Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 441
Filtrar
Más filtros

Intervalo de año de publicación
1.
Arch Microbiol ; 206(3): 98, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351169

RESUMEN

Hydrocarbons are considered as one of the most common and harmful environmental pollutants affecting human health and the environment. Bioremediation as an environmentally friendly, highly efficient, and cost-effective method in remediating oil-contaminated environments has been interesting in recent decades. In this study, hydrocarbon degrader bacterial strains were isolated from the highly petroleum-contaminated soils in the Dehloran oil field in the west of Iran. Out of 37 isolates, 15 can grow on M9 agar medium that contains 1.5 g L-1 of crude oil as the sole carbon source. The morphological, biochemical, and 16SrRNA sequencing analyses were performed for the isolates. The choosing of the isolates as the hydrocarbon degrader was examined by evaluating the efficacy of their crude oil removal at a concentration of 10 g L-1 in an aqueous medium. The results showed that five isolates belonging to Pseudomonas sp., Pseudomonas oryzihabitans, Roseomonas aestuarii, Pantoea agglomerans, and Arthrobacter sp. had a hyper hydrocarbon-degrading activity and they could remove more than 85% of the total petroleum hydrocarbon (TPH) after 96 h. The highest TPH removal of about 95.75% and biodegradation rate of 0.0997 g L-1 h-1 was observed for P. agglomerans. The gas chromatography-mass spectroscopy (GC-MS) analysis was performed during the biodegradation process by P. agglomerans to detect the degradation intermediates and final products. The results confirmed the presence of intermediates such as alcohols and fatty acids in the terminal oxidation pathway of alkanes in this biodegradation process. A promising P. agglomerans NB391 strain can remove aliphatic and aromatic hydrocarbons simultaneously.


Asunto(s)
Hidrocarburos Aromáticos , Pantoea , Petróleo , Contaminantes del Suelo , Humanos , Pantoea/genética , Pantoea/metabolismo , Petróleo/metabolismo , Irán , Contaminantes del Suelo/metabolismo , Hidrocarburos/metabolismo , Biodegradación Ambiental , Suelo/química , Microbiología del Suelo
2.
Environ Res ; 246: 118061, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38157967

RESUMEN

This research was performed to investigate the bactericidal and fungicidal competence of extracts (methanol and petroleum ether extract) of Polyalthia longifolia leaf. Moreover, the major active compounds present in the effective crude extract (either methanol or petroleum ether extract) was determined through initially with UV-Vis spectra, FTIR, and GC-MS analyses. The methanol extract alone showed remarkable bactericidal and fungicidal activity against the bacterial (S. pyogenes > E. coli > S. aureus > S. pneumoniae > C. difficile > P. aeruginosa) and fungal (A. clavatus > C. albicans > A. niger > A. fumigatus > C. tropicalis > C. auris) pathogens at increased concentration (12.5 mg mL-1) than petroleum ether extract. The MIC and MBC values of methanol extract were found as 10-20 mg mL-1 and 30-40 mg mL-1 respectively. The MFC value of methanol extract was found as 10-20 mg mL-1. These MIC, MBC, and MFC values of methanol extract were considerably greater than petroleum ether extract. The FTIR and GC-MS characterization studies revealed that the presence of more acre functional groups belonging to bioactive compounds such as Z)-7-Hexadecenal, Aromandendrene, α-Curcumene, Caryophyllene, Methyl 14-methyl Pentadecanoat, Methyl trans-13-Octadecenoate, 9-Octadecenoic acid (Z)-, and 2-hydroxy-1- (hydroxymethyl)ethyl. As a result of these findings, it is possible that P. longifolia leaf methanol extract contains medicinally important bioactive substances with bactericidal and fungicidal properties.


Asunto(s)
Alcanos , Antiinfecciosos , Clostridioides difficile , Fungicidas Industriales , Polyalthia , Extractos Vegetales/farmacología , Metanol , Escherichia coli , Staphylococcus aureus , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Solventes , Candida albicans
3.
Environ Res ; 252(Pt 1): 118454, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387488

RESUMEN

The oncogenic and genetic properties of anthracene, a member of the polycyclic aromatic hydrocarbons (PAHs) family, pose a significant health threat to humans. This study aims to investigate the photocatalytic decomposition of anthracene under various conditions, such as different concentrations of PAHs, varying amounts of NiO (nickel oxide) nanoparticles, and different pH levels under ultraviolet light and sunlight. The synthesized NiO nanoparticles showed surface plasma resonance at 230 and 360 nm, while XRD and SEM analysis confirmed the nanoparticles were cubic crystalline in structure with sizes ranging between 37 and 126 nm. NiO nanoparticles exhibited 79% degradation of pyrene at 2 µg/mL of anthracene within 60 min of treatment. NiO at 10 µg/mL concentration showed significant adsorption of 57%, while the adsorption method worked efficiently (72%) at 5 pH. Photocatalytic degradation was confirmed by isotherm and kinetic studies through monolayer adsorption and pseudo-first-order kinetics. Further, the absorption process was confirmed by performing GC-MS analysis of the NiO nanoparticles. On the other hand, NiO nanoparticles showed antimicrobial activity against Gram negative and Gram-positive bacteria. Therefore, the present work is one of its kind proving the dual application of NiO nanoparticles, which makes them suitable candidates for bioremediation by treating PAHs and killing pathogenic bacteria.


Asunto(s)
Níquel , Hidrocarburos Policíclicos Aromáticos , Níquel/química , Hidrocarburos Policíclicos Aromáticos/química , Nanopartículas del Metal/química , Catálisis , Fotólisis , Rayos Ultravioleta , Nanopartículas/química , Concentración de Iones de Hidrógeno , Antracenos/química , Adsorción
4.
BMC Vet Res ; 20(1): 281, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951863

RESUMEN

The aim of this research was to estimate the immunopotentiation effect of brown algae Padina boergesenii water extract on Nile tilapia, Oreochromis niloticus through resistance to Pseudomonas putida infection. Gas Chromatography Mass Spectrometry was utilized to characterize the seaweed phytoconstituents. One hundred and twenty-six fish were divided in triplicates into two equal groups corresponding to two diet variants that used to feed Nile tilapia for 20 successive days: a basal (control), and P. boergesenii water extract supplemented group. Fish samples were collected at 10-days intervals throughout the experiment. Serum biochemical constituents, total antioxidant capacity (TAC), and some immune related genes expression of the spleen and intestinal tissues of experimental fish were studied, as well as histological examination of fish immune tissues. Moreover, following 20 days of feeding, the susceptibility of Nile tilapia to P. putida infection was evaluated to assess the protective effect of the used extract. The findings indicated that the studied parameters were significantly increased, and the best immune response profiles were observed in fish fed P. boergesenii water extract for 20 successive days. A bacterial challenge experiment using P. putida resulted in higher survival within the supplemented fish group than the control. Thus, the lowered post-challenge mortality of the fish may be related to the protection provided by the stimulation of the innate immune system, reduced oxidative stress by higher activity of TAC, and elevated levels of expression of iterleukin-1beta (IL-1ß), beta-defensin (ß-defensin), and natural killer-lysin (NKl). Moreover, the constituents of the extract used showed potential protective activity for histological features of the supplemented fish group when compared to the control. Collectively, this study presents a great insight on the protective role of P. boergesenii water extract as an additive in Nile tilapia feed which suggests its potential for improving the immune response against P. putida infection.


Asunto(s)
Alimentación Animal , Cíclidos , Suplementos Dietéticos , Enfermedades de los Peces , Infecciones por Pseudomonas , Pseudomonas putida , Animales , Pseudomonas putida/efectos de los fármacos , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Alimentación Animal/análisis , Infecciones por Pseudomonas/veterinaria , Infecciones por Pseudomonas/tratamiento farmacológico , Phaeophyceae/química , Dieta/veterinaria , Resistencia a la Enfermedad/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/administración & dosificación
5.
Biomed Chromatogr ; 38(2): e5776, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37986016

RESUMEN

Pharmacology experts place a high priority on therapeutic plants because the majority of pharmaceutical firms rely on medicinal plants as raw ingredients. Therefore, the potential bioactive components using gas chromatography-mass spectrometry analysis and antioxidant effects using DPPH free radical scavenging activity of various crude fractions of Xanthium spinosum were assessed. Gas chromatography-mass spectrometry analysis showed the presence of various bioactive compounds including benzenedicarboxylic acid (18.60%), 8-octadecenoic acid (4.86%), 11-octadecenoic acid and 10-octadecenoic acid in the crude methanolic extract, 1,2-benzenedicarboxylic acid, diisooctyl ester (14.42%), 1,2-benzenedicarboxylic acid, mono (2-ethylhexyl) ester (14.42%), 6-octadecenoic acid, methyl ester (7.56%), 8-octadecenoic acid, methyl ester (7.56%), 10-octadecenoic acid, methyl ester (7.56%) and hexadecanoic acid, methyl ester (6.55%) in the n-hexane extract, ethanal, 2-methyl-2-[4-(1-methylethyl)phenyl]-(3.02%), (+)-3-carene, 4-isopropenyl-(3.02%), 7H-indeno[5,6-b] furan-7-one, 4,4a,5,6,7a,8-hexahydro- (3.02%) and 2-[5-(2,2-dimethyl-6-methylene-cyclohexyl)-3-methyl-pent-2-enyl]-[1,4] benzoquinone (2.79%) in the chloroform extract and 1,2-benzenedicarboxylic acid, mono (2-ethylhexyl) ester (33.005%), 1,2-benzenedicarboxylic acid, diisooctyl ester (33.005%) and bis(2-ethylhexyl) phthalate (33.005%) in the ethyl acetate extract. Significant DPPH radical scavenging activity was exhibited by the chloroform fraction (43.37-88.65%) at all doses followed by the crude methanolic extract (36.02-83.75%) at all doses. In conclusion, different crude fractions of X. spinosum can be considered a rich source of pharmacologically active components that can be scoped for isolation and may be subjected to in-depth pharmacological study.


Asunto(s)
Antioxidantes , Xanthium , Antioxidantes/análisis , Cloroformo , Mezclas Complejas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ésteres
6.
Parasitol Res ; 123(9): 315, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39227462

RESUMEN

Mosquito-borne diseases, such as malaria, dengue fever, and the Zika virus, pose significant global health challenges, affecting millions annually. Due to increasing insecticide resistance, there is a growing interest in natural alternatives for mosquito control. Lemongrass essential oil, derived from Cymbopogon citratus, has shown promising repellent and larvicidal properties against various mosquito species. In this study, we investigated the larvicidal effect of lemongrass oil and its major compounds on Anopheles sinensis, the primary malaria vector in China. GC-MS analysis identified the major compounds of lemongrass oil as ( +)-citronellal (35.60%), geraniol (21.84%), and citronellol (13.88%). Lemongrass oil showed larvicidal activity against An. sinensis larvae, with an LC50 value of 119.20 ± 3.81 mg/L. Among the major components, citronellol had the lowest LC50 value of 42.76 ± 3.18 mg/L. Moreover, citronellol demonstrated inhibitory effects on acetylcholinesterase (AChE) activity in An. sinensis larvae, assessed by homogenizing larvae at different time points following treatment. Molecular docking studies further elucidated the interaction between citronellol and AChE, revealing the formation of hydrogen bonds and Pi-Sigma bonds. Aromatic amino acid residues such as Tyr71, Trp83, Tyr370, and Tyr374 played a pivotal role in these interactions. These findings may contribute to understanding lemongrass oil's larvicidal activity against An. sinensis and the mechanisms underlying these effects.


Asunto(s)
Monoterpenos Acíclicos , Anopheles , Inhibidores de la Colinesterasa , Insecticidas , Larva , Aceites Volátiles , Aceites de Plantas , Animales , Anopheles/efectos de los fármacos , Anopheles/enzimología , Larva/efectos de los fármacos , Insecticidas/farmacología , Insecticidas/química , Monoterpenos Acíclicos/farmacología , Aceites de Plantas/farmacología , Aceites de Plantas/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Cymbopogon/química , Simulación del Acoplamiento Molecular , Terpenos/farmacología , Terpenos/química , Cromatografía de Gases y Espectrometría de Masas , China , Acetilcolinesterasa/metabolismo , Mosquitos Vectores/efectos de los fármacos , Monoterpenos/farmacología , Monoterpenos/química , Aldehídos/farmacología , Aldehídos/química
7.
Chem Biodivers ; 21(7): e202400208, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38713365

RESUMEN

Solanum nigrum is a common weed in arable land, while being used in traditional medicine around the world due to its remarkable levels of valuable secondary metabolites. Agronomic and biological techniques can alter the production of a specific metabolite by influencing plant growth and metabolism. The effects of colonization with three arbuscular mycorrhizal fungi (AMF), including Funneliformis mosseae, Rhizoglomus intraradices, and Rhizoglomus fasciculatum, on the chemical composition of S. nigrum fruits were evaluated by gas chromatography-mass spectrometry (GC-MS) analysis. More than 100 different chemical constituents were evaluated by GC-MS. Our study revealed that the levels of phenols (quinic acid), benzenes (hydroquinone), sulfur-containing compounds, lactone and carboxylic acids were improved by R. intraradices. In contrast, hydroxymethylfurfural increased by 68 % in R. fasciculatum inoculated with uninoculated S. nigrum plants, and this species was also the most efficient in inducing sugar compounds (D-galactose, lactose, and melezitose). Our results suggest that AMF colonization is an effective biological strategy that can alter the chemical composition and improve the medicinal properties of S. nigrum.


Asunto(s)
Frutas , Micorrizas , Solanum nigrum , Simbiosis , Solanum nigrum/química , Solanum nigrum/metabolismo , Frutas/química , Frutas/metabolismo , Frutas/microbiología , Micorrizas/metabolismo , Micorrizas/química , Cromatografía de Gases y Espectrometría de Masas , Metabolismo Secundario , Glomeromycota/metabolismo , Glomeromycota/química , Glomeromycota/fisiología
8.
Chem Biodivers ; : e202401068, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140485

RESUMEN

Medicinal plants have long been studied for their therapeutic benifits. The present research aims to unveil complex phytochemical profile and therapeutic properties of ethyl acetate fraction of Phlomis stewartii, an important medicinal plant. In this context, the Gas Chromatography-Mass Spectrometry (GC-MS) analysis of the fraction identified 26 compounds. Additionally, the fraction exhibited concentration dependent antioxidant activity with an IC50 value lower than the standard antioxidant butylated hydroxytoluene. The antifungal activity of the fraction examined against F. oxysporum, A. alternate, and R. solani resulted in almost complete inhibition (>90%) of fungal growth. Furthermore, the fraction exhibited significant antibacterial potential against B. subtilus, S. aureus, E. coli, and S. dysenteriae, with inhibition zones of 18±0.22, 17±0.22, 12±0.11, and 10±0.12, respectively. Briefly, the plant extract was found to be highly potent, particularly in its antifungal action. Further studies, including natural products isolation coupled with bioassays, are recommended for promising drug candidates discovery.

9.
Chem Biodivers ; 21(2): e202301546, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38105427

RESUMEN

Indigenous medicinal plants with naturally inherited antimicrobial properties are promising sources of antimicrobial agents. Two indigenous Ethiopian traditional medicinal plants (Rhamnus prinoide and Croton macrostachyus) extracted using different solvents and the yield percentage, phytochemical analysis and antimicrobial activity of the plant extracts were examined and compared. The results of this study revealed that Rhamnus prinoide leaf extract using aqueous methanol/ethanol (1 : 1) had the highest yield (15.12 %), a minimum inhibitory concentration of 0.625 mg/mL, and a minimum bactericidal concentration of 10 mg/mL against S. aureus. Croton macrostachyus leaves showed a yield of 14.7 ±0.37 %, a minimum inhibitory concentration of 40 mg/mL, and a minimum bactericidal concentration of 40 mg/mL against S. aureus and E. coli. GC-MS analysis revealed that aqueous methanol/ethanol (1 : 1) of Rhamnus prinoide and Croton macrostachyus leaf extracts were composed of bioactive carbohydrates, flavonoid acid phenols, and terpenoids, while Croton macrostachyus extract contained primarily phytol (30.08 %). The presence of bioactive compounds confirms the traditional use of these plant leaves to treat various diseases, including wounds, leading to the conclusion that they could be applied to textiles for wound dressing in future studies.


Asunto(s)
Antiinfecciosos , Plantas Medicinales , Plantas Medicinales/química , Metanol/química , Escherichia coli , Staphylococcus aureus , Bacterias , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fitoquímicos/farmacología , Fitoquímicos/química , Antiinfecciosos/farmacología , Etanol
10.
Molecules ; 29(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675563

RESUMEN

The purpose of this study was to characterize ethanol extracts from leaves and flowers of two ecotypes (PL-intended for industrial plantations and KC-intended for cut flowers) of Lavandula angustifolia Mill. The plant was cultivated in 2019 in southern Poland as part of a long-term research plan to develop new varieties resistant to difficult environmental conditions. The collected leaves and flowers were used to prepare ethanol extracts, which were then analyzed in terms of phytochemical composition and antioxidant, bactericidal, and fungicidal properties. Using UPLC techniques, 22 compounds belonging to phenolic acids and flavonoids were identified. UPLC test results indicated that ethanol extracts from leaves and flowers differ in phytochemical composition. Lower amounts of phenolic acids and flavonoids were identified in leaf extracts than in flower extracts. The predominant substances in the flower extracts were rosmarinic acid (829.68-1229.33 µg/g), ferulic acid glucoside III (810.97-980.55 µg/g), and ferulic acid glucoside II (789.30-885.06 µg/g). Ferulic acid glucoside II (3981.95-6561.19 µg/g), ferulic acid glucoside I (2349.46-5503.81 µg/g), and ferulic acid glucoside III (1303.84-2774.17 µg/g) contained the highest amounts in the ethanol extracts of the leaves. The following substances were present in the extracts in trace amounts or at low levels: apigenin, kaempferol, and caftaric acid. Leaf extracts of the PL ecotype quantitatively (µg/g) contained more phytochemicals than leaf extracts of the KC ecotype. The results obtained in this study indicate that antioxidant activity depends on the ecotype. Extracts from the PL ecotype have a better ability to eliminate free radicals than extracts from the KC ecotype. At the same time, it was found that the antioxidant activity (total phenolic content, ABTS•+, DPPH•, and FRAP) of PL ecotype leaf extracts was higher (24.49, 177.75, 164.88, and 89.10 µmol (TE)/g) than that determined in flower extracts (15.84, 125.05, 82.35, and 54.64 µmol (TE)/g). The test results confirmed that leaf and flower extracts, even at low concentrations (0.313-0.63%), significantly inhibit the growth of selected Gram-negative and Gram-positive bacteria and Candida yeasts. Inhibition of mold growth was observed at a dose extract of at least 1 mL/100 mL.


Asunto(s)
Antioxidantes , Ecotipo , Flores , Lavandula , Fitoquímicos , Extractos Vegetales , Hojas de la Planta , Fitoquímicos/química , Fitoquímicos/farmacología , Lavandula/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Antioxidantes/química , Antioxidantes/farmacología , Flores/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Pruebas de Sensibilidad Microbiana , Flavonoides/química , Flavonoides/análisis , Flavonoides/farmacología , Cromatografía Líquida de Alta Presión
11.
Molecules ; 29(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731554

RESUMEN

BACKGROUND: Fatty acids are essential for human health. Currently, there is a search for alternative sources of fatty acids that could supplement such sources as staple crops or fishes. Turions of aquatic plants accumulate a variety of substances such as starch, free sugars, amino acids, reserve proteins and lipids. Our aim is to see if turions can be a valuable source of fatty acids. METHODS: Overwintering shoots and turions of aquatic carnivorous plants were collected. The plant material was extracted with hexane. The oils were analyzed using a gas chromatograph with mass spectrometer. RESULTS: The dominant compound in all samples was linolenic acid. The oil content was different in turions and shoots. The oil content of the shoots was higher than that of the turions, but the proportion of fatty acids in the oils from the shoots was low in contrast to the oils from the turions. The turions of Utricularia species were shown to be composed of about 50% fatty acids. CONCLUSIONS: The turions of Utricularia species can be used to obtain oil with unsaturated fatty acids. In addition, the high fatty acid content of turions may explain their ability to survive at low temperatures.


Asunto(s)
Ácidos Grasos , Brotes de la Planta , Ácidos Grasos/análisis , Brotes de la Planta/química , Cromatografía de Gases y Espectrometría de Masas , Ácido alfa-Linolénico/análisis , Aceites de Plantas/química , Aceites de Plantas/análisis
12.
Molecules ; 29(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38893299

RESUMEN

The pomegranate processing industry generates worldwide enormous amounts of by-products, such as pomegranate peels (PPs), which constitute a rich source of phenolic compounds. In this view, PPs could be exploited as a sustainable source of ellagic acid, which is a compound that possesses various biological actions. The present study aimed at the liberation of ellagic acid from its bound forms via ultrasound-assisted alkaline hydrolysis, which was optimized using response surface methodology. The effects of duration of sonication, solvent:solid ratio, and NaOH concentration on total phenol content (TPC), antioxidant activity, and punicalagin and ellagic acid content were investigated. Using the optimum hydrolysis conditions (i.e., 32 min, 1:48 v/w, 1.5 mol/L NaOH), the experimental responses were found to be TCP: 4230 ± 190 mg GAE/100 g dry PPs; AABTS: 32,398 ± 1817 µmol Trolox/100 g dry PPs; ACUPRAC: 29,816 ± 1955 µmol Trolox/100 g dry PPs; 59 ± 3 mg punicalagin/100 g dry PPs; and 1457 ± 71 mg ellagic acid/100 g dry PPs. LC-QTOF-MS and GC-MS analysis of the obtained PP extract revealed the presence of various phenolic compounds (e.g., ellagic acid), organic acids (e.g., citric acid), sugars (e.g., fructose) and amino acids (e.g., glycine). The proposed methodology could be of use for food, pharmaceutical, and cosmetics applications, thus reinforcing local economies.


Asunto(s)
Antioxidantes , Ácido Elágico , Granada (Fruta) , Ácido Elágico/química , Granada (Fruta)/química , Hidrólisis , Antioxidantes/química , Fenoles/química , Fenoles/análisis , Extractos Vegetales/química , Taninos Hidrolizables/química , Frutas/química
13.
Molecules ; 29(4)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38398651

RESUMEN

The development of selective extraction protocols for Cannabis-inflorescence constituents is still a significant challenge. The characteristic Cannabis fragrance can be mainly ascribed to monoterpenes, sesquiterpenes and oxygenated terpenoids. This work investigates the entrapment of Cannabis terpenes in olive oil from inflorescences via stripping under mild vacuum during the rapid microwave-assisted decarboxylation of cannabinoids (MW, 120 °C, 30 min) and after subsequent extraction of cannabinoids (60 and 100 °C). The profiles of the volatiles collected in the oil samples before and after the extraction step were evaluated using static headspace solid-phase microextraction (HS-SPME), followed by gas chromatography coupled to mass spectrometry (GC-MS). Between the three fractions obtained, the first shows the highest volatile content (~37,400 mg/kg oil), with α-pinene, ß-pinene, ß-myrcene, limonene and trans-ß-caryophyllene as the main components. The MW-assisted extraction at 60 and 100 °C of inflorescences using the collected oil fractions allowed an increase of 70% and 86% of total terpene content, respectively. Considering the initial terpene amount of 91,324.7 ± 2774.4 mg/kg dry inflorescences, the percentage of recovery after decarboxylation was close to 58% (mainly monoterpenes), while it reached nearly 100% (including sesquiterpenes) after extraction. The selective and efficient extraction of volatile compounds, while avoiding direct contact between the matrix and extraction solvents, paves the way for specific applications in various aromatic plants. In this context, aromatized extracts can be employed to create innovative Cannabis-based products within the hemp processing industry, as well as in perfumery, cosmetics, dietary supplements, food, and the pharmaceutical industry.


Asunto(s)
Cannabinoides , Cannabis , Alucinógenos , Sesquiterpenos Policíclicos , Sesquiterpenos , Terpenos/química , Cannabinoides/química , Cannabis/química , Aceite de Oliva , Descarboxilación , Microondas , Monoterpenos/química , Sesquiterpenos/química , Agonistas de Receptores de Cannabinoides
14.
J Environ Sci Health B ; 59(7): 399-416, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38785435

RESUMEN

Secondary metabolites produced by Bacillus species from marine sources encompass a variety of compounds such as lipopeptides, isocoumarins, polyketides, macrolactones, polypeptides and fatty acids. These bioactive substances exhibit various biological activities, including antibiotic, antifungal, antiviral, and antitumor properties. This study aimed to isolate and identify a particular species of Bacillus from marine water and organisms that can produce bioactive secondary metabolites. Among the 73 Bacillus isolates collected, only 5 exhibited antagonistic activity against various viral and bacterial pathogens. The active isolates were subjected to 16S rRNA sequencing to determine their taxonomical affiliation. Among them, Bacillus tequilensis CCASU-2024-66 strain no. 42, with the accession number ON 054302 in GenBank, exhibited the highest inhibitory potential. It displayed an inhibition zone of 21 mm against Bacillus cereus while showing a minimum zone of inhibition of 9 mm against Escherichia coli and gave different inhibition against pathogenic fungi, the highest inhibition zone 15 mm against Candida albicans but the lowest inhibition zone 10 mm was against Botrytis cinerea, Fusarium oxysporum. Furthermore, it demonstrated the highest percentage of virucidal effect against the Newcastle virus and influenza virus, with rates of 98.6% and 98.1%, respectively. Furthermore, GC-MS analysis was employed to examine the bioactive substance components, specifically focusing on volatile and polysaccharide compounds. Based on these results, Bacillus tequilensis strain 42 may have the potential to be employed as an antiviral agent in poultry cultures to combat Newcastle and influenza, two extremely destructive viruses, thus reducing economic losses in the poultry production sector. Bacteria can be harnessed for the purpose of preserving food and controlling pathogenic fungi in both human and plant environments. Molecular docking for the three highly active derivatives 2,3-Butanediol, 2TMS, D-Xylopyranose, 4TMS, and Glucofuranoside, methyl 2,3,5,6-tetrakis-O-(trimethylsilyl) was carried out against the active sites of Bacillus cereus, Listeria monocytogenes, Candida albicans, Newcastle virus and influenza virus. The data obtained from molecular docking is highly correlated with that obtained from biology. Moreover, these highly active compounds exhibited excellent proposed ADMET profile.


Asunto(s)
Bacillus , Cromatografía de Gases y Espectrometría de Masas , Bacillus/química , Bacillus/metabolismo , Antiinfecciosos/farmacología , Antiinfecciosos/química , Agua de Mar/microbiología , ARN Ribosómico 16S/genética , Hongos/efectos de los fármacos , Botrytis/efectos de los fármacos
15.
Curr Issues Mol Biol ; 45(6): 4970-4984, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37367065

RESUMEN

In this study, the chemical composition and biological activity of Allium scorodoprasum subsp. jajlae (Vved.) Stearn were investigated for the first time, focusing on its antimicrobial, antioxidant, and antibiofilm properties. A GC-MS analysis was employed to evaluate the composition of its secondary metabolites, identifying linoleic acid, palmitic acid, and octadecanoic acid 2,3-dihydroxypropyl ester as the major compounds in ethanol extract. The antimicrobial activity of A. scorodoprasum subsp. jajlae was assessed against 26 strains, including standard, food isolate, clinical isolate, and multidrug-resistant ones, as well as three Candida species using the disc diffusion method and the determination of the minimum inhibitory concentration (MIC). The extract showed strong antimicrobial activity against Staphylococcus aureus strains, including methicillin-resistant and multidrug-resistant strains, as well as Candida tropicalis and Candida glabrata. Its antioxidant capacity was evaluated using the DPPH method, revealing a high level of antioxidant activity in the plant. Additionally, the antibiofilm activity of A. scorodoprasum subsp. jajlae was determined, demonstrating a reduction in biofilm formation for the Escherichia coli ATCC 25922 strain and an increase in biofilm formation for the other tested strains. The findings suggest potential applications of A. scorodoprasum subsp. jajlae in the development of novel antimicrobial, antioxidant, and antibiofilm agents.

16.
Curr Issues Mol Biol ; 45(5): 3733-3756, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37232710

RESUMEN

Rhizospheric soil is the richest niche of different microbes that produce biologically active metabolites. The current study investigated the antimicrobial, antifungal and anticancer activities of ethyl acetate extract of the potent rhizospheric fungus Aspergillus niger AK6 (AK-6). A total of six fungal isolates were isolated, and isolate AK-6 was selected based on primary screening. Further, it exhibited moderate antimicrobial activity against pathogens such as Klebsiella pneumonia, Candida albicans, Escherichia coli, Shigella flexneri, Bacillus subtilis and Staphylococcus aureus. The morphological and molecular characterization (18S rRNA) confirmed that the isolate AK-6 belonged to Aspergillus niger. Further, AK-6 showed potent antifungal activity with 47.2%, 59.4% and 64.1% of inhibition against Sclerotium rolfsii, Cercospora canescens and Fusarium sambucinum phytopathogens. FT-IR analysis displayed different biological functional groups. Consequently, the GC-MS analysis displayed bioactive compounds, namely, n-didehydrohexacarboxyl-2,4,5-trimethylpiperazine (23.82%), dibutyl phthalate (14.65%), e-5-heptadecanol (8.98%), and 2,4-ditert-butylphenol (8.60%), among the total of 15 compounds isolated. Further, the anticancer activity of AK-6 was exhibited against the MCF-7 cell line of human breast adenocarcinoma with an IC50 value of 102.01 µg/mL. Furthermore, flow cytometry depicted 17.3%, 26.43%, and 3.16% of early and late apoptosis and necrosis in the AK-6 extarct treated MCF-7 cell line, respectively. The results of the present analysis suggest that the isolated Aspergillus niger strain AK-6 extract has the potential to be explored as a promising antimicrobial, antifungal and anticancer drug for medical and agricultural applications.

17.
J Toxicol Environ Health A ; 86(17): 614-631, 2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37395392

RESUMEN

The aim of this study was to determine the phytochemical profile, antibacterial and antioxidant activities of crude aqueous leaf extracts of Anisomeles malabarica and Coldenia procumbens. The predominant components present in these crude extracts of test plants identified using gas chromatography-mass spectrometry (GC-MS) analysis in both plant extracts were phytochemicals including flavonoids, tannins, terpenoids, and phenols. The antibacterial activity of crude extracts of these plants against bacterial pathogens including Escherichia coli, Bacillus subtilis, Shigella sp., Salmonella paratyphi A and B, Proteus mirabilis, Proteus vulgaris, Pseudomonas sp. Klebsiella pneumoniae, and Staphylococcus aureus were examined. Data demonstrated that the extracts of A. malabarica and C. procumbens exhibited significant antibacterial activity against B.subtilis and P.vulgaris at the concentration of 50 mg/ml. A. malabarica aqueous extract displayed significant antioxidant activity on 2,2-diphenyl-1-picrylhydrazl (DPPH), fluorescence recovery after photobleaching (FRAP) and hydrogen peroxide (H2O2) free radicals at the concentration of 90 mg/ml. The antioxidant activity was significantly higher with A. malabarica than extract of C. procumbens. Evidence indicates that both plant extracts may possess significant pharmaceutical potential as antibacterial and antioxidant agents.


Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fitoquímicos/farmacología , Fitoquímicos/química , Antibacterianos/farmacología , Antibacterianos/química
18.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-37942557

RESUMEN

The off-flavor of Pichia pastoris strains is a negative characteristic of proteins overexpressed with this yeast. In the present study, P. pastoris GS115 overexpressing an α-l-rhamnosidase was taken as the example to characterize the off-flavor via sensory evaluation, gas chromatography-mass spectrometer, gas chromatography-olfaction, and omission test. The result showed that the off-flavor was due to the strong sweaty note, and moderate metallic and plastic notes. Four volatile compounds, that is, tetramethylpyrazine, 2,4-di-tert-butylphenol, isovaleric acid, and 2-methylbutyric acid, were identified to be major contributors to the sweaty note. Dodecanol and 2-acetylbutyrolactone were identified to be contributors to the metallic and plastic notes, respectively. It is the first study on the off-flavor of P. pastoris strains, helping understand metabolites with off-flavor of this yeast. Interestingly, it is the first study illustrating 2-acetylbutyrolactone and dodecanol with plastic and metallic notes, providing new information about the aromatic contributors of biological products. IMPORTANCE: The methylotrophic yeast Pichia pastoris is an important host for the industrial expression of functional proteins. In our previous studies, P. pastoris strains have been sniffed with a strong off-flavor during the overexpression of various functional proteins, limiting the application of these proteins. Although many yeast strains have been reported with off-flavor, no attention has been paid to characterize the off-flavor in P. pastoris so far. Considering that P. pastoris has advantages over other established expression systems of functional proteins, it is of interest to identify the compounds with off-flavor synthesized in the overexpression of functional proteins with P. pastoris strains. In this study, the off-flavor synthesized from P. pastoris GS115 was characterized during the overexpression of an α-l-rhamnosidase, which helps understand the aromatic metabolites with off-flavor of P. pastoris strains. In addition, 2-acetylbutyrolactone and dodecanol were newly revealed with plastic and metallic notes, enriching the aromatic contributors of biological products. Thus, this study is important for understanding the metabolites with off-flavor of P. pastoris strains and other organisms, providing important knowledge to improve the flavor of products yielding with P. pastoris strains and other organisms. ONE-SENTENCE SUMMARY: Characterize the sensory and chemical profile of the off-flavor produced by one strain of P. pastoris in vitro.


Asunto(s)
Productos Biológicos , Saccharomyces cerevisiae , Pichia/genética , Pichia/metabolismo , Productos Biológicos/metabolismo , Dodecanol/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Chem Biodivers ; 20(5): e202201135, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37026603

RESUMEN

In this research article, we investigated the effect of Euphorbia bivonae extract compounds on the lethality of brine shrimp Artemia salina and on embryonic cell lines (HEK293) proliferation. Our GC/MS analysis revealed that the E. bivonae ethanolic extract contained essentially sitosterol, euphol, and lupeol. The 24-h LC50 was determined using the probit analysis method (LC50=357.11 mg l-1 ). Depending on this cytotoxicity test result, E. bivona extract induced a significant increase in Superoxide Dismutase (SOD), Catalase (CAT), Glutathione-Peroxidase (GPx) activities, and lipid peroxidation (LPO) in A. salina larvae. In addition, the cytotoxicity effect of this extract had proved against the HEK293 cell lines in vitro. We suggest that the three compounds of E. bivonae extract (sitosterol, euphol, and lupeol) are the most responsible for this cytotoxicity. The possible application of this extract as an alternative natural antiproliferative is considered.


Asunto(s)
Euphorbia , Animales , Humanos , Euphorbia/química , Extractos Vegetales/química , Artemia , Células HEK293 , Sitoesteroles/farmacología , Antioxidantes/toxicidad , Riñón
20.
Plant Dis ; 107(10): 3057-3063, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36916837

RESUMEN

Root-knot nematodes (RKNs) are highly specialized parasites that cause significant yield losses worldwide. In this study, we isolated Bacillus pumilus strain S1-10 from the rhizosphere soil of Zingiber officinale Rosc. plants and evaluated its fumigant activity against Meloidogyne incognita. S1-10 exhibited a strong repellent effect on second-stage juveniles (J2s) of M. incognita, and in vitro assays indicated that S1-10 volatile organic compounds (VOCs) suppressed J2 activity and egg hatching. Under greenhouse conditions, 71 and 79% reductions of nematodes and eggs were detected on plants treated with S-10 VOCs compared with controls. Ten VOCs were identified through gas chromatography and mass spectrometry (GC-MS), of which 2-(methylamino)-ethanol (2-ME) had strong fumigant activity against J2s of M. incognita, with an LC50 value of 1.5 mM at 12 h. These results indicate that S1-10 represents a potential novel biocontrol agent for RKNs.


Asunto(s)
Bacillus pumilus , Plaguicidas , Tylenchoidea , Compuestos Orgánicos Volátiles , Animales , Compuestos Orgánicos Volátiles/farmacología , Compuestos Orgánicos Volátiles/química , Etanol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA