Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.442
Filtrar
Más filtros

Intervalo de año de publicación
1.
RNA ; 30(1): 68-88, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37914398

RESUMEN

The retroviral Gag precursor plays a central role in the selection and packaging of viral genomic RNA (gRNA) by binding to virus-specific packaging signal(s) (psi or ψ). Previously, we mapped the feline immunodeficiency virus (FIV) ψ to two discontinuous regions within the 5' end of the gRNA that assumes a higher order structure harboring several structural motifs. To better define the region and structural elements important for gRNA packaging, we methodically investigated these FIV ψ sequences using genetic, biochemical, and structure-function relationship approaches. Our mutational analysis revealed that the unpaired U85CUG88 stretch within FIV ψ is crucial for gRNA encapsidation into nascent virions. High-throughput selective 2' hydroxyl acylation analyzed by primer extension (hSHAPE) performed on wild type (WT) and mutant FIV ψ sequences, with substitutions in the U85CUG88 stretch, revealed that these mutations had limited structural impact and maintained nucleotides 80-92 unpaired, as in the WT structure. Since these mutations dramatically affected packaging, our data suggest that the single-stranded U85CUG88 sequence is important during FIV RNA packaging. Filter-binding assays performed using purified FIV Pr50Gag on WT and mutant U85CUG88 ψ RNAs led to reduced levels of Pr50Gag binding to mutant U85CUG88 ψ RNAs, indicating that the U85CUG88 stretch is crucial for ψ RNA-Pr50Gag interactions. Delineating sequences important for FIV gRNA encapsidation should enhance our understanding of both gRNA packaging and virion assembly, making them potential targets for novel retroviral therapeutic interventions, as well as the development of FIV-based vectors for human gene therapy.


Asunto(s)
Virus de la Inmunodeficiencia Felina , Animales , Gatos , Humanos , Virus de la Inmunodeficiencia Felina/genética , Virus de la Inmunodeficiencia Felina/metabolismo , ARN Guía de Sistemas CRISPR-Cas , ARN Viral/química , Sitios de Unión , Genómica , Ensamble de Virus/genética
2.
J Virol ; 98(2): e0121623, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38236006

RESUMEN

Feline infectious peritonitis (FIP) is a fatal feline disease, caused by a feline coronavirus (FCoV), namely feline infectious peritonitis virus (FIPV). We produced a baby hamster kidney 21 (BHK) cell line expressing a serotype I FCoV replicon RNA with a green fluorescent protein (GFP) reporter gene (BHK-F-Rep) and used it as an in vitro screening system to test different antiviral compounds. Two inhibitors of the FCoV main protease (Mpro), namely GC376 and Nirmatrelvir, as well as the nucleoside analog Remdesivir proved to be effective in inhibiting the replicon system. Different combinations of these compounds also proved to be potent inhibitors, having an additive effect when combined. Remdesivir, GC376, and Nirmatrelvir all have a 50% cytotoxic concentration (CC50) more than 200 times higher than their half-maximal inhibitory concentrations (IC50), making them important candidates for future in vivo studies as well as clinically implemented drug candidates. In addition, results were acquired with a virus infection system, where Felis catus whole fetus 4 (Fcwf-4) cells were infected with a previously described recombinant GFP-expressing FIPV (based on the laboratory-adapted serotype I FIPV strain Black) and treated with the most promising compounds. Results acquired with the replicon system were comparable to the results acquired with the virus infection system, demonstrating that we successfully implemented the FCoV replicon system for antiviral screening. We expect that this system will greatly facilitate future screens for anti-FIPV compounds and provide a non-infectious system to study and evaluate drug-resistant mutations that may emerge in the FIPV genome.IMPORTANCEFIPV is of great significance in the cat population around the world, causing 0.3%-1.4% of feline deaths in veterinary practices (2). As there are neither effective preventive measures nor approved treatment options available, there is an urgent need to identify antiviral drugs against FIPV. Our FCoV replicon system provides a valuable tool for drug discovery in vitro. Due to the lack of cell culture systems for serotype I FCoVs (the serotype most prevalent in the feline population) (2), a different system is needed to study these viruses. A viral replicon system is a valuable tool for studying FCoVs. Overall, our results demonstrate the utility of the serotype I feline coronavirus replicon system for antiviral screening as well as to study this virus in general. We propose several compounds representing promising candidates for future clinical trials and ultimately with the potential to save cats suffering from FIP.


Asunto(s)
Antivirales , Coronavirus Felino , Peritonitis Infecciosa Felina , Lactamas , Leucina , Ácidos Sulfónicos , Animales , Gatos , Antivirales/farmacología , Coronavirus Felino/efectos de los fármacos , Peritonitis Infecciosa Felina/tratamiento farmacológico , Lactamas/farmacología , Leucina/análogos & derivados , ARN , Ácidos Sulfónicos/farmacología
3.
J Virol ; 98(4): e0177123, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38440982

RESUMEN

Endogenous retroviruses (ERVs) are remnants of ancestral viral infections. Feline leukemia virus (FeLV) is an exogenous and endogenous retrovirus in domestic cats. It is classified into several subgroups (A, B, C, D, E, and T) based on viral receptor interference properties or receptor usage. ERV-derived molecules benefit animals, conferring resistance to infectious diseases. However, the soluble protein encoded by the defective envelope (env) gene of endogenous FeLV (enFeLV) functions as a co-factor in FeLV subgroup T infections. Therefore, whether the gene emerged to facilitate viral infection is unclear. Based on the properties of ERV-derived molecules, we hypothesized that the defective env genes possess antiviral activity that would be advantageous to the host because FeLV subgroup B (FeLV-B), a recombinant virus derived from enFeLV env, is restricted to viral transmission among domestic cats. When soluble truncated Env proteins from enFeLV were tested for their inhibitory effects against enFeLV and FeLV-B, they inhibited viral infection. Notably, this antiviral machinery was extended to infection with the Gibbon ape leukemia virus, Koala retrovirus A, and Hervey pteropid gammaretrovirus. Although these viruses used feline phosphate transporter 1 (fePit1) and phosphate transporter 2 as receptors, the inhibitory mechanism involved competitive receptor binding in a fePit1-dependent manner. The shift in receptor usage might have occurred to avoid the inhibitory effect. Overall, these findings highlight the possible emergence of soluble truncated Env proteins from enFeLV as a restriction factor against retroviral infection and will help in developing host immunity and antiviral defense by controlling retroviral spread.IMPORTANCERetroviruses are unique in using reverse transcriptase to convert RNA genomes into DNA, infecting germ cells, and transmitting to offspring. Numerous ancient retroviral sequences are known as endogenous retroviruses (ERVs). The soluble Env protein derived from ERVs functions as a co-factor that assists in FeLV-T infection. However, herein, we show that the soluble Env protein exhibits antiviral activity and provides resistance to mammalian retrovirus infection through competitive receptor binding. In particular, this finding may explain why FeLV-B transmission is not observed among domestic cats. ERV-derived molecules can benefit animals in an evolutionary arms race, highlighting the double-edged-sword nature of ERVs.


Asunto(s)
Productos del Gen env , Virus de la Leucemia Felina , Leucemia Felina , Animales , Gatos , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Productos del Gen env/genética , Productos del Gen env/metabolismo , Virus de la Leucemia Felina/clasificación , Virus de la Leucemia Felina/genética , Virus de la Leucemia Felina/metabolismo , Virus de la Leucemia del Gibón/genética , Virus de la Leucemia del Gibón/metabolismo , Leucemia Felina/genética , Leucemia Felina/metabolismo , Leucemia Felina/virología , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Receptores Virales/metabolismo , Infecciones por Retroviridae/metabolismo , Infecciones por Retroviridae/virología , Solubilidad , Femenino
4.
J Virol ; 98(2): e0140023, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38240589

RESUMEN

Feline leukemia virus (FeLV) is an exogenous retrovirus that causes malignant hematopoietic disorders in domestic cats, and its virulence may be closely associated with viral sequences. FeLV is classified into several subgroups, including A, B, C, D, E, and T, based on viral receptor interference properties or receptor usage. However, the transmission manner and disease specificity of the recombinant viruses FeLV-D and FeLV-B remain unclear. The aim of this study was to understand recombination events between exogenous and endogenous retroviruses within a host and elucidate the emergence and transmission of recombinant viruses. We observed multiple recombination events involving endogenous retroviruses (ERVs) in FeLV from a family of domestic cats kept in one house; two of these cats (ON-T and ON-C) presented with lymphoma and leukemia, respectively. Clonal integration of FeLV-D was observed in the ON-T case, suggesting an association with FeLV-D pathogenesis. Notably, the receptor usage of FeLV-B observed in ON-T was mediated by feline Pit1 and feline Pit2, whereas only feline Pit1 was used in ON-C. Furthermore, XR-FeLV, a recombinant FeLV containing an unrelated sequence referred to the X-region, which is homologous to a portion of the 5'-leader sequence of Felis catus endogenous gammaretrovirus 4 (FcERV-gamma4), was isolated. Genetic analysis suggested that most recombinant viruses occurred de novo; however, the possibility of FeLV-B transmission was also recognized in the family. This study demonstrated the occurrence of multiple recombination events between exogenous and endogenous retroviruses in domestic cats, highlighting the contribution of ERVs to pathogenic recombinant viruses.IMPORTANCEFeline leukemia virus subgroup A (FeLV-A) is primarily transmitted among cats. During viral transmission, genetic changes in the viral genome lead to the emergence of novel FeLV subgroups or variants with altered virulence. We isolated three FeLV subgroups (A, B, and D) and XR-FeLV from two cats and identified multiple recombination events in feline endogenous retroviruses (ERVs), such as enFeLV, ERV-DC, and FcERV-gamma4, which are present in the cat genome. This study highlights the pathogenic contribution of ERVs in the emergence of FeLV-B, FeLV-D, and XR-FeLV in a feline population.


Asunto(s)
Retrovirus Endógenos , Virus de la Leucemia Felina , Leucemia Felina , Animales , Gatos , Retrovirus Endógenos/genética , Virus de la Leucemia Felina/genética , Virus de la Leucemia Felina/fisiología , Leucemia Felina/transmisión , Leucemia Felina/virología , Recombinación Genética
5.
J Virol ; 98(5): e0009324, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38591899

RESUMEN

Feline parvovirus (FPV) infection is highly fatal in felines. NS1, which is a key nonstructural protein of FPV, can inhibit host innate immunity and promote viral replication, which is the main reason for the severe pathogenicity of FPV. However, the mechanism by which the NS1 protein disrupts host immunity and regulates viral replication is still unclear. Here, we identified an FPV M1 strain that is regulated by the NS1 protein and has more pronounced suppression of innate immunity, resulting in robust replication. We found that the neutralization titer of the FPV M1 strain was significantly lower than that of the other strains. Moreover, FPV M1 had powerful replication ability, and the FPV M1-NS1 protein had heightened efficacy in repressing interferon-stimulated genes (ISGs) expression. Subsequently, we constructed an FPV reverse genetic system, which confirmed that the N588 residue of FPV M1-NS1 protein is a key amino acid that bolsters viral proliferation. Recombinant virus containing N588 also had stronger ability to inhibit ISGs, and lower ISGs levels promoted viral replication and reduced the neutralization titer of the positive control serum. Finally, we confirmed that the difference in viral replication was abolished in type I IFN receptor knockout cell lines. In conclusion, our results demonstrate that the N588 residue of the NS1 protein is a critical amino acid that promotes viral proliferation by increasing the inhibition of ISGs expression. These insights provide a reference for studying the relationship between parvovirus-mediated inhibition of host innate immunity and viral replication while facilitating improved FPV vaccine production.IMPORTANCEFPV infection is a viral infectious disease with the highest mortality rate in felines. A universal feature of parvovirus is its ability to inhibit host innate immunity, and its ability to suppress innate immunity is mainly accomplished by the NS1 protein. In the present study, FPV was used as a viral model to explore the mechanism by which the NS1 protein inhibits innate immunity and regulates viral replication. Studies have shown that the FPV-NS1 protein containing the N588 residue strongly inhibits the expression of host ISGs, thereby increasing the viral proliferation titer. In addition, the presence of the N588 residue can increase the proliferation titer of the strain 5- to 10-fold without affecting its virulence and immunogenicity. In conclusion, our findings provide new insights and guidance for studying the mechanisms by which parvoviruses suppress innate immunity and for developing high-yielding FPV vaccines.


Asunto(s)
Virus de la Panleucopenia Felina , Proteínas no Estructurales Virales , Replicación Viral , Animales , Gatos , Línea Celular , Virus de la Panleucopenia Felina/genética , Virus de la Panleucopenia Felina/inmunología , Inmunidad Innata , Mutación , Infecciones por Parvoviridae/virología , Infecciones por Parvoviridae/inmunología , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/inmunología
6.
Proc Natl Acad Sci U S A ; 119(43): e2209405119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36251995

RESUMEN

Feline morbillivirus (FeMV) is a recently discovered pathogen of domestic cats and has been classified as a morbillivirus in the Paramyxovirus family. We determined the complete sequence of FeMVUS5 directly from an FeMV-positive urine sample without virus isolation or cell passage. Sequence analysis of the viral genome revealed potential divergence from characteristics of archetypal morbilliviruses. First, the virus lacks the canonical polybasic furin cleavage signal in the fusion (F) glycoprotein. Second, conserved amino acids in the hemagglutinin (H) glycoprotein used by all other morbilliviruses for binding and/or fusion activation with the cellular receptor CD150 (signaling lymphocyte activation molecule [SLAM]/F1) are absent. We show that, despite this sequence divergence, FeMV H glycoprotein uses feline CD150 as a receptor and cannot use human CD150. We demonstrate that the protease responsible for cleaving the FeMV F glycoprotein is a cathepsin, making FeMV a unique morbillivirus and more similar to the closely related zoonotic Nipah and Hendra viruses. We developed a reverse genetics system for FeMVUS5 and generated recombinant viruses expressing Venus fluorescent protein from an additional transcription unit located either between the phospho-protein (P) and matrix (M) genes or the H and large (L) genes of the genome. We used these recombinant FeMVs to establish a natural infection and demonstrate that FeMV causes an acute morbillivirus-like disease in the cat. Virus was shed in the urine and detectable in the kidneys at later time points. This opens the door for long-term studies to address the postulated role of this morbillivirus in the development of chronic kidney disease.


Asunto(s)
Infecciones por Morbillivirus , Morbillivirus , Aminoácidos , Animales , Catepsinas/genética , Gatos , Furina , Hemaglutininas , Humanos , Riñón , Morbillivirus/genética , Infecciones por Morbillivirus/veterinaria
7.
Retrovirology ; 21(1): 3, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347535

RESUMEN

Endogenous retroviruses (ERV) are indicators of vertebrate evolutionary history and play important roles as homeostatic regulators. ERV long terminal repeat (LTR) elements may act as cis-activating promoters or trans-activating enhancer elements modifying gene transcription distant from LTR insertion sites. We previously documented that endogenous feline leukemia virus (FeLV)-LTR copy number variation in individual cats tracks inversely with susceptibility to virulent FeLV disease. To evaluate FeLV-LTR insertion characteristics, we assessed enFeLV-LTR integration site diversity in 20 cats from three genetically distinct populations using a baited linker-mediated PCR approach. We documented 765 individual integration sites unequally represented among individuals. Only three LTR integration sites were shared among all individuals, while 412 sites were unique to a single individual. When primary fibroblast cultures were challenged with exogenous FeLV, we found significantly increased expression of both exogenous and endogenous FeLV orthologs, supporting previous findings of potential exFeLV-enFeLV interactions; however, viral challenge did not elicit transcriptional changes in genes associated with the vast majority of integration sites. This study assesses FeLV-LTR integration sites in individual animals, providing unique transposome genotypes. Further, we document substantial individual variation in LTR integration site locations, even in a highly inbred population, and provide a framework for understanding potential endogenous retroviral element position influence on host gene transcription.


Asunto(s)
Retrovirus Endógenos , Leucemia Felina , Humanos , Animales , Gatos , Virus de la Leucemia Felina/genética , Virus de la Leucemia Felina/metabolismo , Variaciones en el Número de Copia de ADN , Secuencias Repetidas Terminales , Retrovirus Endógenos/genética , Regiones Promotoras Genéticas , Leucemia Felina/genética
8.
J Gen Virol ; 105(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175184

RESUMEN

Feline calicivirus (FCV) is considered one of the major pathogens of cats worldwide and causes upper respiratory tract disease in all cats. In some cats, infection is by a highly virulent strain of FCV (vs.-FCV), which can cause severe and fatal systemic disease symptoms. At present, few antiviral drugs are approved for clinical treatment against FCV. Therefore, there is an imminent need for effective FCV antiviral agents. Here, we used observed a cytopathic effect (CPE) assay to screen 1746 traditional Chinese medicine monomer compounds and found one that can effectively inhibit FCV replication, namely, handelin, with an effective concentration (EC50) value of approximately 2.5 µM. Further study showed that handelin inhibits FCV replication via interference with heat shock protein 70 (HSP70), which is a crucial host factor and plays a positive role in regulating viral replication. Moreover, handelin and HSP70 inhibitors have broad-spectrum antiviral activity. These findings indicate that handelin is a potential candidate for the treatment of FCV infection and that HSP70 may be an important drug target.


Asunto(s)
Infecciones por Caliciviridae , Terpenos , Gatos , Animales , Evaluación Preclínica de Medicamentos , Proteínas HSP70 de Choque Térmico , Infecciones por Caliciviridae/tratamiento farmacológico , Infecciones por Caliciviridae/veterinaria
9.
J Cell Sci ; 135(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35638570

RESUMEN

As the development of combination antiretroviral therapy (cART) against human immunodeficiency virus (HIV) drastically improves the lifespan of individuals with HIV, many are now entering the prime age when Alzheimer's disease (AD)-like symptoms begin to manifest. It has been shown that hyperphosphorylated tau, a known AD pathological characteristic, is prematurely increased in the brains of HIV-infected individuals as early as in their 30s and that its levels increase with age. This suggests that HIV infection might lead to accelerated AD phenotypes. However, whether HIV infection causes AD to develop more quickly in the brain is not yet fully determined. Interestingly, we have previously revealed that the viral glycoproteins HIV gp120 and feline immunodeficiency virus (FIV) gp95 induce neuronal hyperexcitation via cGMP-dependent kinase II (cGKII; also known as PRKG2) activation in cultured hippocampal neurons. Here, we use cultured mouse cortical neurons to demonstrate that the presence of HIV gp120 and FIV gp95 are sufficient to increase cellular tau pathology, including intracellular tau hyperphosphorylation and tau release to the extracellular space. We further reveal that viral glycoprotein-induced cellular tau pathology requires cGKII activation. Taken together, HIV infection likely accelerates AD-related tau pathology via cGKII activation.


Asunto(s)
Enfermedad de Alzheimer , Infecciones por VIH , Virus de la Inmunodeficiencia Felina , Enfermedad de Alzheimer/patología , Animales , Gatos , Glicoproteínas , Virus de la Inmunodeficiencia Felina/fisiología , Ratones , Neuronas/patología , Proteínas tau/genética
10.
J Virol ; 97(8): e0068123, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37493545

RESUMEN

Feline herpesvirus type 1 (FHV-1) is an enveloped dsDNA virus belonging to the Herpesviridae family and is considered one of the two primary viral etiological factors of feline upper respiratory tract disease. In this study, we investigated the entry of FHV-1 into host cells using two models: the AK-D cell line and primary feline skin fibroblasts (FSFs). We employed confocal microscopy, siRNA silencing, and selective inhibitors of various entry pathways. Our observations revealed that the virus enters cells via pH and dynamin-dependent endocytosis, as the infection was significantly inhibited by NH4Cl, bafilomycin A1, dynasore, and mitmab. Additionally, genistein, nystatin, and filipin treatments, siRNA knock-down of caveolin-1, as well as FHV-1 and caveolin-1 colocalization suggest the involvement of caveolin-mediated endocytosis during the entry process. siRNA knock-down of clathrin heavy chain and analysis of virus particle colocalization with clathrin indicated that clathrin-mediated endocytosis also takes part in the primary cells. This is the first study to systematically examine FHV-1 entry into host cells, and for the first time, we describe FHV-1 replication in AK-D and FSFs. IMPORTANCE Feline herpesvirus 1 (FHV-1) is one of the most prevalent viruses in cats, causing feline viral rhinotracheitis, which is responsible for over half of viral upper respiratory diseases in cats and can lead to ocular lesions resulting in loss of sight. Although the available vaccine reduces the severity of the disease, it does not prevent infection or limit virus shedding. Despite the clinical relevance, the entry mechanisms of FHV-1 have not been thoroughly studied. Considering the limitations of commonly used models based on immortalized cells, we sought to verify our findings using primary feline skin fibroblasts, the natural target for infection in cats.


Asunto(s)
Enfermedades de los Gatos , Endocitosis , Infecciones por Herpesviridae , Varicellovirus , Animales , Gatos , Enfermedades de los Gatos/virología , Caveolina 1/metabolismo , Clatrina/metabolismo , Infecciones por Herpesviridae/veterinaria , ARN Interferente Pequeño/genética , Varicellovirus/metabolismo
11.
Appl Environ Microbiol ; 90(6): e0038424, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38786363

RESUMEN

Carpet cleaning guidelines currently do not include the use of an antimicrobial, except after a bodily fluid event. To address this gap, we compared the efficacy of three antimicrobials-two hydrogen peroxide-based (H2O2) products (A and B) and one chlorine-based product (C)-and a steam treatment against two norovirus surrogates, specifically feline calicivirus (FCV) and Tulane virus (TuV). These tests were performed on nylon carpets with either water-permeable or waterproof backing types. The effect of repeated antimicrobial use on carpet properties was also evaluated. For a carpet with water-permeable backing, products A, B, and C achieved a 0.8, 3.1, and 0.9 log10 PFU/coupon reduction of FCV and 0.3, 2.5, and 0.4 log10 TCID50/coupon reduction of TuV, respectively, following a 30 min contact time. For carpet with waterproof backing, only product B achieved a 5.0 log10 PFU/coupon reduction of FCV and >3.0 log10 TCID50/coupon reduction of TuV, whereas products A and C achieved a 2.4 and 1.6 log10 PFU/coupon reduction of FCV and a 1.2 and 1.2 log10 TCID50/coupon reduction of TuV, respectively. Steam treatment achieved a ≥ 5.2 log10 PFU/coupon reduction of FCV and a > 3.2 log10 TCID50/coupon reduction of TuV in 15 seconds on the carpet with both backing types. The repeated use of products A and B decreased the tensile strength of the carpet backing, while use of product B resulted in cracks on carpet fibers. Overall, steam treatment for 15 seconds was efficacious on both carpet types, but only product B achieved efficacy after a 30-minute exposure on the carpet with waterproof backing.IMPORTANCECarpets are common in long-term care facilities, despite its potential as a vehicle for transmission of agents associated with healthcare-associated infections, including human norovirus (NoV). Presently, our understanding of carpet disinfection is limited; hence, there are no commercial antimicrobials against norovirus available for use on carpets. Our findings showed that steam treatment, which minimally affected the properties of carpet fibers and backing, was more efficacious against human norovirus surrogates on carpets compared to the three chemical antimicrobials tested. Additionally, the two surrogates were more sensitive to chemical antimicrobials on the carpet with waterproof backing compared to carpets with water-permeable backing. These findings can inform development of antimicrobials for use on carpets contaminated with human norovirus.


Asunto(s)
Norovirus , Vapor , Norovirus/efectos de los fármacos , Calicivirus Felino/efectos de los fármacos , Animales , Desinfectantes/farmacología , Nylons/farmacología , Antiinfecciosos/farmacología , Humanos , Desinfección/métodos , Peróxido de Hidrógeno/farmacología , Estados Unidos , Pisos y Cubiertas de Piso , United States Environmental Protection Agency , Carpas
12.
J Med Virol ; 96(4): e29565, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558056

RESUMEN

Group A rotaviruses (RVAs) are generally highly species-specific; however, some strains infect across species. Feline RVAs sporadically infect humans, causing gastroenteritis. In 2012 and 2013, rectal swab samples were collected from 61 asymptomatic shelter cats at a public health center in Mie Prefecture, Japan, to investigate the presence of RVA and any association with human infections. The analysis identified G6P[9] strains in three cats and G3P[9] strains in two cats, although no feline RVA sequence data were available for the former. A whole-genome analysis of these G6P[9] strains identified the genotype constellation G6-P[9]-I2-R2-C2-M2-A3-N2-T3-E3-H3. The nucleotide identity among these G6P[9] strains exceeded 99.5% across all 11 gene segments, indicating the circulation of this G6P[9] strain among cats. Notably, strain RVA/Human-wt/JPN/KF17/2010/G6P[9], previously detected in a 3-year-old child with gastroenteritis, shares high nucleotide identity (>98%) with Mie20120017f, the representative G6P[9] strain in this study, across all 11 gene segments, confirming feline RVA infection and symptomatic presentation in this child. The VP7 gene of strain Mie20120017f also shares high nucleotide identity with other sporadically reported G6 RVA strains in humans. This suggests that feline-origin G6 strains as the probable source of these sporadic G6 RVA strains causing gastroenteritis in humans globally. Moreover, a feline-like human G6P[8] strain circulating in Brazil in 2022 was identified, emphasizing the importance of ongoing surveillance to monitor potential global human outbreaks of RVA.


Asunto(s)
Gastroenteritis , Infecciones por Rotavirus , Rotavirus , Gatos , Humanos , Animales , Preescolar , Rotavirus/genética , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/veterinaria , Infecciones por Rotavirus/genética , Genoma Viral , Filogenia , Gastroenteritis/epidemiología , Gastroenteritis/veterinaria , Gastroenteritis/genética , Genotipo , Brotes de Enfermedades , Nucleótidos
13.
Microb Pathog ; : 106765, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38944215

RESUMEN

Close contact between cats and humans increases the risk of transmission of zoonotic pathogens, through bites and scratches due to the complexity of microorganisms in the oral and nail microbiotas of felines. This study investigated the presence of bacteria and fungi in the oral cavity and claws of 100 apparently healthy cats using conventional and selective microbiological culture media, and next-generation sequencing (NGS) and mass spectrometry (MALDI-TOF MS). Furthermore, antimicrobial susceptibility testing of bacteria isolates was performed by disc diffusion method. In total, 671 bacteria and 33 yeasts were identified by MALDI-TOF MS. Neisseria animaloris (10.8%), Staphylococcus felis (8.5%), and Pasteurella multocida (7%) were the most prevalent bacteria in oral cavity samples (n=343), while the most common yeast (n=19) was Candida albicans (68.4%). Staphylococcus pettenkoferi (13.4%), Staphylococcus felis (6.4%), and Staphylococcus simulans (5.8%) were the prevalent bacteria identified in the claw samples (n=328), while Rhodotorula mucilaginosa (57.2%) was the most common yeast (n=14). NGS predominantly identified the genera Moraxella, Neisseria, Pasteurella, and Fusobacterium in oral cavity samples, whereas enterobacteria and staphylococci were prevalent in nail bed samples. In addition, the genera Capnocytophaga and Bartonella were identified, which have been described in serious human infections secondary to feline aggressions. Levofloxacin, marbofloxacin, and amoxicillin/clavulanic acid were the most effective drugs against the main groups of bacteria identified. Multidrug resistance was observed in 17% of the bacterial isolates. Furthermore, three staphylococci harboring the methicillin resistance gene mecA were identified. We highlight the complexity of microorganisms inhabiting the oral/claw microbiotas of cats, the high resistance rate of the isolates to conventional antimicrobial agents, and the zoonotic risk of aggressions caused by bites and scratches from domestic cats.

14.
Virol J ; 21(1): 2, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172898

RESUMEN

Only few studies have investigated the prevalence of feline coronavirus (FCoV) infection in domestic cats in Fujian, China. This is the first study to report the prevalence rate of FCoV infection in domestic cats in Fujian, China, and to analyse the epidemiological characteristics of FCoV infection in the region. A total of 112 cat faecal samples were collected from animal hospitals and catteries in the Fujian Province. RNA was extracted from faecal material for reverse transcription polymerase chain reaction (RT-PCR). The prevalence rate of FCoV infection was determined, and its epidemiological risk factors were analysed. The overall prevalence of FCoV infection in the cats, was 67.9%. We did not observe a significant association between the age, sex, or breed of the cats included in the study and the prevalence rate of the viral infection. Phylogenetic analysis showed that the four strains from Fujian were all type I FCoV. This is the first study to analyse the prevalence and epidemiological characteristics of FCoV infection in domestic cats in Fujian, China, using faecal samples. The results of this study provide preliminary data regarding the prevalence of FCoV infection in the Fujian Province for epidemiological studies on FCoV in China and worldwide. Future studies should perform systematic and comprehensive epidemiological investigations to determine the prevalence of FCoV infection in the region.


Asunto(s)
Infecciones por Coronavirus , Coronavirus Felino , Peritonitis Infecciosa Felina , Gatos , Animales , Peritonitis Infecciosa Felina/epidemiología , Peritonitis Infecciosa Felina/genética , Prevalencia , Filogenia , ARN Viral/genética , ARN Viral/análisis , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Coronavirus Felino/genética , China/epidemiología
15.
Virol J ; 21(1): 50, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414028

RESUMEN

Feline calicivirus (FCV) is a highly contagious virus in cats, which typically causes respiratory tract and oral infections. Despite vaccination against FCV being a regular practice in China, new FCV cases still occur. Antigenic diversity of FCV hinders the effective control by vaccination. This is first report which aims to investigate the molecular epidemiology and molecular characteristics of FCV in Kunshan, China. The nasopharyngeal swabs were collected from cats showing variable clinical signs from different animal clinics in Kunshan from 2022 to 2023. Preliminary detection and sequencing of the FCV capsid gene were performed to study genetic diversity and evolutionary characteristics. FCV-RNA was identified in 52 (26%) of the samples using RT-PCR. A significant association was found between FCV-positive detection rate, age, gender, vaccination status and living environment, while a non-significant association was found with breed of cats. Nucleotide analysis revealed two genotypes, GI and GII. GII predominated in Kunshan, with diverse strains and amino acid variations potentially affecting vaccination efficacy and FCV detection. Notably, analysis pinpointed certain strains' association with FCV-virulent systemic disease pathotypes. This investigation sheds light on FCV dynamics, which may aid in developing better prevention strategies and future vaccine designs against circulating FCV genotypes.


Asunto(s)
Infecciones por Caliciviridae , Calicivirus Felino , Enfermedades de los Gatos , Gatos , Animales , Filogenia , Calicivirus Felino/genética , Epidemiología Molecular , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/veterinaria , Proteínas de la Cápside/genética , ARN , Enfermedades de los Gatos/epidemiología
16.
Virol J ; 21(1): 115, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778352

RESUMEN

BACKGROUND: Feline herpesvirus type 1 (FHV-1) is a life threatening highly contagious virus in cats and typically causes upper respiratory tract infections as well as conjunctival and corneal ulcers. Genetic variability could alter the severity of diseases and clinical signs. Despite regular vaccine practices against FHV-1 in China, new FHV-1 cases still commonly occur. The genetic and phylogenetic characteristics of FHV-1 in Kunshan city of China has not been studied yet. Therefore, this study was planned to investigate the prevalence, molecular characteristics of circulating strains, and phylogenetic analyses of FHV-1. This is the first report of molecular epidemiology and phylogenetic characteristics of FHV-1 from naturally infected cats in Kunshan, China. METHODS: The occulo-nasal swabs were collected from diseased cats showing respiratory distress, conjunctivitis, and corneal ulcers at different veterinary clinics in Kunshan from 2022 to 2023. Clinical data and general information were recorded. Swab samples were processed for preliminary detection of FHV-1. Thymidine kinase (TK), glycoprotein B (gB) and glycoprotein D (gD) genes were sequenced and analyzed to investigate genetic diversity and evolution of FHV-1. RESULTS: The FHV-1 genome was detected in 43 (43/200, 21.5%) samples using RT-PCR targeting the TK gene. Statistical analysis showed a significant correlation between age, vaccination status and living environment (p < 0.05) with FHV-1 positivity, while a non-significant correlation was observed for FHV-1 positivity and sex of cats (p > 0.05). Additionally, eight FHV-1 positive cats were co-infected with feline calicivirus (8/43,18.6%). FHV-1 identified in the present study was confirmed as FHV-1 based on phylogenetic analyses. The sequence analyses revealed that 43 FHV-1 strains identified in the present study did not differ much with reference strains within China and worldwide. A nucleotide homology of 99-100% was determined among gB, TK and gD genes nucleotide sequences when compared with standard strain C-27 and vaccine strains. Amino acid analysis showed some amino acid substitutions in TK, gB and gD protein sequences. A potential N-linked glycosylation site was observed in all TK protein sequences. Phylogenetic analyses revealed minor variations and short evolutionary distance among FHV-1 strains detected in this study. CONCLUSIONS: Our findings indicate that genomes of 43 FHV-1 strains are highly homogenous and antigenically similar, and the degree of variation in major envelope proteins between strains is low. This study demonstrated some useful data about prevalence, genetic characteristics, and evolution of FHV-1 in Kunshan, which may aid in future vaccine development.


Asunto(s)
Enfermedades de los Gatos , Variación Genética , Infecciones por Herpesviridae , Epidemiología Molecular , Filogenia , Varicellovirus , Animales , Gatos , China/epidemiología , Enfermedades de los Gatos/virología , Enfermedades de los Gatos/epidemiología , Infecciones por Herpesviridae/epidemiología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Varicellovirus/genética , Varicellovirus/clasificación , Femenino , Masculino , Prevalencia
17.
Br J Nutr ; 131(12): 1947-1961, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418414

RESUMEN

Intracellular levels of glutathione, the major mammalian antioxidant, are reported to decline with age in several species. To understand whether ageing affects circulating glutathione levels in cats, blood was sampled from two age groups, < 3 years and > 9 years. Further, to determine whether dietary supplementation with glutathione precursor glycine (GLY) affects glutathione concentrations in senior cats (> 8 years), a series of free GLY inclusion level dry diets were fed. Subsequently, a 16-week GLY feeding study was conducted in senior cats (> 7 years), measuring glutathione, and markers of oxidative stress. Whole blood and erythrocyte total, oxidised and reduced glutathione levels were significantly decreased in senior cats, compared with their younger counterparts (P ≤ 0·02). The inclusion level study identified 1·5 % free GLY for the subsequent dry diet feeding study. Significant increases in erythrocyte total and reduced glutathione were observed between senior cats fed supplemented and control diets at 4 weeks (P ≤ 0·03; maximum difference of 1·23 µM). Oxidative stress markers were also significantly different between groups at 8 (P = 0·004; difference of 0·68 nG/ml in 8-hydroxy-2'-deoxyguanosine) and 12 weeks (P ≤ 0·049; maximum difference of 0·62 nG/mG Cr in F2-isoprostane PGF2α). Senior cats have lower circulating glutathione levels compared with younger cats. Feeding senior cats a complete and balanced dry diet supplemented with 1·5 % free GLY for 12 weeks elevated initial erythrocyte glutathione and altered markers of oxidative stress. Dietary supplementation with free GLY provides a potential opportunity to restore age-associated reduction in glutathione in cats.


Asunto(s)
Envejecimiento , Suplementos Dietéticos , Eritrocitos , Glutatión , Glicina , Estrés Oxidativo , Animales , Estrés Oxidativo/efectos de los fármacos , Gatos , Glutatión/sangre , Glicina/sangre , Masculino , Eritrocitos/metabolismo , Femenino , Biomarcadores/sangre , Alimentación Animal/análisis , Antioxidantes/análisis , Dieta/veterinaria , Dinoprost/análogos & derivados , Dinoprost/sangre
18.
Br J Nutr ; 131(10): 1786-1802, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38291971

RESUMEN

Different starch-to-protein ratios were compared among neutered and spayed domiciled cats. Male and female obese and non-obese cats were fed kibble diets ad libitum for 4 months high in starch (HS (38 % crude protein (CP)): starch 32 %, protein 38 %; DM basis) or high in protein (HP (55 % CP): starch 19 %, protein 55 %) but similar in energy and fat in a crossover design. Physical activity was evaluated using an accelerometer, and body composition (BC), energy expenditure (EE) and water turnover (WT) using the doubly labelled water method. Results were compared in a 2 diet × 2 sex × 2 body condition factorial arrangement. Cats fed the HS (38 % CP) diet maintained a constant body weight, but lean mass (LM) tended to be reduced in female obese but to be increased in male non-obese (P < 0·08) and increased in female non-obese cats (P = 0·01). The HP (55 % CP) diet induced an increase in cat body weight and LM (P < 0·05) without altering BC proportion. EE tended to be higher in males (351 (se 8) kJ/kg0·67/d) than females (330 (se 8) kJ/kg0·67/d; P = 0·06), was unaffected by diet or BC, decreased as age increased (R 2 0·44; P < 0·01) and increased as physical activity increased (R 2 0·58; P < 0·01). WT was higher for the HP (55 % CP) diet (P < 0·01) and increased with EE (R 2 0·65; P < 0·01). The HS (38 % CP) diet favoured body weight control during 4 months of ad libitum feeding. Caution is necessary to balance protein in diets of female obese cats over 5 years, as they may have low energy and food intake, with LM loss.


Asunto(s)
Composición Corporal , Estudios Cruzados , Metabolismo Energético , Obesidad , Almidón , Animales , Gatos , Femenino , Masculino , Almidón/administración & dosificación , Peso Corporal , Ovariectomía , Proteínas en la Dieta/administración & dosificación , Dieta/veterinaria , Alimentación Animal/análisis , Carbohidratos de la Dieta/administración & dosificación
19.
Environ Res ; 242: 117665, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37993051

RESUMEN

In this investigation, the presence of antibiotics and pharmaceuticals in Costa Rican surface waters, specifically in regions near feline habitats, was examined. The study revealed that 47% of the water samples contained detectable traces of at least one antibiotic. Ciprofloxacin and norfloxacin were the most frequently detected compounds, each with a detection rate of 27%. Other antibiotics, such as erythromycin, roxithromycin, and trimethoprim, were also found but at lower frequencies, around 14%. Notably, all antibiotic concentrations remained below 10 ng/L, with ciprofloxacin, norfloxacin, and erythromycin showing the highest concentrations. Furthermore, the investigation revealed the presence of non-antibiotic pharmaceutical residues in the water samples, typically at concentrations below 64 ng/L. Tramadol was the most frequently detected compound, present in 18% of the samples. The highest concentrations were observed for acetaminophen and tramadol, measuring 64 and 10 ng/L, respectively. Comparing these findings with studies conducted in treated wastewater and urban rivers, it became evident that the concentrations of antibiotics and pharmaceuticals were notably lower in this study. While previous research reported higher values, the limited number of studies conducted in protected areas raises concerns about the potential environmental impact on biodiversity. In summary, these results emphasize the importance of monitoring pharmaceutical residues and antimicrobial resistance genes ARGs in vulnerable ecosystems, especially those in close proximity to feline habitats in Costa Rica. Additionally, the study delved into the detection of (ARGs). All tested water samples were positive for at least one ARG, with the blaTEM gene being the most prevalent at 82%, followed by tetS at 64% and qnrB at 23%. Moreover, this research shed light on the complexity of evaluating ARGs in environmental samples, as their presence does not necessarily indicate their expression. It also highlighted the potential for co-selection and co-regulation of ARGs, showcasing the intricate behaviors of these genes in aquatic environments.


Asunto(s)
Roxitromicina , Tramadol , Contaminantes Químicos del Agua , Gatos , Animales , Antibacterianos/farmacología , Antibacterianos/análisis , Costa Rica , Farmacorresistencia Bacteriana , Norfloxacino , Ecosistema , Ciprofloxacina , Preparaciones Farmacéuticas , Agua , Ríos/química , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis
20.
BMC Vet Res ; 20(1): 211, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762728

RESUMEN

Beneficial weight-loss properties of glucagon-like peptide-1 receptor agonists (GLP-1RA) in obese people, with corresponding improvements in cardiometabolic risk factors, are well established. OKV-119 is an investigational drug delivery system that is being developed for the long-term delivery of the GLP-1RA exenatide to feline patients. The purpose of this study was to evaluate the drug release characteristics of subcutaneous OKV-119 implants configured to release exenatide for 84 days. Following a 7-day acclimation period, five purpose-bred cats were implanted with OKV-119 protypes and observed for a 112-day study period. Food intake, weekly plasma exenatide concentrations and body weight were measured. Exenatide plasma concentrations were detected at the first measured timepoint (Day 7) and maintained above baseline for over 84 Days. Over the first 28 days, reduced caloric intake and a reduction in body weight were observed in four of five cats. In these cats, a body weight reduction of at least 5% was maintained throughout the 112-day study period. This study demonstrates that a single OKV-119 implant can deliver the GLP-1RA exenatide for a months long duration. Results suggest that exposure to exenatide plasma concentrations ranging from 1.5 ng/ml to 4 ng/ml are sufficient for inducing weight loss in cats.


Asunto(s)
Exenatida , Animales , Exenatida/administración & dosificación , Exenatida/farmacocinética , Exenatida/farmacología , Gatos , Masculino , Femenino , Sistemas de Liberación de Medicamentos/veterinaria , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacocinética , Peso Corporal , Liberación de Fármacos , Implantes de Medicamentos , Ingestión de Alimentos/efectos de los fármacos , Ponzoñas/administración & dosificación , Ponzoñas/farmacocinética , Receptor del Péptido 1 Similar al Glucagón/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA