Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 170(5): 875-888.e20, 2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28757253

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal human malignancies, owing in part to its propensity for metastasis. Here, we used an organoid culture system to investigate how transcription and the enhancer landscape become altered during discrete stages of disease progression in a PDA mouse model. This approach revealed that the metastatic transition is accompanied by massive and recurrent alterations in enhancer activity. We implicate the pioneer factor FOXA1 as a driver of enhancer activation in this system, a mechanism that renders PDA cells more invasive and less anchorage-dependent for growth in vitro, as well as more metastatic in vivo. In this context, FOXA1-dependent enhancer reprogramming activates a transcriptional program of embryonic foregut endoderm. Collectively, our study implicates enhancer reprogramming, FOXA1 upregulation, and a retrograde developmental transition in PDA metastasis.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 3-alfa del Hepatocito/genética , Neoplasias Pancreáticas/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Epigenómica , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Organoides/metabolismo , Páncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología
2.
Mol Cell ; 84(2): 244-260.e7, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38101414

RESUMEN

Eukaryotic DNA is packaged into chromatin in the nucleus, restricting the binding of transcription factors (TFs) to their target DNA sites. FOXA1 functions as a pioneer TF to bind condensed chromatin and initiate the opening of local chromatin for gene expression. However, the principles of FOXA1 recruitment and how it subsequently unpacks the condensed chromatin remain elusive. Here, we revealed that FOXA1 intrinsically forms submicron-sized condensates through its N- and C-terminal intrinsically disordered regions (IDRs). Notably, both IDRs enable FOXA1 to dissolve the condensed chromatin. In addition, the DNA-binding capacity of FOXA1 contributes to its ability to both form condensates and dissolve condensed chromatin. Further genome-wide investigation showed that IDRs enable FOXA1 to bind and unpack the condensed chromatin to regulate the proliferation and migration of breast cancer cells. This work provides a principle of how pioneer TFs function to initiate competent chromatin states using their IDRs.


Asunto(s)
Condensados Biomoleculares , Cromatina , Factor Nuclear 3-alfa del Hepatocito , Cromatina/genética , Ensamble y Desensamble de Cromatina , ADN , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Heterocromatina , Humanos
3.
Mol Cell ; 84(16): 3061-3079.e10, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39121853

RESUMEN

Mouse FOXA1 and GATA4 are prototypes of pioneer factors, initiating liver cell development by binding to the N1 nucleosome in the enhancer of the ALB1 gene. Using cryoelectron microscopy (cryo-EM), we determined the structures of the free N1 nucleosome and its complexes with FOXA1 and GATA4, both individually and in combination. We found that the DNA-binding domains of FOXA1 and GATA4 mainly recognize the linker DNA and an internal site in the nucleosome, respectively, whereas their intrinsically disordered regions interact with the acidic patch on histone H2A-H2B. FOXA1 efficiently enhances GATA4 binding by repositioning the N1 nucleosome. In vivo DNA editing and bioinformatics analyses suggest that the co-binding mode of FOXA1 and GATA4 plays important roles in regulating genes involved in liver cell functions. Our results reveal the mechanism whereby FOXA1 and GATA4 cooperatively bind to the nucleosome through nucleosome repositioning, opening chromatin by bending linker DNA and obstructing nucleosome packing.


Asunto(s)
Microscopía por Crioelectrón , Factor de Transcripción GATA4 , Factor Nuclear 3-alfa del Hepatocito , Nucleosomas , Unión Proteica , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , Nucleosomas/metabolismo , Nucleosomas/genética , Nucleosomas/ultraestructura , Animales , Factor de Transcripción GATA4/metabolismo , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/química , Ratones , Cromatina/metabolismo , Cromatina/genética , Histonas/metabolismo , Histonas/genética , Histonas/química , Sitios de Unión , ADN/metabolismo , ADN/genética , ADN/química , Ensamble y Desensamble de Cromatina , Humanos
4.
Mol Cell ; 75(1): 154-171.e5, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31056445

RESUMEN

The epigenetic information present in mammalian gametes and whether it is transmitted to the progeny are relatively unknown. We find that many promoters in mouse sperm are occupied by RNA polymerase II (Pol II) and Mediator. The same promoters are accessible in GV and MII oocytes and preimplantation embryos. Sperm distal ATAC-seq sites containing motifs for various transcription factors are conserved in monkeys and humans. ChIP-seq analyses confirm that Foxa1, ERα, and AR occupy distal enhancers in sperm. Accessible sperm enhancers containing H3.3 and H2A.Z are also accessible in oocytes and preimplantation embryos. Furthermore, their interactions with promoters in the gametes persist during early development. Sperm- or oocyte-specific interactions mediated by CTCF and cohesin are only present in the paternal or maternal chromosomes, respectively, in the zygote and 2-cell stages. These interactions converge in both chromosomes by the 8-cell stage. Thus, mammalian gametes contain complex patterns of 3D interactions that can be transmitted to the zygote after fertilization.


Asunto(s)
Factor de Unión a CCCTC/genética , Factor Nuclear 3-beta del Hepatocito/genética , Oocitos/metabolismo , Espermatozoides/metabolismo , Cigoto/metabolismo , Animales , Secuencia de Bases , Factor de Unión a CCCTC/metabolismo , Cromatina/química , Cromatina/metabolismo , Secuencia Conservada , Embrión de Mamíferos , Desarrollo Embrionario/genética , Elementos de Facilitación Genéticos , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 3-beta del Hepatocito/metabolismo , Humanos , Macaca mulatta , Masculino , Ratones , Oocitos/citología , Oocitos/crecimiento & desarrollo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Homología de Secuencia de Ácido Nucleico , Espermatozoides/citología , Espermatozoides/crecimiento & desarrollo , Dedos de Zinc/genética , Cigoto/citología , Cigoto/crecimiento & desarrollo
5.
Proc Natl Acad Sci U S A ; 120(33): e2220472120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549269

RESUMEN

Dysregulation of histone lysine methyltransferases and demethylases is one of the major mechanisms driving the epigenetic reprogramming of transcriptional networks in castration-resistant prostate cancer (CRPC). In addition to their canonical histone targets, some of these factors can modify critical transcription factors, further impacting oncogenic transcription programs. Our recent report demonstrated that LSD1 can demethylate the lysine 270 of FOXA1 in prostate cancer (PCa) cells, leading to the stabilization of FOXA1 chromatin binding. This process enhances the activities of the androgen receptor and other transcription factors that rely on FOXA1 as a pioneer factor. However, the identity of the methyltransferase responsible for FOXA1 methylation and negative regulation of the FOXA1-LSD1 oncogenic axis remains unknown. SETD7 was initially identified as a transcriptional activator through its methylation of histone 3 lysine 4, but its function as a methyltransferase on nonhistone substrates remains poorly understood, particularly in the context of PCa progression. In this study, we reveal that SETD7 primarily acts as a transcriptional repressor in CRPC cells by functioning as the major methyltransferase targeting FOXA1-K270. This methylation disrupts FOXA1-mediated transcription. Consistent with its molecular function, we found that SETD7 confers tumor suppressor activity in PCa cells. Moreover, loss of SETD7 expression is significantly associated with PCa progression and tumor aggressiveness. Overall, our study provides mechanistic insights into the tumor-suppressive and transcriptional repression activities of SETD7 in mediating PCa progression and therapy resistance.


Asunto(s)
Histonas , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Histonas/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Lisina/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Metiltransferasas/metabolismo , Histona Demetilasas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo
6.
Cell Mol Life Sci ; 81(1): 160, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564048

RESUMEN

The androgen receptor (AR) is a primary target for treating prostate cancer (PCa), forming the bedrock of its clinical management. Despite their efficacy, resistance often hampers AR-targeted therapies, necessitating new strategies against therapy-resistant PCa. These resistances involve various mechanisms, including AR splice variant overexpression and altered activities of transcription factors like the glucocorticoid receptor (GR) and FOXA1. These factors rely on common coregulators, such as EP300/CREBBP, suggesting a rationale for coregulator-targeted therapies. Our study explores EP300/CREBBP acetyltransferase inhibition's impact on steroid receptor and FOXA1 signaling in PCa cells using genome-wide techniques. Results reveal that EP300/CREBBP inhibition significantly disrupts the AR-regulated transcriptome and receptor chromatin binding by reducing the AR-gene expression. Similarly, GR's regulated transcriptome and receptor binding were hindered, not linked to reduced GR expression but to diminished FOXA1 chromatin binding, restricting GR signaling. Overall, our findings highlight how EP300/CREBBP inhibition distinctively curtails oncogenic transcription factors' signaling, suggesting the potential of coregulatory-targeted therapies in PCa.


Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/genética , Receptores de Glucocorticoides/genética , Factores de Transcripción , Cromatina , Acetiltransferasas , Factor Nuclear 3-alfa del Hepatocito/genética , Proteína p300 Asociada a E1A/genética , Proteína de Unión a CREB/genética
7.
Prostate ; 84(10): 967-976, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38632701

RESUMEN

BACKGROUND: Ribosome biogenesis is excessively activated in tumor cells, yet it is little known whether oncogenic transcription factors (TFs) are involved in the ribosomal RNA (rRNA) transactivation. METHODS: Nucleolar proteomics data and large-scale immunofluorescence were re-analyzed to jointly identify the proteins localized at nucleolus. RNA-Seq data of five prostate cancer (PCa) cohorts were combined and integrated with multi-dimensional data to define the upregulated nucleolar TFs in PCa tissues. Then, ChIP-Seq data of PCa cell lines and two PCa clinical cohorts were re-analyzed to reveal the TF binding patterns at ribosomal DNA (rDNA) repeats. The TF binding at rDNA was validated by ChIP-qPCR. The effect of the TF on rRNA transcription was determined by rDNA luciferase reporter, nascent RNA synthesis, and global protein translation assays. RESULTS: In this study, we reveal the role of oncogenic TF FOXA1 in regulating rRNA transcription within nucleolar organization regions. By analyzing human TFs in prostate cancer clinical datasets and nucleolar proteomics data, we identified that FOXA1 is partially localized in the nucleolus and correlated with global protein translation. Our extensive FOXA1 ChIP-Seq analysis provides robust evidence of FOXA1 binding across rDNA repeats in prostate cancer cell lines, primary tumors, and castration-resistant variants. Notably, FOXA1 occupancy at rDNA repeats correlates with histone modifications associated with active transcription, namely H3K27ac and H3K4me3. Reducing FOXA1 expression results in decreased transactivation at rDNA, subsequently diminishing global protein synthesis. CONCLUSIONS: Our results suggest FOXA1 regulates aberrant ribosome biogenesis downstream of oncogenic signaling in prostate cancer.


Asunto(s)
Factor Nuclear 3-alfa del Hepatocito , Neoplasias de la Próstata , ARN Ribosómico , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Ribosómico/biosíntesis , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , Línea Celular Tumoral , Transcripción Genética , Regulación Neoplásica de la Expresión Génica , Nucléolo Celular/metabolismo
8.
Development ; 148(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34323272

RESUMEN

During positive selection at the transition from CD4+CD8+ double-positive (DP) to single-positive (SP) thymocyte, TCR signalling results in appropriate MHC restriction and signals for survival and progression. We show that the pioneer transcription factors Foxa1 and Foxa2 are required to regulate RNA splicing during positive selection of mouse T cells and that Foxa1 and Foxa2 have overlapping/compensatory roles. Conditional deletion of both Foxa1 and Foxa2 from DP thymocytes reduced positive selection and development of CD4SP, CD8SP and peripheral naïve CD4+ T cells. Foxa1 and Foxa2 regulated the expression of many genes encoding splicing factors and regulators, including Mbnl1, H1f0, Sf3b1, Hnrnpa1, Rnpc3, Prpf4b, Prpf40b and Snrpd3. Within the positively selecting CD69+DP cells, alternative RNA splicing was dysregulated in the double Foxa1/Foxa2 conditional knockout, leading to >850 differentially used exons. Many genes important for this stage of T-cell development (Ikzf1-3, Ptprc, Stat5a, Stat5b, Cd28, Tcf7) and splicing factors (Hnrnpab, Hnrnpa2b1, Hnrnpu, Hnrnpul1, Prpf8) showed multiple differentially used exons. Thus, Foxa1 and Foxa2 are required during positive selection to regulate alternative splicing of genes essential for T-cell development, and, by also regulating splicing of splicing factors, they exert widespread control of alternative splicing.


Asunto(s)
Empalme Alternativo/genética , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/genética , Empalme del ARN/genética , Timocitos/fisiología , Animales , Exones/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factores de Empalme de ARN/genética , Linfocitos T/fisiología , Timo/fisiología
9.
Development ; 148(6)2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33658226

RESUMEN

Groucho-related genes (GRGs) are transcriptional co-repressors that are crucial for many developmental processes. Several essential pancreatic transcription factors are capable of interacting with GRGs; however, the in vivo role of GRG-mediated transcriptional repression in pancreas development is still not well understood. In this study, we used complex mouse genetics and transcriptomic analyses to determine that GRG3 is essential for ß cell development, and in the absence of Grg3 there is compensatory upregulation of Grg4Grg3/4 double mutant mice have severe dysregulation of the pancreas gene program with ectopic expression of canonical liver genes and Foxa1, a master regulator of the liver program. Neurod1, an essential ß cell transcription factor and predicted target of Foxa1, becomes downregulated in Grg3/4 mutants, resulting in reduced ß cell proliferation, hyperglycemia, and early lethality. These findings uncover novel functions of GRG-mediated repression during pancreas development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas Co-Represoras/genética , Factor Nuclear 3-alfa del Hepatocito/genética , Páncreas/crecimiento & desarrollo , Proteínas Represoras/genética , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Células Secretoras de Insulina/metabolismo , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Ratones , Mutación/genética , Organogénesis/genética , Páncreas/metabolismo
10.
Ann Surg Oncol ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269634

RESUMEN

BACKGROUND: Whether radiation should be added to neoadjuvant treatment remains controversial, and liquid biopsy has not been reported to predict radioresistance in pancreatic cancer (PC). We aimed to identify microRNAs (miRNAs) governing radioresistance in PC by utilizing peripheral plasma exosome samples and to verify their usefulness as biomarkers. METHODS: miRNA microarray analysis was conducted using pretreatment peripheral plasma exosomes from 10 patients with PC receiving neoadjuvant chemoradiotherapy (NACRT) in the discovery cohort. Patients were categorized into two groups (good and poor responders) based on treatment responses, and candidate miRNAs exhibiting differential expression between the two groups were identified. The radiosensitivity of PC cells was examined after miR-6855-5p overexpression. Next-generation sequencing (NGS) and TargetScan were used to explore the mechanisms of radioresistance. We investigated the correlation between miR-6855-5p expression levels in the pretreatment peripheral plasma exosomes of 28 patients in the validation cohort and the response to NACRT. RESULTS: miR-6855-5p expression was higher in poor responders than in good responders. miR-6855-5p induces radioresistance in PC cells. NGS showed that epithelial-mesenchymal transition (EMT) was involved in miR-6855-5p-related radioresistance. Forkhead box protein A1 (FOXA1) was identified as a direct target of miR-6855-5p using NGS and TargetScan. Clinical examination of samples from the validation cohort revealed a tendency for patients with higher expression of miR-6855-5p in peripheral plasma exosomes to exhibit increased radioresistance (r = -0.5964). CONCLUSIONS: miR-6855-5p regulates the radioresistance of PC by inducing EMT via suppressing FOXA1, and miR-6855-5p in peripheral plasma exosomes may be a biomarker for radioresistance of PC.

11.
Cell Biol Int ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080995

RESUMEN

Peripheral nerve injury (PNI) often leads to significant functional impairment. Here, we investigated the impact of epidermal growth factor-like domain-containing protein 7 (EGFL7) on angiogenesis and nerve regeneration following PNI. Using a sciatic nerve injury model, we assessed nerve function using the sciatic nerve function index. We analyzed the expression levels of EGFL7, forkhead box proteins A1 (FOXA1), nerve growth factor (NGF), brain-derived neurotrophic factors (BDNF), Neurofilament 200 (NF200), myelin protein zero (P0), cell adhesion molecule 1 (CD31), vascular endothelial growth factor (VEGF), and NOTCH-related proteins in tissues and cells. Cell proliferation, migration, and angiogenesis were evaluated through cell counting kit assays, 5-ethynyl-2'deoxyuridine staining, and Transwell assays. We investigated the binding of FOXA1 to the EGFL7 promoter using dual-luciferase assays and chromatin immunoprecipitation. We observed decreased EGFL7 expression and increased FOXA1 expression in PNI, and EGFL7 overexpression alleviated gastrocnemius muscle atrophy, increased muscle weight, and improved motor function. Additionally, EGFL7 overexpression enhanced Schwann cell and endothelial cell proliferation and migration, promoted tube formation, and upregulated NGF, BDNF, NF200, P0, CD31, and VEGF expression. FOXA1 was found to bind to the EGFL7 promoter region, inhibiting EGFL7 expression and activating the NOTCH signaling pathway. Notably, FOXA1 overexpression counteracted the effects of EGFL7 on Schwann cells and endothelial cells. In conclusion, EGFL7 holds promise as a therapeutic molecule for treating sciatic nerve injury.

12.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39000600

RESUMEN

Women with type 2 diabetes (T2D) have a higher risk of being diagnosed with breast cancer and have worse survival than non-diabetic women if they do develop breast cancer. However, more research is needed to elucidate the biological underpinnings of these relationships. Here, we found that forkhead box A1 (FOXA1), a forkhead family transcription factor, and metformin (1,1-dimethylbiguanide hydrochloride), a medication used to treat T2D, may impact hormone-receptor-positive (HR+) breast cancer (BC) tumor cell growth and metastasis. Indeed, fourteen diabetes-associated genes are highly expressed in only three HR+ breast cancer cell lines but not the other subtypes utilizing a 53,805 gene database obtained from NCBI GEO. Among the diabetes-related genes, FOXA1, MTA3, PAK4, FGFR3, and KIF22 were highly expressed in HR+ breast cancer from 4032 breast cancer patient tissue samples using the Breast Cancer Gene Expression Omnibus. Notably, elevated FOXA1 expression correlated with poorer overall survival in patients with estrogen-receptor-positive/progesterone-receptor-positive (ER+/PR+) breast cancer. Furthermore, experiments demonstrated that loss of the FOXA1 gene inhibited tumor proliferation and invasion in vitro using MCF-7 and T47D HR+ breast cancer cell lines. Metformin, an anti-diabetic medication, significantly suppressed tumor cell growth in MCF-7 cells. Additionally, either metformin treatment or FOXA1 gene deletion enhanced tamoxifen-induced tumor growth inhibition in HR+ breast cancer cell lines within an ex vivo three-dimensional (3D) organoid model. Therefore, the diabetes-related medicine metformin and FOXA1 gene inhibition might be a new treatment for patients with HR+ breast cancer when combined with tamoxifen, an endocrine therapy.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Factor Nuclear 3-alfa del Hepatocito , Metformina , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , Humanos , Metformina/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Femenino , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Línea Celular Tumoral , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Invasividad Neoplásica , Células MCF-7 , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética
13.
Toxicol Appl Pharmacol ; 461: 116402, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36702312

RESUMEN

The carcinogenic mechanism of benzo[a]pyrene (BaP) is far from being elucidated. FOXA1 has been confirmed to play an oncogenic role in BaP-transformed cell THBEc1. To explore the changes in amino acid metabolic patterns, especially glutamate-glutamine (Glu-Gln) metabolic pattern caused by BaP-induced transformation and the possible role FOXA1 might play in it, we compared amino acid metabolic characteristics between THBEc1 cells and control 16HBE cells using a targeted metabolomics method and determined the effects of FOXA1 knockout on the amino acid metabolic pattern using FOXA1 knockout cell THBEc1-ΔFOXA1-c34. The amino acid metabolic patterns of THBEc1 and 16HBE cells were different, which was manifested by the differential consumption of 18 amino acids and the difference in the intracellular content of 21 amino acids. The consumption and intracellular content of Glu and Gln are different between the two types of cells, accompanied by upregulation of FOXA1, GLUL, SLC1A3, SLC1A4, SLC1A5 and SLC6A14, and downregulation of FOXA2 and GPT2 in THBEc1 cells. FOXA1 knockout changed the consumption of 19 amino acids and the intracellular content of 21 amino acids and reversed the metabolic pattern of Glu and the changes in FOXA2, GLUL, SLC1A3 and SLC6A14 in THBEc1 cells. Additionally, FOXA1 knockout inhibited cell proliferation and further increased the dependence of THBEc1 cells on Glu. In conclusion, FOXA1 knockout partially reversed the change in Glu-Gln metabolism caused by BaP-induced transformation by upregulating the expression of GLUL and SLC1A3. Our findings provide a clue for the possible role of FOXA1 in amino acid metabolism regulation.


Asunto(s)
Aminoácidos , Glutamina , Proliferación Celular , Ácido Glutámico , Glutamina/metabolismo , Metabolómica , Factor Nuclear 3-alfa del Hepatocito/metabolismo
14.
BMC Cancer ; 23(1): 743, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37568077

RESUMEN

BACKGROUND: The prognostic role of either forkhead box A1 (FOXA1) or anterior gradient 2 (AGR2) in breast cancer has been found separately. Considering that there were interplays between them depending on ER status, we aimed to assess the statistical interaction between AGR2 and FOXA1 on breast cancer prognosis and examine the prognostic role of the combination of them by ER status. METHODS: AGR2 and FOXA1 expression in tumor tissues were evaluated with tissue microarrays by immunohistochemistry in 915 breast cancer patients with follow up data. The expression levels of these two markers were treated as binary variables, and many different cutoff values were tried for each marker. Survival and Cox proportional hazard analyses were used to evaluate the relationship between AGR2, FOXA1 and prognosis, and the statistical interaction between them on the prognosis was assessed on multiplicative scale. RESULTS: Statistical interaction between AGR2 and FOXA1 on the PFS was significant with all the cutoff points in ER-positive breast cancer patients but not ER-negative ones. Among ER-positive patients, the poor prognostic role of the high level of FOXA1 was significant only in patients with the low level of AGR2, and vice versa. When AGR2 and FOXA1 were considered together, patients with low levels of both markers had significantly longer PFS compared with all other groups. CONCLUSIONS: There was a statistical interaction between AGR2 and FOXA1 on the prognosis of ER-positive breast cancer. The combination of AGR2 and FOXA1 was a more useful marker for the prognosis of ER-positive breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Pronóstico , Mama/patología , Inmunohistoquímica , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Biomarcadores de Tumor/metabolismo , Mucoproteínas , Proteínas Oncogénicas
15.
BMC Cancer ; 23(1): 906, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752418

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC), the most common primary liver cancer, prevails mainly in males and has long been attributed to androgens and higher circumstantial levels of interleukin-6 (IL-6) produced by resident hepatic macrophages. METHODS: Constitutively hepatocyte-specific histone deacetylase 3 (HDAC3)-deficient (HDAC3LCKO) mice and constitutively hepatocyte-specific HDAC3 knockout and systemic IL-6 simultaneously ablated (HDAC3LCKO& IL-6-/-) mice were used in our study to explore the causes of sex differences in HCC. Additionally, we performed human HCC tissues with an IHC score. Correlation analysis and linear regression plots were constructed to reveal the association between HDAC3 and its candidate genes. To further elucidate that HDAC3 controls the expression of Foxa1/2, we knocked down HDAC3 in HUH7 liver cancer cells. RESULTS: We observed a contrary sex disparity, with an earlier onset and higher incidence of HCC in female mice when HDAC3 was selectively ablated in the liver. Loss of HDAC3 led to constant liver injury and the spontaneous development of HCC. Unlike the significant elevation of IL-6 in male mice at a very early age, female mice exhibit stable IL-6 levels, and IL-6 ablation did not eliminate the sex disparity in hepatocarcinogenesis in HDAC3-deficient mice. Oestrogen often protects the liver when combined with oestrogen receptor alpha (ERα); however, ovariectomy in HDAC3-ablated female mice significantly delayed tumourigenesis. The oestrogen-ERα axis can also play a role in tumour promotion in the absence of Foxa1 and Foxa2 in the receptor complex. Loss of HDAC3 profoundly reduced the expression of both Foxa1 and Foxa2 and impaired the binding between Foxa1/2 and ERα. Furthermore, a more frequent HDAC3 decrease accompanied by the simultaneous Foxa1/2 decline was found in female HCC compared to that in male HCC. CONCLUSION: In summary, we reported that loss of HDAC3 reduces Foxa1/2 and thus promotes HCC development in females in an oestrogen-dependent manner.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Femenino , Masculino , Ratones , Humanos , Animales , Carcinoma Hepatocelular/genética , Receptor alfa de Estrógeno/genética , Interleucina-6/genética , Neoplasias Hepáticas/genética , Hepatocitos , Receptores de Estrógenos , Carcinogénesis , Transformación Celular Neoplásica , Estrógenos
16.
Neurochem Res ; 48(9): 2895-2910, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37217807

RESUMEN

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases in the world, which seriously affects AD patients' life quality. Recently, long non-coding RNAs (lncRNAs) have been reported to play a key role in AD pathogenesis, however, the specific mechanism remains unclear. Herein, we aimed to investigate the role of lncRNA NKILA in AD. The learning and memory performance of rats from streptozotocin (STZ)-treated or other treated groups were tested by Morris water maze test. Relative levels of genes and proteins were measured using RT-qPCR and Western blotting. Mitochondrial membrane potential was tested by JC-1 staining. Levels of ROS, SOD, MDA, GSH-Px, and LDH were measured using corresponding commercial kits. Apoptosis was evaluated by TUNEL staining or Flow cytometry assay. RNA Immunoprecipitation (RIP), RNA pulldown, Chromatin immunoprecipitation (ChIP), and dual-luciferase reporter assays were utilized to test the interaction between indicated molecules. STZ treatment caused learning and memory impairment in rats and oxidative stress damage in SH-SY5Y cells. LncRNA NKILA was found to be elevated in the hippocampal tissues of rats and SH-SY5Y cells after STZ exposure. Knockdown of lncRNA NKILA alleviated STZ-induced neuronal damage. Furthermore, lncRNA NKILA could bind to ELAVL1, which regulate the stability of FOXA1 mRNA. Moreover, TNFAIP1 transcription process was controlled by FOXA1, which targeted the promoter of TNFAIP1. In vivo results demonstrated that lncRNA NKILA accelerated STZ-induced neuronal damage and oxidative stress by FOXA1/TNFAIP1 axis. Our findings indicated that knockdown of lncRNA NKILA inhibited the neuronal damage and oxidative stress induced by STZ through the FOXA1/TNFAIP1 axis, thereby alleviating the development of AD, revealing a promising therapeutic axis for AD treatment.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Neuroblastoma , ARN Largo no Codificante , Animales , Humanos , Ratas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Apoptosis/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo , MicroARNs/metabolismo , Neuroblastoma/metabolismo , Neuronas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
17.
Mol Biol Rep ; 50(2): 1209-1220, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36436079

RESUMEN

BACKGROUND: Estrogen receptor alpha (ERα) is a frequently mutated gene in breast cancer (BC). While many studies have investigated molecular dysregulation by hotspot mutations at Y537 and D538, which exhibit an estrogen-independent constitutively active phenotype, the functional abnormalities of other mutations remain obscure. The K303R mutation in primary invasive BC has been implicated with endocrine resistance, tumor size, and lymph node positivity. However, the impact of the K303R mutation on the cell epigenome is yet unknown. METHODS AND RESULTS: We introduced the K303R ERα mutant in ERα-negative MDA-MB-453 cells to monitor ERα-dependent transactivation and to perform epigenomic analyses. ATAC-seq and ChIP-Seq analyses indicated that both wild-type (WT) and the K303R mutant associated with Forkhead box (Fox) protein family motif regions at similar rates, even without an ERα-binding sequence, but only the K303R mutant induced chromatin opening at those regions. Biochemical analyses demonstrated that the WT and the K303R mutant can be tethered on DNA by FoxA1 indirectly, but only the K303R/FoxA1/DNA complex can induce associations with the nuclear receptor cofactor 2 (NCOA2). CONCLUSIONS: These findings suggest that the K303R mutant induces chromatin opening at the Fox binding region through the FoxA1-dependent associations of the K303R mutant to NCOA2 and then probably disrupts the regulation of Fox-target genes, resulting in K303R-related BC events.


Asunto(s)
Cromatina , Receptor alfa de Estrógeno , Factores de Transcripción Forkhead , Factor Nuclear 3-alfa del Hepatocito , Humanos , Línea Celular Tumoral , Cromatina/genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Estrógenos/farmacología , Factores de Transcripción Forkhead/genética , Regulación Neoplásica de la Expresión Génica , Mutación/genética , Unión Proteica , Factor Nuclear 3-alfa del Hepatocito/metabolismo
18.
Methods ; 204: 263-268, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35231585

RESUMEN

DNA helicase RECQ1 (also known as RECQL or RECQL1) is a candidate breast cancer susceptibility gene significantly correlated with clinical outcomes of sporadic breast cancer patients. Prior studies have suggested that RECQ1 maintains genomic stability by regulating a wide variety of core cellular functions including DNA replication, DNA damage response, and transcription. However, it is unclear which, if any, of these are the primary functions of RECQ1 as related to its role in suppressing breast cancer. We describe here an unbiased integrative genomics approach that enabled us to discover a previously unknown regulatory role of RECQ1 in promoting Estrogen Receptor alpha (ERα) expression and the expression of specific ERα target genes in ER positive breast cancer cells. We discuss potential future applications of similar experimental strategies in advancing the mechanistic understanding and elucidating specific new details of genome-wide functions of RECQ1 and other RecQ helicases in maintaining genomic stability and preventing cancer.


Asunto(s)
Neoplasias de la Mama , RecQ Helicasas , Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/genética , Femenino , Predisposición Genética a la Enfermedad , Inestabilidad Genómica , Humanos , RecQ Helicasas/genética
19.
Urol Int ; 107(1): 58-63, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34706362

RESUMEN

PURPOSE: Cisplatin-containing combination chemotherapy has been the standard of care since the late 1980s, but the response rate is <50%. Studies have shown that the efficiency of chemotherapy differs among molecular subtypes of bladder cancer. In this study, we aimed to correlate FOXA1, a marker for differentiation of the basal and luminal subtypes, with tumor immune cell infiltration and the effect of chemotherapy in bladder cancer. MATERIALS AND METHODS: Eighty-three patients with bladder cancer treated with chemotherapy were reviewed. Clinicopathological variables for each case were recorded. FOXA1, M2 tumor-associated macrophage (TAM), dendritic cell (DC), and cytotoxic T lymphocyte (CTL) were examined by immunohistochemistry. The relationship between FOXA1, immune cell infiltration, and clinical response to chemotherapy was assessed. RESULTS: The overall objective response rate was 34%. The objective response rate for tumors with lower FOXA1 expression was 58% and for tumors with higher FOXA1 expression was 12%. Tumors with infiltrated M2 TAM proportion <3% had a higher objective response rate compared with infiltrated M2 TAM proportion >3% tumors (46% vs. 21%, p = 0.02). Tumors with infiltrated CTL proportion >5% had a higher objective response rate compared with infiltrated CTL proportion <5% tumors (50% vs. 17%, p = 0.002). DCs showed no significant differences. We found that the objective response rate for tumors with lower FOXA1 expression, proportion <3% M2 TAM infiltration, and proportion >5% CTL infiltration is 82%. Lower FOXA1 expression was associated with low M2 TAM infiltration and high CTL infiltration. CONCLUSIONS: Thus, we showed that in patients with bladder cancer who received chemotherapy, the higher clinical response rate is associated with low FOXA1 expression, low M2 TAM infiltration, and high CTL infiltration.


Asunto(s)
Factor Nuclear 3-alfa del Hepatocito , Linfocitos T Citotóxicos , Neoplasias de la Vejiga Urinaria , Humanos , Cisplatino , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Inmunohistoquímica , Macrófagos/metabolismo , Linfocitos T Citotóxicos/patología , Neoplasias de la Vejiga Urinaria/patología
20.
Immunopharmacol Immunotoxicol ; 45(6): 742-753, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37459395

RESUMEN

BACKGROUND: The association between S100 calcium-binding protein A8 (S100A8) and angiogenesis has been reported in previous reports. This study focuses on the roles of S100A8 in the angiogenesis of human dermal microvascular endothelial cells (HDMECs) and in cutaneous wound healing in mice. METHODS: Candidate genes related to angiogenesis activity were screened using a GSE83582 dataset. The overexpression DNA plasmid of S100A8 was transfected into HDMECs to analyze its effect on cell proliferation, migration, and angiogenesis. Full-thickness skin wounds were induced on mice, followed by adenovirus treatments to analyze the function of gene alteration in wound healing and pathological changes. The upstream regulator of S100A8 was predicted by bioinformatics analysis and verified by luciferase and immunoprecipitation assays. The role of the forkhead box A1 (FOXA1)-S100A8 interaction in p38 MAPK activation and angiogenesis were validated by rescue experiments. RESULTS: S100A8 was identified as a gene significantly correlated with angiogenesis. The S100A8 upregulation promoted the proliferation, migration, and angiogenesis of HDMECs, and it promoted p38 MAPK phosphorylation. Treatment of SB203580, a p38 MAPK inhibitor, blocked the promoting effect of S100A8. FOXA1 was identified as an upstream factor of S100A8 promoting its transcription. FOXA1 overexpression in HDMECs increased p38 MAPK phosphorylation and enhanced the activity of cells, which were blocked by the S100A8 inhibition. Similar results were reproduced in vivo where FOXA1 overexpression accelerated whereas the S100A8 knockdown retarded the cutaneous wound healing in mice. CONCLUSION: FOXA1 mediates the phosphorylation of p38 MAPK through transcription activation of S100A8, thereby inducing angiogenesis and promoting cutaneous wound healing.


Asunto(s)
Células Endoteliales , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Humanos , Ratones , Movimiento Celular , Células Endoteliales/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Fosforilación , Piel , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA