Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(14): 3033-3048.e20, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37327784

RESUMEN

The intestinal epithelial cells (IECs) constitute the primary barrier between host cells and numerous foreign antigens; it is unclear how IECs induce the protective immunity against pathogens while maintaining the immune tolerance to food. Here, we found IECs accumulate a less recognized 13-kD N-terminal fragment of GSDMD that is cleaved by caspase-3/7 in response to dietary antigens. Unlike the 30-kD GSDMD cleavage fragment that executes pyroptosis, the IEC-accumulated GSDMD cleavage fragment translocates to the nucleus and induces the transcription of CIITA and MHCII molecules, which in turn induces the Tr1 cells in upper small intestine. Mice treated with a caspase-3/7 inhibitor, mice with GSDMD mutation resistant to caspase-3/7 cleavage, mice with MHCII deficiency in IECs, and mice with Tr1 deficiency all displayed a disrupted food tolerance phenotype. Our study supports that differential cleavage of GSDMD can be understood as a regulatory hub controlling immunity versus tolerance in the small intestine.


Asunto(s)
Gasderminas , Proteínas de Neoplasias , Ratones , Animales , Caspasa 3/metabolismo , Proteínas de Neoplasias/metabolismo , Piroptosis , Intestino Delgado/metabolismo , Tolerancia Inmunológica
2.
Cell ; 184(17): 4495-4511.e19, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34289345

RESUMEN

The process of pyroptosis is mediated by inflammasomes and a downstream effector known as gasdermin D (GSDMD). Upon cleavage by inflammasome-associated caspases, the N-terminal domain of GSDMD forms membrane pores that promote cytolysis. Numerous proteins promote GSDMD cleavage, but none are known to be required for pore formation after GSDMD cleavage. Herein, we report a forward genetic screen that identified the Ragulator-Rag complex as being necessary for GSDMD pore formation and pyroptosis in macrophages. Mechanistic analysis revealed that Ragulator-Rag is not required for GSDMD cleavage upon inflammasome activation but rather promotes GSDMD oligomerization in the plasma membrane. Defects in GSDMD oligomerization and pore formation can be rescued by mitochondrial poisons that stimulate reactive oxygen species (ROS) production, and ROS modulation impacts the ability of inflammasome pathways to promote pore formation downstream of GSDMD cleavage. These findings reveal an unexpected link between key regulators of immunity (inflammasome-GSDMD) and metabolism (Ragulator-Rag).


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Multimerización de Proteína , Piroptosis , Transducción de Señal , Aminoácidos/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Línea Celular , Pruebas Genéticas , Humanos , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Macrófagos/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Proteínas de Unión a Fosfato/química , Dominios Proteicos , ARN Guía de Kinetoplastida/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
3.
Immunity ; 53(3): 533-547.e7, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32735843

RESUMEN

Programmed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macrophages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interacting serine/threonine kinase 3 (RIPK3). Loss of pyroptosis, caspase-8-driven apoptosis, or necroptosis had minor impact on Salmonella control. However, combined deficiency of these cell death pathways caused loss of bacterial control in mice and their macrophages, demonstrating that host defense can employ varying components of several cell death pathways to limit intracellular infections. This flexible use of distinct cell death pathways involved extensive cross-talk between initiators and effectors of pyroptosis and apoptosis, where initiator caspases-1 and -8 also functioned as executioners when all known effectors of cell death were absent. These findings uncover a highly coordinated and flexible cell death system with in-built fail-safe processes that protect the host from intracellular infections.


Asunto(s)
Apoptosis/inmunología , Macrófagos/inmunología , Necroptosis/inmunología , Piroptosis/inmunología , Infecciones por Salmonella/inmunología , Salmonella/inmunología , Animales , Caspasa 1/deficiencia , Caspasa 1/genética , Caspasa 12/deficiencia , Caspasa 12/genética , Caspasa 8/genética , Caspasas Iniciadoras/deficiencia , Caspasas Iniciadoras/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética
4.
Immunity ; 52(3): 475-486.e5, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32164878

RESUMEN

Cytosolic DNA acts as a universal danger-associated molecular pattern (DAMP) signal; however, the mechanisms of self-DNA release into the cytosol and its role in inflammatory tissue injury are not well understood. We found that the internalized bacterial endotoxin lipopolysaccharide (LPS) activated the pore-forming protein Gasdermin D, which formed mitochondrial pores and induced mitochondrial DNA (mtDNA) release into the cytosol of endothelial cells. mtDNA was recognized by the DNA sensor cGAS and generated the second messenger cGAMP, which suppressed endothelial cell proliferation by downregulating YAP1 signaling. This indicated that the surviving endothelial cells in the penumbrium of the inflammatory injury were compromised in their regenerative capacity. In an experimental model of inflammatory lung injury, deletion of cGas in mice restored endothelial regeneration. The results suggest that targeting the endothelial Gasdermin D activated cGAS-YAP signaling pathway could serve as a potential strategy for restoring endothelial function after inflammatory injury.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/genética , Proliferación Celular/genética , ADN Mitocondrial/genética , Células Endoteliales/metabolismo , Inflamación/genética , Nucleotidiltransferasas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Citosol/metabolismo , ADN Mitocondrial/metabolismo , Células Endoteliales/citología , Células HEK293 , Humanos , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleótidos Cíclicos/metabolismo , Nucleotidiltransferasas/metabolismo , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/metabolismo , Transducción de Señal , Proteínas Señalizadoras YAP
5.
Immunity ; 53(1): 106-114.e5, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32553275

RESUMEN

The recognition and cleavage of gasdermin D (GSDMD) by inflammatory caspases-1, 4, 5, and 11 are essential steps in initiating pyroptosis after inflammasome activation. Previous work has identified cleavage site signatures in substrates such as GSDMD, but it is unclear whether these are the sole determinants for caspase engagement. Here we report the crystal structure of a complex between human caspase-1 and the full-length murine GSDMD. In addition to engagement of the GSDMD N- and C-domain linker by the caspase-1 active site, an anti-parallel ß sheet at the caspase-1 L2 and L2' loops bound a hydrophobic pocket within the GSDMD C-terminal domain distal to its N-terminal domain. This "exosite" interface endows an additional function for the GSDMD C-terminal domain as a caspase-recruitment module besides its role in autoinhibition. Our study thus reveals dual-interface engagement of GSDMD by caspase-1, which may be applicable to other physiological substrates of caspases.


Asunto(s)
Caspasa 1/metabolismo , Dominio Catalítico/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Piroptosis/inmunología , Animales , Línea Celular , Cristalografía por Rayos X , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Inflamasomas/inmunología , Ratones , Unión Proteica/fisiología , Conformación Proteica en Lámina beta/fisiología , Células THP-1
6.
EMBO J ; 42(5): e110468, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36647737

RESUMEN

Genetic lesions in X-linked inhibitor of apoptosis (XIAP) pre-dispose humans to cell death-associated inflammatory diseases, although the underlying mechanisms remain unclear. Here, we report that two patients with XIAP deficiency-associated inflammatory bowel disease display increased inflammatory IL-1ß maturation as well as cell death-associated caspase-8 and Gasdermin D (GSDMD) processing in diseased tissue, which is reduced upon patient treatment. Loss of XIAP leads to caspase-8-driven cell death and bioactive IL-1ß release that is only abrogated by combined deletion of the apoptotic and pyroptotic cell death machinery. Namely, extrinsic apoptotic caspase-8 promotes pyroptotic GSDMD processing that kills macrophages lacking both inflammasome and apoptosis signalling components (caspase-1, -3, -7, -11 and BID), while caspase-8 can still cause cell death in the absence of both GSDMD and GSDME when caspase-3 and caspase-7 are present. Neither caspase-3 and caspase-7-mediated activation of the pannexin-1 channel, or GSDMD loss, prevented NLRP3 inflammasome assembly and consequent caspase-1 and IL-1ß maturation downstream of XIAP inhibition and caspase-8 activation, even though the pannexin-1 channel was required for NLRP3 triggering upon mitochondrial apoptosis. These findings uncouple the mechanisms of cell death and NLRP3 activation resulting from extrinsic and intrinsic apoptosis signalling, reveal how XIAP loss can co-opt dual cell death programs, and uncover strategies for targeting the cell death and inflammatory pathways that result from XIAP deficiency.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Apoptosis , Caspasa 1/genética , Caspasa 1/metabolismo , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Caspasa 8/genética , Caspasa 8/metabolismo , Muerte Celular , Inflamasomas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/fisiología , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
7.
Trends Immunol ; 45(2): 75-77, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38242759

RESUMEN

In a remarkable recent study, Miao et al. reveal that gasdermin D N-terminal (GSDMD-NT) instigates mitochondrial damage in pyroptosis by forming pores in inner and outer mitochondrial membranes (OMMs). The authors highlight the key role of mitochondrial cardiolipin in the action of GSDMD-NT, and significantly advance our understanding of this inflammatory cell death mechanism.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Piroptosis , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cardiolipinas/metabolismo , Gasderminas , Proteínas de Neoplasias/metabolismo , Inflamasomas/metabolismo
8.
Immunity ; 49(3): 413-426.e5, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30170814

RESUMEN

Inflammasome-activated caspase-1 cleaves gasdermin D to unmask its pore-forming activity, the predominant consequence of which is pyroptosis. Here, we report an additional biological role for gasdermin D in limiting cytosolic DNA surveillance. Cytosolic DNA is sensed by Aim2 and cyclic GMP-AMP synthase (cGAS) leading to inflammasome and type I interferon responses, respectively. We found that gasdermin D activated by the Aim2 inflammasome suppressed cGAS-driven type I interferon response to cytosolic DNA and Francisella novicida in macrophages. Similarly, interferon-ß (IFN-ß) response to F. novicida infection was elevated in gasdermin D-deficient mice. Gasdermin D-mediated negative regulation of IFN-ß occurred in a pyroptosis-, interleukin-1 (IL-1)-, and IL-18-independent manner. Mechanistically, gasdermin D depleted intracellular potassium (K+) via membrane pores, and this K+ efflux was necessary and sufficient to inhibit cGAS-dependent IFN-ß response. Thus, our findings have uncovered an additional interferon regulatory module involving gasdermin D and K+ efflux.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Francisella/fisiología , Infecciones por Bacterias Gramnegativas/inmunología , Inflamasomas/metabolismo , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/genética , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Interferón Tipo I/metabolismo , Interleucina-1/metabolismo , Interleucina-18/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados , Proteínas de Unión a Fosfato , Potasio/metabolismo , ARN Interferente Pequeño/genética
9.
Semin Immunol ; 70: 101845, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37806032

RESUMEN

The gasdermin family of proteins are central effectors of the inflammatory, lytic cell death modality known as pyroptosis. Characterized in 2015, the most well-studied member gasdermin D can be proteolyzed, typically by caspases, to generate an active pore-forming N-terminal domain. At least well-studied three pharmacological inhibitors (necrosulfonamide, disulfiram, dimethyl fumarate) since 2018 have been shown to affect gasdermin D activity either through modulation of processing or interference with pore formation. A multitude of murine in vivo studies have since followed. Here, we discuss the current state of research surrounding these three inhibitors, caveats to their use, and a set of guiding principles that researchers should consider when pursuing further studies of gasdermin D inhibition.


Asunto(s)
Gasderminas , Animales , Humanos , Ratones , Caspasas/metabolismo , Gasderminas/química , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Piroptosis
10.
Semin Immunol ; 70: 101844, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37778179

RESUMEN

Sepsis remains one of the most common and lethal conditions globally. Currently, no proposed target specific to sepsis improves survival in clinical trials. Thus, an in-depth understanding of the pathogenesis of sepsis is needed to propel the discovery of effective treatment. Recently attention to sepsis has intensified because of a growing recognition of a non-canonical inflammasome-triggered lytic mode of cell death termed pyroptosis upon sensing cytosolic lipopolysaccharide (LPS). Although the consequences of activation of the canonical and non-canonical inflammasome are similar, the non-canonical inflammasome formation requires caspase-4/5/11, which enzymatically cleave the pore-forming protein gasdermin D (GSDMD) and thereby cause pyroptosis. The non-canonical inflammasome assembly triggers such inflammatory cell death by itself; or leverages a secondary activation of the canonical NLRP3 inflammasome pathway. Excessive cell death induced by oligomerization of GSDMD and NINJ1 leads to cytokine release and massive tissue damage, facilitating devastating consequences and death. This review summarized the updated mechanisms that initiate and regulate non-canonical inflammasome activation and pyroptosis and highlighted various endogenous or synthetic molecules as potential therapeutic targets for treating sepsis.


Asunto(s)
Sepsis , Choque Séptico , Humanos , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología , Piroptosis , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Caspasas/metabolismo , Caspasas/farmacología , Factores de Crecimiento Nervioso/farmacología , Moléculas de Adhesión Celular Neuronal/farmacología
11.
Proc Natl Acad Sci U S A ; 121(29): e2400883121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38980908

RESUMEN

Gasdermin D (GSDMD)-mediated pyroptotic cell death drives inflammatory cytokine release and downstream immune responses upon inflammasome activation, which play important roles in host defense and inflammatory disorders. Upon activation by proteases, the GSDMD N-terminal domain (NTD) undergoes oligomerization and membrane translocation in the presence of lipids to assemble pores. Despite intensive studies, the molecular events underlying the transition of GSDMD from an autoinhibited soluble form to an oligomeric pore form inserted into the membrane remain incompletely understood. Previous work characterized S-palmitoylation for gasdermins from bacteria, fungi, invertebrates, as well as mammalian gasdermin E (GSDME). Here, we report that a conserved residue Cys191 in human GSDMD was S-palmitoylated, which promoted GSDMD-mediated pyroptosis and cytokine release. Mutation of Cys191 or treatment with palmitoyltransferase inhibitors cyano-myracrylamide (CMA) or 2-bromopalmitate (2BP) suppressed GSDMD palmitoylation, its localization to the membrane and dampened pyroptosis or IL-1ß secretion. Furthermore, Gsdmd-dependent inflammatory responses were alleviated by inhibition of palmitoylation in vivo. By contrast, coexpression of GSDMD with palmitoyltransferases enhanced pyroptotic cell death, while introduction of exogenous palmitoylation sequences fully restored pyroptotic activities to the C191A mutant, suggesting that palmitoylation-mediated membrane localization may be distinct from other molecular events such as GSDMD conformational change during pore assembly. Collectively, our study suggests that S-palmitoylation may be a shared regulatory mechanism for GSDMD and other gasdermins, which points to potential avenues for therapeutically targeting S-palmitoylation of gasdermins in inflammatory disorders.


Asunto(s)
Cisteína , Péptidos y Proteínas de Señalización Intracelular , Lipoilación , Proteínas de Unión a Fosfato , Piroptosis , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Unión a Fosfato/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Cisteína/metabolismo , Animales , Ratones , Citocinas/metabolismo , Células HEK293 , Inflamasomas/metabolismo , Gasderminas
12.
Proc Natl Acad Sci U S A ; 120(13): e2211047120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36943884

RESUMEN

There is significant disease heterogeneity among mouse strains infected with the helminth Schistosoma mansoni. Here, we uncover a unique balance in two critical innate pathways governing the severity of disease. In the low-pathology setting, parasite egg-stimulated dendritic cells (DCs) induce robust interferon (IFN)ß production, which is dependent on the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) cytosolic DNA sensing pathway and results in a Th2 response with suppression of proinflammatory cytokine production and Th17 cell activation. IFNß induces signal transducer and activator of transcription (STAT)1, which suppresses CD209a, a C-type lectin receptor associated with severe disease. In contrast, in the high-pathology setting, enhanced DC expression of the pore-forming protein gasdermin D (Gsdmd) results in reduced expression of cGAS/STING, impaired IFNß, and enhanced pyroptosis. Our findings demonstrate that cGAS/STING signaling represents a unique mechanism inducing protective type I IFN, which is counteracted by Gsdmd.


Asunto(s)
Gasderminas , Interferón Tipo I , Ratones , Animales , Proteínas de la Membrana/metabolismo , Transducción de Señal , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Interferón Tipo I/metabolismo , Inmunidad Innata
13.
Eur J Immunol ; 54(5): e2350515, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38361219

RESUMEN

Caspase-1 location in cells has been studied with fluorochrome-labeled inhibitors of caspase-1 (FLICA reagents). We report that FLICA reagents have limited cell-membrane permeability. This impacts experimental design as cells with intact membranes, including caspase-1 knockout cells, are not appropriate controls for cells with inflammasome-induced gasdermin D membrane pores.


Asunto(s)
Caspasa 1 , Inhibidores de Caspasas , Permeabilidad de la Membrana Celular , Colorantes Fluorescentes , Inflamasomas , Macrófagos , Caspasa 1/metabolismo , Animales , Macrófagos/inmunología , Macrófagos/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Ratones , Inflamasomas/metabolismo , Inhibidores de Caspasas/farmacología , Ratones Noqueados , Proteínas de Unión a Fosfato/metabolismo , Humanos
14.
Cell Mol Life Sci ; 81(1): 114, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436813

RESUMEN

Hyperuricemia is an independent risk factor for chronic kidney disease (CKD) and promotes renal fibrosis, but the underlying mechanism remains largely unknown. Unresolved inflammation is strongly associated with renal fibrosis and is a well-known significant contributor to the progression of CKD, including hyperuricemia nephropathy. In the current study, we elucidated the impact of Caspase-11/Gasdermin D (GSDMD)-dependent neutrophil extracellular traps (NETs) on progressive hyperuricemic nephropathy. We found that the Caspase-11/GSDMD signaling were markedly activated in the kidneys of hyperuricemic nephropathy. Deletion of Gsdmd or Caspase-11 protects against the progression of hyperuricemic nephropathy by reducing kidney inflammation, proinflammatory and profibrogenic factors expression, NETs generation, α-smooth muscle actin expression, and fibrosis. Furthermore, specific deletion of Gsdmd or Caspase-11 in hematopoietic cells showed a protective effect on renal fibrosis in hyperuricemic nephropathy. Additionally, in vitro studies unveiled the capability of uric acid in inducing Caspase-11/GSDMD-dependent NETs formation, consequently enhancing α-smooth muscle actin production in macrophages. In summary, this study demonstrated the contributory role of Caspase-11/GSDMD in the progression of hyperuricemic nephropathy by promoting NETs formation, which may shed new light on the therapeutic approach to treating and reversing hyperuricemic nephropathy.


Asunto(s)
Trampas Extracelulares , Hiperuricemia , Insuficiencia Renal Crónica , Humanos , Hiperuricemia/complicaciones , Actinas , Ácido Úrico , Caspasas , Inflamación , Fibrosis , Gasderminas , Proteínas de Unión a Fosfato
15.
Proc Natl Acad Sci U S A ; 119(45): e2210809119, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322773

RESUMEN

Inflammatory pathways usually utilize negative feedback regulatory systems to prevent tissue damage arising from excessive inflammatory response. Whether such negative feedback mechanisms exist in inflammasome activation remains unknown. Gasdermin D (GSDMD) is the pyroptosis executioner of downstream inflammasome signaling. Here, we found that GSDMD, after its cleavage by caspase-1/11, utilizes its RFWK motif in the N-terminal ß1-ß2 loop to inhibit the activation of caspase-1/11 and downstream inflammation in a negative feedback manner. Furthermore, an RFWK motif-based peptide inhibitor can inhibit caspase-1/11 activation and its downstream substrates GSDMD and interleukin-1ß cleavage, as well as lipopolysaccharide-induced sepsis in mice. Collectively, these findings provide a demonstration of the N-terminal fragment of GSDMD as a negative feedback regulator controlling inflammasome activation and a detailed delineation of the underlying inhibitory mechanism.


Asunto(s)
Inflamasomas , Péptidos y Proteínas de Señalización Intracelular , Animales , Ratones , Caspasa 1/metabolismo , Retroalimentación , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Unión a Fosfato , Proteínas Citotóxicas Formadoras de Poros/farmacología
16.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35115408

RESUMEN

A variety of signals, including inflammasome activation, trigger the formation of large transmembrane pores by gasdermin D (GSDMD). There are primarily two functions of the GSDMD pore, to drive lytic cell death, known as pyroptosis, and to permit the release of leaderless interleukin-1 (IL-1) family cytokines, a process that does not require pyroptosis. We are interested in the mechanism by which the GSDMD pore channels IL-1 release from living cells. Recent studies revealed that electrostatic interaction, in addition to cargo size, plays a critical role in GSDMD-dependent protein release. Here, we determined computationally that to enable electrostatic filtering against pro-IL-1ß, acidic lipids in the membrane need to effectively neutralize positive charges in the membrane-facing patches of the GSDMD pore. In addition, we predicted that salt has an attenuating effect on electrostatic filtering and then validated this prediction using a liposome leakage assay. A calibrated electrostatic screening factor is necessary to account for the experimental observations, suggesting that ion distribution within the pore may be different from the bulk solution. Our findings corroborate the electrostatic influence of IL-1 transport exerted by the GSDMD pore and reveal extrinsic factors, including lipid and salt, that affect the electrostatic environment.


Asunto(s)
Interleucina-1/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animales , Membrana Celular/metabolismo , Humanos , Inflamasomas/metabolismo , Ratones , Piroptosis/fisiología , Electricidad Estática
17.
J Biol Chem ; 299(7): 104922, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37321449

RESUMEN

In normal tissue homeostasis, bidirectional communication between different cell types can shape numerous biological outcomes. Many studies have documented instances of reciprocal communication between fibroblasts and cancer cells that functionally change cancer cell behavior. However, less is known about how these heterotypic interactions shape epithelial cell function in the absence of oncogenic transformation. Furthermore, fibroblasts are prone to undergo senescence, which is typified by an irreversible cell cycle arrest. Senescent fibroblasts are also known to secrete various cytokines into the extracellular space; a phenomenon that is termed the senescence-associated secretory phenotype (SASP). While the role of fibroblast-derived SASP factors on cancer cells has been well studied, the impact of these factors on normal epithelial cells remains poorly understood. We discovered that treatment of normal mammary epithelial cells with conditioned media from senescent fibroblasts (SASP CM) results in a caspase-dependent cell death. This capacity of SASP CM to cause cell death is maintained across multiple senescence-inducing stimuli. However, the activation of oncogenic signaling in mammary epithelial cells mitigates the ability of SASP CM to induce cell death. Despite the reliance of this cell death on caspase activation, we discovered that SASP CM does not cause cell death by the extrinsic or intrinsic apoptotic pathway. Instead, these cells die by an NLRP3, caspase-1, and gasdermin D-dependent induction of pyroptosis. Taken together, our findings reveal that senescent fibroblasts can cause pyroptosis in neighboring mammary epithelial cells, which has implications for therapeutic strategies that perturb the behavior of senescent cells.


Asunto(s)
Senescencia Celular , Células Epiteliales , Fibroblastos , Piroptosis , Caspasas/metabolismo , Células Epiteliales/citología , Fibroblastos/metabolismo , Glándulas Mamarias Humanas/citología , Humanos , Medios de Cultivo Condicionados , Células Cultivadas
18.
J Biol Chem ; 299(5): 104668, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37011862

RESUMEN

Inhibition of heat shock protein 90 (Hsp90), a prominent molecular chaperone, effectively limits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection but little is known about any interaction between Hsp90 and SARS-CoV-2 proteins. Here, we systematically analyzed the effects of the chaperone isoforms Hsp90α and Hsp90ß on individual SARS-CoV-2 viral proteins. Five SARS-CoV-2 proteins, namely nucleocapsid (N), membrane (M), and accessory proteins Orf3, Orf7a, and Orf7b were found to be novel clients of Hsp90ß in particular. Pharmacological inhibition of Hsp90 with 17-DMAG results in N protein proteasome-dependent degradation. Hsp90 depletion-induced N protein degradation is independent of CHIP, a ubiquitin E3 ligase previously identified for Hsp90 client proteins, but alleviated by FBXO10, an E3 ligase identified by subsequent siRNA screening. We also provide evidence that Hsp90 depletion may suppress SARS-CoV-2 assembly partially through induced M or N degradation. Additionally, we found that GSDMD-mediated pyroptotic cell death triggered by SARS-CoV-2 was mitigated by inhibition of Hsp90. These findings collectively highlight a beneficial role for targeting of Hsp90 during SARS-CoV-2 infection, directly inhibiting virion production and reducing inflammatory injury by preventing the pyroptosis that contributes to severe SARS-CoV-2 disease.


Asunto(s)
COVID-19 , Proteínas HSP90 de Choque Térmico , Piroptosis , SARS-CoV-2 , Virión , Humanos , COVID-19/patología , COVID-19/fisiopatología , COVID-19/virología , Proteínas HSP90 de Choque Térmico/metabolismo , SARS-CoV-2/química , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Ubiquitina-Proteína Ligasas/metabolismo , Virión/química , Virión/crecimiento & desarrollo , Virión/metabolismo , Proteínas Virales/metabolismo
19.
Lab Invest ; 104(4): 100337, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38266921

RESUMEN

Atherosclerosis is a chronic inflammatory cardiovascular disease with a high-morbidity and mortality rate. An increasing number of studies have addressed the crucial contribution of gasdermin D (GSDMD)-mediated pyroptosis, which is triggered by the inflammasomes to the development of atherosclerosis. However, the underlying mechanism is still unclear. This study aimed to uncover the detailed role of GSDMD in the development of atherosclerosis. An atherosclerotic model was established in Gsdmd-/-/Ldlr-/- mice and Gsdmd+/+/Ldlr-/- mice fed with a high-fat diet. The atherosclerotic lesions, the activation of GSDMD, and the expression level of inflammatory cytokines and chemokines were evaluated. Gsdmd deletion ameliorated the atherosclerotic lesion sizes and the infiltration of immune cells and inflammatory cells in the aortas of mice. Additionally, Gsdmd deletion suppressed the pyroptosis of macrophages and endothelial cells induced by the serum of Ldlr-/- mice fed with a high-fat diet. Furthermore, the formation of neutrophil extracellular traps was also attenuated by knockout of Gsdmd. Bone marrow chimeras confirmed that the genetic deficiency of Gsdmd in both immune cells and intrinsic cells played a role in the promotion of arteriosclerosis. Collectively, our study demonstrated that Gsdmd deletion hindered the pathogenesis of atherosclerosis by inhibiting endothelial cell and macrophage cell death, and the formation of neutrophil extracellular traps.


Asunto(s)
Aterosclerosis , Piroptosis , Animales , Ratones , Gasderminas , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Endoteliales/metabolismo , Aterosclerosis/genética , Inflamasomas/metabolismo
20.
Eur J Immunol ; 53(11): e2350455, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37471504

RESUMEN

Caspase activation results in pyroptosis, an inflammatory cell death that contributes to several inflammatory diseases by releasing inflammatory cytokines and cellular contents. Fusobacterium nucleatum is a periodontal pathogen frequently detected in human cancer and inflammatory bowel diseases. Studies have reported that F. nucleatum infection leads to NLRP3 activation and pyroptosis, but the precise activation process and disease association remain poorly understood. This study demonstrated that F. nucleatum infection exacerbates acute colitis in mice and activates pyroptosis through caspase-11-mediated gasdermin D cleavage in macrophages. Furthermore, F. nucleatum infection in colitis mice induces the enhancement of IL-1⍺ secretion from the colon, affecting weight loss and severe disease activities. Neutralization of IL-1⍺ protects F. nucleatum infected mice from severe colitis. Therefore, F. nucleatum infection facilitates inflammation in acute colitis with IL-1⍺ from colon tissue by activating noncanonical inflammasome through gasdermin D cleavage.


Asunto(s)
Colitis , Inflamasomas , Humanos , Animales , Ratones , Inflamasomas/metabolismo , Fusobacterium nucleatum/metabolismo , Gasderminas , Colitis/inducido químicamente , Caspasas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA