Zn contents as well as activities and mRNA expression of enzymes and genes involved in Zn transport and lipid metabolism in the fore- and mid-intestine were analysed. Dietary Zn increased Zn accumulation as well as activities of Cu-, Zn-superoxide dismutase and ATPase in the fore- and mid-intestine. In the fore-intestine, dietary Zn up-regulated mRNA levels of ZnT1, ZnT5, ZnT7, metallothionein (MT) and metal response element-binding transcription factor-1 (MTF-1), but down-regulated mRNA levels of ZIP4 and ZIP5. In the mid-intestine, dietary Zn up-regulated mRNA levels of ZnT1, ZnT5, ZnT7, MT and MTF-1, but down-regulated mRNA levels of ZIP4 and ZIP5. Dietary Zn reduced TAG content, down-regulated activities of 6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME) and fatty acid synthase (FAS) activities, and reduced mRNA levels of 6PGD, G6PD, FAS, PPARγ and sterol-regulator element-binding protein (SREBP-1), but up-regulated mRNA levels of carnitine palmitoyltransferase IA, hormone-sensitive lipase (HSLa), adipose TAG lipase (ATGL) and PPARα in the fore-intestine. In the mid-intestine, dietary Zn reduced TAG content, activities of G6PD, ME, isocitrate dehydrogenase and FAS, down-regulated mRNA levels of 6PGD, G6PD, FAS, acetyl-CoA carboxylase a, PPARγ and SREBP-1, but up-regulated mRNA expression of HSLa, ATGL and PPARγ. The reduction in TAG content following Zn addition was attributable to reduced lipogenesis and increased lipolysis, and similar regulatory mechanisms were observed between the fore- and mid-intestine.


Asunto(s)
Bagres/metabolismo , Intestinos/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Zinc/administración & dosificación , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Alimentación Animal/análisis , Animales , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Dieta/veterinaria , Regulación hacia Abajo , Regulación de la Expresión Génica , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Mucosa Intestinal/metabolismo , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Regulación hacia Arriba
6.
Br J Nutr ; 118(11): 906-913, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29173222

RESUMEN

Conjugated linoleic acid (CLA) might regulate the lipid depots in liver and adipose tissue. As there is an association between maternal nutrition, fat depots and risk of offspring chronic disease, the aim was to investigate the effect of maternal CLA consumption on TAG regulation and some inflammatory parameters in adult male rat offspring receiving or not receiving CLA. Female Wistar rats were fed control (C) or CLA-supplemented (1 %, w/w) diets during 4 weeks before and throughout pregnancy and lactation. After weaning, male offspring of CLA rats were fed C or CLA diets (CLA/C and CLA/CLA groups, respectively), whereas C male rat offspring were fed a C diet (C/C group) for 9 weeks. Serum TAG levels were increased in the CLA/CLA and CLA/C groups, associated with a reduction of lipoprotein lipase activity and weights of adipose tissue. The liver TAG levels were decreased in the CLA/CLA group, related to a significant reduction of fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC) and glucose-6-phosphate dehydrogenase enzyme activities, as well as to the mRNA levels of FAS, ACC, stearoyl-CoA desaturase-1 and sterol regulatory element-binding protein-1c. Even though normal TAG levels were found in the liver of CLA/C rats, a reduction of lipogenesis was also observed. Thus, these results demonstrated a programming effect of CLA on the lipid metabolic pathways leading to a preventive effect on the TAG accretion in adipose tissue and the liver of male rat offspring. This knowledge could be important to develop some dietary strategies leading to a reduced incidence of obesity and fatty acid liver disease in humans.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Ácidos Linoleicos Conjugados/farmacología , Triglicéridos/sangre , Triglicéridos/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Dieta , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/sangre , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Ácidos Grasos/sangre , Femenino , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Lipogénesis/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
7.
Br J Nutr ; 118(5): 353-359, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28901894

RESUMEN

This study aimed to evaluate the effect of different starch types on liver nutrient metabolism of finishing pigs. In all ninety barrows were randomly allocated to three diets with five replicates of six pigs, containing purified waxy maize starch (WMS), non-waxy maize starch (NMS) and pea starch (PS) (the amylose to amylopectin ratios were 0·07, 0·19 and 0·28, respectively). After 28 d of treatments, two per pen (close to the average body weight of the pen) were weighed individually, slaughtered and liver samples were collected. Compared with the WMS diet, the PS diet decreased the activities of glycogen phosphorylase, phosphoenolpyruvate carboxykinase and the expression of phosphoenolpyruvate carboxykinase 1 in liver (P0·05). Compared with the WMS diet, the PS diet reduced the expressions of glutamate dehydrogenase and carbamoyl phosphate synthetase 1 in liver (P<0·05). PS diet decreased the expression of the insulin receptor, and increased the expressions of mammalian target of rapamycin complex 1 and ribosomal protein S6 kinase ß-1 in liver compared with the WMS diet (P<0·05). These findings indicated that the diet with higher amylose content could down-regulate gluconeogenesis, and cause less fat deposition and more protein deposition by affecting the insulin/PI3K/protein kinase B signalling pathway in liver of finishing pigs.


Asunto(s)
Alimentación Animal/análisis , Dieta/veterinaria , Hígado/metabolismo , Almidón/administración & dosificación , Alanina Transaminasa/sangre , Alanina Transaminasa/genética , Amilopectina/administración & dosificación , Amilopectina/análisis , Amilosa/administración & dosificación , Amilosa/análisis , Animales , Aspartato Aminotransferasas/sangre , Aspartato Aminotransferasas/genética , Glucemia/metabolismo , Carbamoil-Fosfato Sintasa (Amoniaco)/genética , Carbamoil-Fosfato Sintasa (Amoniaco)/metabolismo , Ácido Graso Sintasas/sangre , Ácido Graso Sintasas/genética , Gluconeogénesis , Glutamato Deshidrogenasa/genética , Glutamato Deshidrogenasa/metabolismo , Insulina/metabolismo , Metabolismo de los Lípidos/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Pisum sativum/química , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Porcinos , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Zea mays/química
8.
Br J Nutr ; 118(12): 1010-1022, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29151385

RESUMEN

The replacement of fish oil (FO) with vegetable oil (VO) in feed formulations reduces the availability of n-3 long-chain PUFA (LC-PUFA) to marine fish such as gilthead seabream. The aim of this study was to examine compositional and physiological responses to a dietary gradient of n-3 LC-PUFA. Six iso-energetic and iso-nitrogenous diets (D1-D6) were fed to seabream, with the added oil being a blend of FO and VO to achieve a dietary gradient of n-3 LC-PUFA. Fish were sampled after 4 months feeding, to determine biochemical composition, tissue fatty acid concentrations and lipid metabolic gene expression. The results indicated a disturbance to lipid metabolism, with fat in the liver increased and fat deposits in the viscera reduced. Tissue fatty acid profiles were altered towards the fatty acid compositions of the diets. There was evidence of endogenous modification of dietary PUFA in the liver which correlated with the expression of fatty acid desaturase 2 (fads2). Expression of sterol regulatory element binding protein 1 (srebp1), fads2 and fatty acid synthase increased in the liver, whereas PPARα1 pathways appeared to be supressed by dietary VO in a concentration-dependent manner. The effects in lipogenic genes appear to become measurable in D1-D3, which agrees with the weight gain data suggesting that disturbances to energy metabolism and lipogenesis may be related to performance differences. These findings suggested that suppression of ß-oxidation and stimulation of srebp1-mediated lipogenesis may play a role in contributing toward steatosis in fish fed n-3 LC-PUFA deficient diets.


Asunto(s)
Ácidos Grasos Omega-3/administración & dosificación , Aceites de Pescado/administración & dosificación , Aceite de Brassica napus/administración & dosificación , Dorada/metabolismo , Aceite de Soja/administración & dosificación , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Regulación de la Expresión Génica , Mucosa Intestinal/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
9.
Br J Nutr ; 116(1): 19-34, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27160810

RESUMEN

The long-term effects on growth performance, body composition, plasma metabolites, liver and intestine glucose and lipid metabolism were assessed in gilthead sea bream juveniles fed diets without carbohydrates (CH-) or carbohydrate-enriched (20 % gelatinised starch, CH+) combined with two lipid sources (fish oil; or vegetable oil (VO)). No differences in growth performance among treatments were observed. Carbohydrate intake was associated with increased hepatic transcripts of glucokinase but not of 6-phosphofructokinase. Expression of phosphoenolpyruvate carboxykinase was down-regulated by carbohydrate intake, whereas, unexpectedly, glucose 6-phosphatase was up-regulated. Lipogenic enzyme activities (glucose-6-phosphate dehydrogenase, malic enzyme, fatty acid synthase) and ∆6 fatty acyl desaturase (FADS2) transcripts were increased in liver of fish fed CH+ diets, supporting an enhanced potential for lipogenesis and long-chain PUFA (LC-PUFA) biosynthesis. Despite the lower hepatic cholesterol content in CH+ groups, no influence on the expression of genes related to cholesterol efflux (ATP-binding cassette G5) and biosynthesis (lanosterol 14 α-demethylase, cytochrome P450 51 cytochrome P450 51 (CYP51A1); 7-dehydrocholesterol reductase) was recorded at the hepatic level. At the intestinal level, however, induction of CYP51A1 transcripts by carbohydrate intake was recorded. Dietary VO led to decreased plasma phospholipid and cholesterol concentrations but not on the transcripts of proteins involved in phospholipid biosynthesis (glycerol-3-phosphate acyltransferase) and cholesterol metabolism at intestinal and hepatic levels. Hepatic and muscular fatty acid profiles reflected that of diets, despite the up-regulation of FADS2 transcripts. Overall, this study demonstrated that dietary carbohydrates mainly affected carbohydrate metabolism, lipogenesis and LC-PUFA biosynthesis, whereas effects of dietary lipid source were mostly related with tissue fatty acid composition, plasma phospholipid and cholesterol concentrations, and LC-PUFA biosynthesis regulation. Interactions between dietary macronutrients induced modifications in tissue lipid and glycogen content.


Asunto(s)
Carbohidratos de la Dieta/farmacología , Glucosa/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Dorada/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Carbohidratos de la Dieta/administración & dosificación , Grasas de la Dieta , Regulación de la Expresión Génica
10.
Br J Nutr ; 116(1): 7-18, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27181335

RESUMEN

The regulation of lipogenesis mechanisms related to consumption of n-3 PUFA is poorly understood. The aim of the present study was to find out whether α-linolenic acid (ALA) or DHA uptake can have an effect on activities and gene expressions of enzymes involved in lipid metabolism in the liver, subcutaneous adipose tissue and longissimus dorsi (LD) muscle of growing-finishing pigs. Six groups of ten pigs received one of six experimental diets supplemented with rapeseed oil in the control diet, extruded linseed, microalgae or a mixture of both to implement different levels of ALA and DHA with the same content in total n-3. Results were analysed for linear and quadratic effects of DHA intake. The results showed that activities of malic enzyme (ME) and fatty acid synthase (FAS) decreased linearly in the liver with dietary DHA. Although the expression of the genes of these enzymes and their activities were poorly correlated, ME and FAS expressions also decreased linearly with DHA intake. The intake of DHA down-regulates the expressions of other genes involved in fatty acid (FA) metabolism in some tissues of pigs, such as fatty acid desaturase 2 and sterol-regulatory element binding transcription factor 1 in the liver and 2,4-dienoyl CoA reductase 2 in the LD muscle. FA oxidation in the LD muscle and FA synthesis decreased in the liver with increasing amount of dietary DHA, whereas a retroconversion of DHA into EPA seems to be set up in this last tissue.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Regulación de la Expresión Génica/fisiología , Metabolismo de los Lípidos/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Porcinos/fisiología , Ácido alfa-Linolénico/farmacología , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Ácidos Docosahexaenoicos/administración & dosificación , Ácido Graso Sintasas/metabolismo , Femenino , Masculino , Ácido alfa-Linolénico/administración & dosificación
11.
Br J Nutr ; 116(4): 611-20, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27464460

RESUMEN

The aim of this study was to investigate the effects of trans-fatty acids (TFA) on liver and serum TAG regulation in mice fed diets containing different proportions of n-3, n-6 and n-9 unsaturated fatty acids (UFA) from olive (O), maize (C) or rapeseed (R) oils partially substituted or not with TFA (Ot, Ct and Rt, respectively). Male CF1 mice were fed (30 d) one of these diets. The effects of the partial substitution (1 %, w/w) of different UFA with TFA on the activity and expression of hepatic enzymes involved in lipogenesis and fatty acids oxidation were evaluated, as well as their transcription factor expressions. Some of the mechanisms involved in the serum TAG regulation, hepatic VLDL rich in TAG (VLDL-TAG) secretion rate and lipoprotein lipase (LPL) activity were assessed. In liver, TFA induced an increase in TAG content in the Ot and Rt groups, and this effect was associated with an imbalance between lipogenesis and ß-oxidation. In the Ot group, exacerbated lipogenesis may be one of the mechanisms responsible for the liver steatosis induced by TFA, whereas in Rt it has been related to a decreased ß-oxidation, compared with their respective controls. The enhanced hepatic VLDL-TAG secretion in the Ot and Rt groups was compensated with a differential removal of TAG by LPL enzyme in extrahepatic tissues, leading to unchanged serum TAG levels. In brief, the effects of low levels of TFA on liver and serum TAG regulation in mice depend on the dietary proportions of n-3, n-6 and n-9 UFA.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Grasas Insaturadas en la Dieta/metabolismo , Aceites de Plantas/metabolismo , Ácidos Grasos trans/farmacología , Triglicéridos/metabolismo , Animales , Aceite de Maíz/química , Aceite de Maíz/metabolismo , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/administración & dosificación , Ácidos Grasos Omega-6/metabolismo , Hígado Graso/metabolismo , Leucotrienos/metabolismo , Lipogénesis , Lipoproteína Lipasa/metabolismo , Lipoproteínas VLDL/metabolismo , Hígado/metabolismo , Masculino , Ratones , Aceite de Oliva/química , Aceite de Oliva/metabolismo , Oxidación-Reducción , Aceites de Plantas/química , Aceite de Brassica napus , Triglicéridos/biosíntesis
12.
Br J Nutr ; 114(8): 1143-56, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26306559

RESUMEN

Plant feedstuffs (PF) are rich in carbohydrates, which may interact with lipid metabolism. Thus, when considering dietary replacement of fishery by-products with PF, knowledge is needed on how dietary lipid source (LS) and carbohydrates affect lipid metabolism and other metabolic pathways. For that purpose, a 73-d growth trial was performed with European sea bass juveniles (IBW 74 g) fed four diets differing in LS (fish oil (FO) or a blend of vegetable oils (VO)) and carbohydrate content (0 % (CH-) or 20 % (CH+) gelatinised starch). At the end of the trial no differences among diets were observed on growth and feed utilisation. Protein efficiency ratio was, however, higher in the CH+ groups. Muscle and liver fatty acid profiles reflected the dietary LS. Dietary carbohydrate promoted higher plasma cholesterol and phospholipids (PL), whole-body and hepatic (mainly 16 : 0) lipids and increased muscular and hepatic glycogen. Except for PL, which were higher in the FO groups, no major alterations between FO and VO groups were observed on plasma metabolites (glucose, TAG, cholesterol, PL), liver and muscle glycogen, and lipid and cholesterol contents. Activities of glucose-6-phosphate dehydrogenase and malic enzyme - lipogenesis-related enzymes - increased with carbohydrate intake. Hepatic expression of genes involved in cholesterol metabolism was up-regulated with carbohydrate (HMGCR and CYP3A27) and VO (HMGCR and CYP51A1) intake. No dietary regulation of long-chain PUFA biosynthesis at the transcriptional level was observed. Overall, very few interactions between dietary carbohydrates and LS were observed. However, important insights on the direct relation between dietary carbohydrate and the cholesterol biosynthetic pathway in European sea bass were demonstrated.


Asunto(s)
Lubina/metabolismo , Colesterol/sangre , Dieta/veterinaria , Carbohidratos de la Dieta/administración & dosificación , Grasas de la Dieta/administración & dosificación , Metabolismo de los Lípidos , Alimentación Animal , Animales , Glucemia/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Aceites de Pescado/administración & dosificación , Glucoquinasa/genética , Glucoquinasa/metabolismo , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Hígado/metabolismo , Músculo Esquelético/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Aceites de Plantas/administración & dosificación , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Almidón/administración & dosificación , Almidón/química , Triglicéridos/sangre , Regulación hacia Arriba
13.
Biochem Biophys Rep ; 28: 101168, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34825068

RESUMEN

PURPOSE: This current study investigated the effect of metformin treatment on hepatic oxidative stress and inflammation associated with nonalcoholic fatty liver disease (NADLD) in high fat diet (HFD) fed rats. METHOD: Wistar rats were fed with a HFD or laboratory chow diet for 8 weeks. Metformin was administered orally at a dose of 200 mg/kg. Body weight, food and water intake were recorded on daily basis. Oral glucose tolerance test (OGTT), biochemical analysis and histological examinations were conducted on plasma and tissue samples. Antioxidant and anti-inflammatory mRNA expression was analyzed using reverse transcription polymeric chain reaction (RT-PCR). RESULTS: Metformin treatment for 8 weeks prevented HFD-induced weight gain and decreased fat deposition in HFD fed rats. Biochemical analysis revealed that metformin treatment significantly attenuated nitro-oxidative stress markers malondialdehyde (MDA), advanced protein oxidation product (APOP), and excessive nitric oxide (NO) levels in the liver of HFD fed rats. Gene expression analysis demonestrated that metformin treatment was associated with an enhanced expression of antioxidant genes such as Nrf-2, HO-1, SOD and catalase in liver of HFD fed rats. Metformin treatment also found to modulate the expression of fat metabolizing and anti-inflammatory genes including PPAR--γ, C/EBP-α, SREBP1c, FAS, AMPK and GLUT-4. Consistent with the biochemical and gene expression data, the histopathological examination unveiled that metformin treatment attenuated inflammatory cells infiltration, steatosis, hepatocyte necrosis, collagen deposition, and fibrosis in the liver of HFD fed rats. CONCLUSION: In conclusion, this study suggests that metformin might be effective in the prevention and treatment of HFD-induced steatosis by reducing hepatic oxidative stress and inflammation in the liver.

14.
JHEP Rep ; 3(6): 100346, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34667947

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a growing cause of chronic liver disease worldwide. It is characterised by steatosis, liver inflammation, hepatocellular injury and progressive fibrosis. Several preclinical models (dietary and genetic animal models) of NAFLD have deepened our understanding of its aetiology and pathophysiology. Despite the progress made, there are currently no effective treatments for NAFLD. In this review, we will provide an update on the known molecular pathways involved in the pathophysiology of NAFLD and on ongoing studies of new therapeutic targets.

15.
J Adv Res ; 27: 127-135, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33318872

RESUMEN

BACKGROUND: Over the last several decades, hydrogen sulfide (H2S) has been found to exert multiple physiological functions in mammal systems. The endogenous production of H2S is primarily mediated by cystathione ß-synthase (CBS), cystathione γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST). These enzymes are widely expressed in the liver tissues and regulate hepatic functions by acting on various molecular targets. AIM OF REVIEW: In the present review, we will highlight the recent advancements in the cellular events triggered by H2S under liver diseases. The therapeutic effects of H2S donors on hepatic diseases will also be discussed. KEY SCIENTIFIC CONCEPTS OF REVIEW: As a critical regulator of liver functions, H2S is critically involved in the etiology of various liver disorders, such as nonalcoholic steatohepatitis (NASH), hepatic fibrosis, hepatic ischemia/reperfusion (IR) injury, and liver cancer. Targeting H2S-producing enzymes may be a promising strategy for managing hepatic disorders.

16.
J Ginseng Res ; 45(3): 380-389, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34025131

RESUMEN

Metabolic syndrome (MS) refers to a clustering of at least three of the following medical conditions: high blood pressure, abdominal obesity, hyperglycemia, low high-density lipoprotein level, and high serum triglycerides. MS is related to a wide range of diseases which includes obesity, diabetes, insulin resistance, cardiovascular disease, dyslipidemia, or non-alcoholic fatty liver disease. There remains an ongoing need for improved treatment strategies for MS. The most important risk factors are dietary pattern, genetics, old age, lack of exercise, disrupted biology, medication usage, and excessive alcohol consumption, but pathophysiology of MS has not been completely identified. Korean Red Ginseng (KRG) refers to steamed/dried ginseng, traditionally associated with beneficial effects such as anti-inflammation, anti-fatigue, anti-obesity, anti-oxidant, and anti-cancer effects. KRG has been often used in traditional medicine to treat multiple metabolic conditions. This paper summarizes the effects of KRG in MS and related diseases such as obesity, cardiovascular disease, insulin resistance, diabetes, dyslipidemia, or non-alcoholic fatty liver disease based on experimental research and clinical studies.

17.
Acta Pharm Sin B ; 10(1): 42-60, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31993306

RESUMEN

The hepatic endoplasmic reticulum (ER)-anchored cytochromes P450 (P450s) are mixed-function oxidases engaged in the biotransformation of physiologically relevant endobiotics as well as of myriad xenobiotics of therapeutic and environmental relevance. P450 ER-content and hence function is regulated by their coordinated hemoprotein syntheses and proteolytic turnover. Such P450 proteolytic turnover occurs through a process known as ER-associated degradation (ERAD) that involves ubiquitin-dependent proteasomal degradation (UPD) and/or autophagic-lysosomal degradation (ALD). Herein, on the basis of available literature reports and our own recent findings of in vitro as well as in vivo experimental studies, we discuss the therapeutic and pathophysiological implications of altered P450 ERAD and its plausible clinical relevance. We specifically (i) describe the P450 ERAD-machinery and how it may be repurposed for the generation of antigenic P450 peptides involved in P450 autoantibody pathogenesis in drug-induced acute hypersensitivity reactions and liver injury, or viral hepatitis; (ii) discuss the relevance of accelerated or disrupted P450-ERAD to the pharmacological and/or toxicological effects of clinically relevant P450 drug substrates; and (iii) detail the pathophysiological consequences of disrupted P450 ERAD, contributing to non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) under certain synergistic cellular conditions.

18.
J Nutr Sci ; 8: e38, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-32042405

RESUMEN

The present study aimed to investigate whether dietary choline can regulate lipid metabolism and suppress NFκB activation and, consequently, attenuate inflammation induced by a high-fat diet in black sea bream (Acanthopagrus schlegelii). An 8-week feeding trial was conducted on fish with an initial weight of 8·16 ± 0·01 g. Five diets were formulated: control, low-fat diet (11 %); HFD, high-fat diet (17 %); and HFD supplemented with graded levels of choline (3, 6 or 12 g/kg) termed HFD + C1, HFD + C2 and HFD + C3, respectively. Dietary choline decreased lipid content in whole body and tissues. Highest TAG and cholesterol concentrations in serum and liver were recorded in fish fed the HFD. Similarly, compared with fish fed the HFD, dietary choline reduced vacuolar fat drops and ameliorated HFD-induced pathological changes in liver. Expression of genes of lipolysis pathways were up-regulated, and genes of lipogenesis down-regulated, by dietary choline compared with fish fed the HFD. Expression of nfκb and pro-inflammatory cytokines in liver and intestine was suppressed by choline supplementation, whereas expression of anti-inflammatory cytokines was promoted in fish fed choline-supplemented diets. In fish that received lipopolysaccharide to stimulate inflammatory responses, the expression of nfκb and pro-inflammatory cytokines in liver, intestine and kidney were all down-regulated by dietary choline compared with the HFD. Overall, the present study indicated that dietary choline had a lipid-lowering effect, which could protect the liver by regulating intrahepatic lipid metabolism, reducing lipid droplet accumulation and suppressing NFκB activation, consequently attenuating HFD-induced inflammation in A. schlegelii.


Asunto(s)
Colina/farmacología , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Inflamación , Metabolismo de los Lípidos/efectos de los fármacos , FN-kappa B/efectos de los fármacos , Perciformes/metabolismo , Animales , Colesterol/metabolismo , Citocinas/metabolismo , Regulación hacia Abajo , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/genética , Intestinos/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Lipólisis , Hígado/efectos de los fármacos , Hígado/metabolismo , FN-kappa B/metabolismo
19.
J Biomol Struct Dyn ; 37(6): 1616-1627, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29633908

RESUMEN

In this work, the binding mechanism of new Polyketide Synthase 13 (Pks13) inhibitors has been studied through molecular dynamics simulation and free energy calculations. The drug Tam1 and its analogs, belonging to the benzofuran class, were submitted to 100 ns simulations, and according to the results obtained for root mean square deviation, all the simulations converged from approximately 30 ns. For the analysis of backbone flotation, the root mean square fluctuations were plotted for the Cα atoms; analysis revealed that the greatest fluctuation occurred in the residues that are part of the protein lid domain. The binding free energy value (ΔGbind) obtained for the Tam16 lead molecule was of -51.43 kcal/mol. When comparing this result with the ΔGbind values for the remaining analogs, the drug Tam16 was found to be the highest ranked: this result is in agreement with the experimental results obtained by Aggarwal and collaborators, where it was verified that the IC50 for Tam16 is the smallest necessary to inhibit the Pks13 (IC50 = 0.19 µM). The energy decomposition analysis suggested that the residues which most interact with inhibitors are: Ser1636, Tyr1637, Asn1640, Ala1667, Phe1670, and Tyr1674, from which the greatest energy contribution to Phe1670 was particularly notable. For the lead molecule Tam16, a hydrogen bond with the hydroxyl of the phenol not observed in the other analogs induced a more stable molecular structure. Aggarwal and colleagues reported this hydrogen bonding as being responsible for the stability of the molecule, optimizing its physic-chemical, toxicological, and pharmacokinetic properties.


Asunto(s)
Antituberculosos/química , Proteínas Bacterianas/química , Benzofuranos/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Sintasas Poliquetidas/química , Aminoácidos , Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Benzofuranos/farmacología , Sitios de Unión , Descubrimiento de Drogas , Enlace de Hidrógeno , Estructura Molecular , Sintasas Poliquetidas/antagonistas & inhibidores , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
20.
Acta Pharm Sin B ; 9(2): 220-236, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30976490

RESUMEN

Obesity is increasing in an alarming rate worldwide, which causes higher risks of some diseases, such as type 2 diabetes, cardiovascular diseases, and cancer. Current therapeutic approaches, either pancreatic lipase inhibitors or appetite suppressors, are generally of limited effectiveness. Brown adipose tissue (BAT) and beige cells dissipate fatty acids as heat to maintain body temperature, termed non-shivering thermogenesis; the activity and mass of BAT and beige cells are negatively correlated with overweight and obesity. The existence of BAT and beige cells in human adults provides an effective weight reduction therapy, a process likely to be amenable to pharmacological intervention. Herein, we combed through the physiology of thermogenesis and the role of BAT and beige cells in combating with obesity. We summarized the thermogenic regulators identified in the past decades, targeting G protein-coupled receptors, transient receptor potential channels, nuclear receptors and miscellaneous pathways. Advances in clinical trials were also presented. The main purpose of this review is to provide a comprehensive and up-to-date knowledge from the biological importance of thermogenesis in energy homeostasis to the representative thermogenic regulators for treating obesity. Thermogenic regulators might have a large potential for further investigations to be developed as lead compounds in fighting obesity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA