Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.425
Filtrar
Más filtros

Intervalo de año de publicación
1.
Physiol Rev ; 104(3): 1409-1459, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38517040

RESUMEN

The collective efforts of scientists over multiple decades have led to advancements in molecular and cellular biology-based technologies including genetic engineering and animal cloning that are now being harnessed to enhance the suitability of pig organs for xenotransplantation into humans. Using organs sourced from pigs with multiple gene deletions and human transgene insertions, investigators have overcome formidable immunological and physiological barriers in pig-to-nonhuman primate (NHP) xenotransplantation and achieved prolonged pig xenograft survival. These studies informed the design of Revivicor's (Revivicor Inc, Blacksburg, VA) genetically engineered pigs with 10 genetic modifications (10 GE) (including the inactivation of 4 endogenous porcine genes and insertion of 6 human transgenes), whose hearts and kidneys have now been studied in preclinical human xenotransplantation models with brain-dead recipients. Additionally, the first two clinical cases of pig-to-human heart xenotransplantation were recently performed with hearts from this 10 GE pig at the University of Maryland. Although this review focuses on xenotransplantation of hearts and kidneys, multiple organs, tissues, and cell types from genetically engineered pigs will provide much-needed therapeutic interventions in the future.


Asunto(s)
Animales Modificados Genéticamente , Trasplante Heterólogo , Animales , Trasplante Heterólogo/métodos , Humanos , Porcinos , Ingeniería Genética/métodos , Trasplante de Corazón/métodos
2.
Circ Res ; 134(8): e52-e71, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38497220

RESUMEN

BACKGROUND: Andersen-Tawil syndrome type 1 is a rare heritable disease caused by mutations in the gene coding the strong inwardly rectifying K+ channel Kir2.1. The extracellular Cys (cysteine)122-to-Cys154 disulfide bond in the channel structure is crucial for proper folding but has not been associated with correct channel function at the membrane. We evaluated whether a human mutation at the Cys122-to-Cys154 disulfide bridge leads to Kir2.1 channel dysfunction and arrhythmias by reorganizing the overall Kir2.1 channel structure and destabilizing its open state. METHODS: We identified a Kir2.1 loss-of-function mutation (c.366 A>T; p.Cys122Tyr) in an ATS1 family. To investigate its pathophysiological implications, we generated an AAV9-mediated cardiac-specific mouse model expressing the Kir2.1C122Y variant. We employed a multidisciplinary approach, integrating patch clamping and intracardiac stimulation, molecular biology techniques, molecular dynamics, and bioluminescence resonance energy transfer experiments. RESULTS: Kir2.1C122Y mice recapitulated the ECG features of ATS1 independently of sex, including corrected QT prolongation, conduction defects, and increased arrhythmia susceptibility. Isolated Kir2.1C122Y cardiomyocytes showed significantly reduced inwardly rectifier K+ (IK1) and inward Na+ (INa) current densities independently of normal trafficking. Molecular dynamics predicted that the C122Y mutation provoked a conformational change over the 2000-ns simulation, characterized by a greater loss of hydrogen bonds between Kir2.1 and phosphatidylinositol 4,5-bisphosphate than wild type (WT). Therefore, the phosphatidylinositol 4,5-bisphosphate-binding pocket was destabilized, resulting in a lower conductance state compared with WT. Accordingly, on inside-out patch clamping, the C122Y mutation significantly blunted Kir2.1 sensitivity to increasing phosphatidylinositol 4,5-bisphosphate concentrations. In addition, the Kir2.1C122Y mutation resulted in channelosome degradation, demonstrating temporal instability of both Kir2.1 and NaV1.5 proteins. CONCLUSIONS: The extracellular Cys122-to-Cys154 disulfide bond in the tridimensional Kir2.1 channel structure is essential for the channel function. We demonstrate that breaking disulfide bonds in the extracellular domain disrupts phosphatidylinositol 4,5-bisphosphate-dependent regulation, leading to channel dysfunction and defects in Kir2.1 energetic stability. The mutation also alters functional expression of the NaV1.5 channel and ultimately leads to conduction disturbances and life-threatening arrhythmia characteristic of Andersen-Tawil syndrome type 1.


Asunto(s)
Síndrome de Andersen , Humanos , Ratones , Animales , Síndrome de Andersen/genética , Síndrome de Andersen/metabolismo , Mutación , Miocitos Cardíacos/metabolismo , Trastorno del Sistema de Conducción Cardíaco , Disulfuros , Fosfatidilinositoles/metabolismo
3.
Annu Rev Physiol ; 84: 17-40, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34705480

RESUMEN

ß-Arrestin-1 and -2 (also known as arrestin-2 and -3, respectively) are ubiquitously expressed cytoplasmic proteins that dampen signaling through G protein-coupled receptors. However, ß-arrestins can also act as signaling molecules in their own right. To investigate the potential metabolic roles of the two ß-arrestins in modulating glucose and energy homeostasis, recent studies analyzed mutant mice that lacked or overexpressed ß-arrestin-1 and/or -2 in distinct, metabolically important cell types. Metabolic analysis of these mutant mice clearly demonstrated that both ß-arrestins play key roles in regulating the function of most of these cell types, resulting in striking changes in whole-body glucose and/or energy homeostasis. These studies also revealed that ß-arrestin-1 and -2, though structurally closely related, clearly differ in their metabolic roles under physiological and pathophysiological conditions. These new findings should guide the development of novel drugs for the treatment of various metabolic disorders, including type 2 diabetes and obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucosa , Animales , Glucosa/metabolismo , Homeostasis , Humanos , Ratones , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo
4.
Eur J Immunol ; 53(12): e2350503, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37735713

RESUMEN

The availability of genetically modified mice has facilitated the study of mammalian T cells. No model has yet been developed to study these cells in chickens, an important livestock species with a high availability of γδ T cells. To investigate the role of γδ and αß T cell populations in birds, we generated chickens lacking these T cell populations. This was achieved by genomic deletion of the constant region of the T cell receptor γ or ß chain, leading to a complete loss of either γδ or αß T cells. Our results show that a deletion of αß T cells but not γδ T cells resulted in a severe phenotype in KO chickens. The αß T cell KO chickens exhibited granulomas associated with inflammation of the spleen and the proventriculus. Immunophenotyping of αß T cell KO chickens revealed a significant increase in monocytes and expectedly the absence of CD4+ T cells including FoxP3+ regulatory T cells. Surprisingly there was no increase of γδ T cells. In addition, we observed a significant decrease in immunoglobulins, B lymphocytes, and changes in the bursa morphology. Our data reveal the consequences of T cell knockouts in chickens and provide new insights into their function in vertebrates.


Asunto(s)
Pollos , Receptores de Antígenos de Linfocitos T alfa-beta , Animales , Ratones , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Fenotipo , Linfocitos B , Mamíferos
5.
BMC Plant Biol ; 24(1): 329, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664610

RESUMEN

BACKGROUND: Advancement in agricultural biotechnology has resulted in increasing numbers of commercial varieties of genetically modified (GM) crops worldwide. Though several databases on GM crops are available, these databases generally focus on collecting and providing information on transgenic crops rather than on screening strategies. To overcome this, we constructed a novel tool named, Genetically Modified Organisms Identification Tool (GMOIT), designed to integrate basic and genetic information on genetic modification events and detection methods. RESULTS: At present, data for each element from 118 independent genetic modification events in soybean, maize, canola, and rice were included in the database. Particularly, GMOIT allows users to customize assay ranges and thus obtain the corresponding optimized screening strategies using common elements or specific locations as the detection targets with high flexibility. Using the 118 genetic modification events currently included in GMOIT as the range and algorithm selection results, a "6 + 4" protocol (six exogenous elements and four endogenous reference genes as the detection targets) covering 108 events for the four crops was established. Plasmids pGMOIT-1 and pGMOIT-2 were constructed as positive controls or calibrators in qualitative and quantitative transgene detection. CONCLUSIONS: Our study provides a simple, practical tool for selecting, detecting, and screening strategies for a sustainable and efficient application of genetic modification.


Asunto(s)
Productos Agrícolas , Glycine max , Oryza , Plantas Modificadas Genéticamente , Productos Agrícolas/genética , Plantas Modificadas Genéticamente/genética , Oryza/genética , Glycine max/genética , Zea mays/genética , Transgenes , Brassica napus/genética
6.
J Transl Med ; 22(1): 324, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566098

RESUMEN

The shortage of organs for transplantation emphasizes the urgent need for alternative solutions. Xenotransplantation has emerged as a promising option due to the greater availability of donor organs. However, significant hurdles such as hyperacute rejection and organ ischemia-reperfusion injury pose major challenges, largely orchestrated by the complement system, and activated immune responses. The complement system, a pivotal component of innate immunity, acts as a natural barrier for xenotransplantation. To address the challenges of immune rejection, gene-edited pigs have become a focal point, aiming to shield donor organs from human immune responses and enhance the overall success of xenotransplantation. This comprehensive review aims to illuminate strategies for regulating complement networks to optimize the efficacy of gene-edited pig xenotransplantation. We begin by exploring the impact of the complement system on the effectiveness of xenotransplantation. Subsequently, we delve into the evaluation of key complement regulators specific to gene-edited pigs. To further understand the status of xenotransplantation, we discuss preclinical studies that utilize gene-edited pigs as a viable source of organs. These investigations provide valuable insights into the feasibility and potential success of xenotransplantation, offering a bridge between scientific advancements and clinical application.


Asunto(s)
Edición Génica , Obtención de Tejidos y Órganos , Humanos , Animales , Porcinos , Trasplante Heterólogo , Animales Modificados Genéticamente , Rechazo de Injerto/genética
7.
Mol Ecol ; : e17530, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39282691

RESUMEN

Gene drives have great potential for suppression of pest populations and removal of exotic invasive species. CRISPR homing suppression drive is a powerful but unconfined drive, posing risks of uncontrolled spread. Thus, developing methods for confining a gene drive is of great significance. Tethered drive combines a confined system such as Toxin-Antidote Recessive Embryo drive with a strong drive such as a homing suppression drive. It can prevent the homing drive from spreading beyond the confined drive and can be constructed readily, giving it good prospects for future development. However, we have found that care must be taken when deploying tethered drive systems in some scenarios. Simulations of tethered drive in a panmictic population model reveal that successful deployment requires a proper release ratio between the two components, tailored to prevent the suppression drive from eliminating the confined system before it has the chance to spread. Spatial models where the population moves over a one-dimensional landscape display a more serious phenomenon of drive wave interference between the two tethered drive components. If the faster suppression drive wave catches up to the confined drive wave, success is still possible, but it is dependent on drive performance and ecological parameters. Two-dimensional simulations further restrict the parameter range for drive success. Thus, careful consideration must be given to drive performance and ecological conditions, as well as specific release proposals for potential application of tethered drive systems.

8.
Cytotherapy ; 26(9): 1084-1094, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38661611

RESUMEN

BACKGROUND AIMS: Chimeric antigen receptor (CAR) T-cell products are commonly generated using lentiviral vector (LV) transduction. Optimal final formulation buffer (FFB) supporting LV stability during cryostorage is crucial for cost-effective manufacturing. METHODS: To identify the ideal LV FFB composition for ex vivo CAR-T production, primary human T cells were transduced with vesicular stomatitis virus G-protein (VSV-G) -pseudotyped LVs (encoding a reporter gene or an anti-CD19-CAR). The formulations included phosphate-buffered saline (PBS), HEPES, or X-VIVOTM 15, and stabilizing excipients. The functional and viral particle titers and vector copy number were measured after LV cryopreservation and up to 24 h post-thaw incubation. CAR-Ts were produced with LVs in selected FFBs, and the resulting cells were characterized. RESULTS: Post-cryopreservation, HEPES-based FFBs provided higher LV functional titers than PBS and X-VIVOTM 15, and 10% trehalose-20 mM MgCl2 improved LV transduction efficiency in PBS and 50 mM HEPES. Thawed vectors remained stable at +4°C, while a ≤ 25% median decrease in the functional titer occurred during 24 h at room temperature. Tested excipients did not enhance LV post-thaw stability. CAR-Ts produced using LVs cryopreserved in 10% trehalose- or sucrose-20 mM MgCl2 in 50 mM HEPES showed comparable transduction rates, cell yield, viability, phenotype, and in vitro functionality. CONCLUSION: A buffer consisting of 10% trehalose-20 mM MgCl2 in 50 mM HEPES provided a feasible FFB to cryopreserve a VSV-G -pseudotyped LV for CAR-T-cell production. The LVs remained relatively stable for at least 24 h post-thaw, even at ambient temperatures. This study provides insights into process development, showing LV formulation data generated using the relevant target cell type for CAR-T-cell manufacturing.


Asunto(s)
Vectores Genéticos , Lentivirus , Receptores Quiméricos de Antígenos , Linfocitos T , Transducción Genética , Humanos , Lentivirus/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Transducción Genética/métodos , Vectores Genéticos/genética , Criopreservación/métodos , Inmunoterapia Adoptiva/métodos , Antígenos CD19
9.
Cytotherapy ; 26(7): 660-671, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38483362

RESUMEN

There is lack of guidance for immune monitoring and infection prevention after administration of ex vivo genetically modified hematopoietic stem cell therapies (GMHSCT). We reviewed current infection prevention practices as reported by providers experienced with GMHSCTs across North America and Europe, and assessed potential immunologic compromise associated with the therapeutic process of GMHSCTs described to date. Based on these assessments, and with consensus from members of the International Society for Cell & Gene Therapy (ISCT) Stem Cell Engineering Committee, we propose risk-adapted recommendations for immune monitoring, infection surveillance and prophylaxis, and revaccination after receipt of GMHSCTs. Disease-specific and GMHSCT-specific considerations should guide decision making for each therapy.


Asunto(s)
Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Humanos , Trasplante de Células Madre Hematopoyéticas/métodos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Terapia Genética/métodos , Células Madre Hematopoyéticas/citología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Infecciones/terapia , Infecciones/etiología
10.
Anal Biochem ; 693: 115584, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38843975

RESUMEN

Using the amino acid sequences and analysis of selected known structures of Bt Cry toxins, Cry1Ab, Cry1Ac, Cry1Ah, Cry1B, Cry1C and Cry1F we specifically designed immunogens. After antibodies selection, broad-spectrum polyclonal antibodies (pAbs) and monoclonal antibody (namely 1A0-mAb) were obtained from rabbit and mouse, respectively. The produced pAbs displayed broad spectrum activity by recognizing Cry1 toxin, Cry2Aa, Cry2Ab and Cry3Aa with half maximal inhibitory concentration (IC50) values of 0.12-9.86 µg/mL. Similarly, 1A0-mAb showed broad spectrum activity, recognizing all of the above Cry protein (IC50 values of 4.66-20.46 µg/mL) with the exception of Cry2Aa. Using optimizations studies, 1A10-mAb was used as a capture antibody and pAbs as detection antibody. Double antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISAs) were established for Cry1 toxin, Cry2Ab and Cry3Aa with the limit of detection (LOD) values of 2.36-36.37 ng/mL, respectively. The present DAS-ELISAs had good accuracy and precisions for the determination of Cry toxin spiked tap water, corn, rice, soybeans and soil samples. In conclusion, the present study has successfully obtained broad-spectrum pAbs and mAb. Furthermore, the generated pAbs- and mAb-based DAS-ELISAs protocol can potentially be used for the broad-spectrum monitoring of eight common subtypes of Bt Cry toxins residues in food and environmental samples.


Asunto(s)
Anticuerpos Monoclonales , Toxinas de Bacillus thuringiensis , Endotoxinas , Ensayo de Inmunoadsorción Enzimática , Proteínas Hemolisinas , Animales , Ensayo de Inmunoadsorción Enzimática/métodos , Conejos , Ratones , Endotoxinas/análisis , Endotoxinas/inmunología , Proteínas Hemolisinas/inmunología , Proteínas Hemolisinas/análisis , Proteínas Hemolisinas/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/química , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/química , Proteínas Bacterianas/análisis , Bacillus thuringiensis/química , Ratones Endogámicos BALB C
11.
Transgenic Res ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292371

RESUMEN

Genetically Modified (GM) Organisms have been used in various domains since their introduction in the 1980s. According to ISAAA data, the use of GM crops in agriculture has also increased significantly in the past 30 years. However, even after 3 decades of commercialisation, GM crops are still surrounded with controversies with different countries adopting varying approaches to their introduction in the consumer markets, owing to different stances of various stakeholders. Motivated by this multitude of opinions, and absence of knowledge mapping, this study has undertaken scientometric analysis of the publication (Web of Science) and patent (Lens.org) data about genetically modified technology use in agriculture to explore the changing knowledge patterns and technological advancements in the area. It explores both scientific and technological perspectives regarding the use of Genetically Modified Crops, by using publication as well as patent data. The findings of this study highlight the major domains of research, technology development, and leading actors in the ecosystem. These findings can be helpful in taking effective policy decisions, and furthering the research activities. It presents a composite picture using both publications and patent data. Further, it will be of utility to explore the other technologies which are replacing GM technology in agriculture in future studies.

12.
Transgenic Res ; 33(4): 243-254, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38902591

RESUMEN

Insect-protected soybean (SIP) that produces the Cry1A.105 and Cry2Ab2 insecticidal crystal proteins has been developed to provide protection from feeding damage caused by targeted lepidopteran insect pests. Typically, as part of environmental risk assessment (ERA), plant characterization is conducted, and the data submitted to regulatory agencies prior to commercialization of genetically modified (GM) crops. The objectives of this research were to: (a) compare soybean with and without the SIP trait in plant characterization field trials designed to fulfill requirements for submissions to global regulatory agencies and address China-specific considerations and (b) compare risk assessment conclusions across regions and the methodologies used in the field trials. The soybean with and without the SIP trait in temperate, tropical, and subtropical germplasm were planted in replicated multi-location trials in the USA (in 2012 and 2018) and Brazil (in 2013/2014 and 2017/2018). Agronomic, phenotypic, plant competitiveness, and survival characteristics were assessed for soybean entries with and without the SIP trait. Regardless of genetic background, growing region, season, or testing methodology, the risk assessment conclusions were the same: the evaluated insect-protected soybean did not differ from conventional soybean in evaluated agronomic, phenotypic, competitiveness, and survival characteristics indicating no change in plant pest/weed potential. These results reinforce the concept of data transportability across global regions, different seasons, germplasm, and methodologies that should be considered when assessing environmental risks of GM crops.


Asunto(s)
Glycine max , Plantas Modificadas Genéticamente , Glycine max/genética , Glycine max/parasitología , Glycine max/crecimiento & desarrollo , Animales , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Endotoxinas/genética , Brasil , Control Biológico de Vectores , Proteínas Hemolisinas/genética , Productos Agrícolas/genética , Insectos/genética , Insectos/patogenicidad , Lepidópteros/patogenicidad , Lepidópteros/genética , Proteínas Bacterianas/genética , Toxinas de Bacillus thuringiensis/genética
13.
Transgenic Res ; 33(3): 75-88, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38578501

RESUMEN

Genetically engineered (GE) cotton event MON 88702, producing Mpp51Aa2 (previously mCry51Aa2) from Bacillus thuringiensis (Bt), controls sucking pests, such as Lygus spp. (Hemiptera: Miridae) and thrips (Thysanoptera). Ingesting high doses of the insecticidal protein resulted in adverse effects on life table parameters of beneficial, predatory Orius spp. (Hemiptera: Anthocoridae). This triggered laboratory studies with more realistic food treatments, including different combinations of prey types with and without Bt protein to further characterize risks to this important group of non-target organisms. In this work, exclusive feeding of frozen spider mites (Tetranychus urticae, Acari: Tetranychidae) from Bt cotton confirmed adverse effects on longevity and fecundity of O. majusculus adults. Alternate feeding of Bt protein-containing spider mites and Bt-free Ephestia kuehniella (Lepidoptera: Pyralidae) eggs mitigated effects on longevity, but not on fecundity. When living larvae of Spodoptera littoralis (Lepidoptera: Noctuidae) from Bt cotton were fed to the predators, however, no effects on longevity and reproduction of female O. majusculus were observed, despite the fact that Bt protein concentrations in larvae were almost as high as concentrations in spider mites. When a diverse mix of prey species with various Bt protein concentrations is consumed in the field, it is unlikely that exposure of Orius spp. to Mpp51Aa2 is high enough to exert adverse effects on predator populations. MON 88702 cotton may thus be a valuable tool for integrated management of sucking pests.


Asunto(s)
Bacillus thuringiensis , Gossypium , Longevidad , Control Biológico de Vectores , Plantas Modificadas Genéticamente , Reproducción , Animales , Gossypium/genética , Gossypium/parasitología , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/parasitología , Bacillus thuringiensis/genética , Reproducción/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Conducta Predatoria , Fertilidad/genética , Spodoptera/crecimiento & desarrollo , Spodoptera/fisiología , Spodoptera/genética , Larva/crecimiento & desarrollo , Larva/genética , Toxinas de Bacillus thuringiensis/genética , Endotoxinas/genética , Endotoxinas/metabolismo , Heterópteros/genética , Heterópteros/fisiología , Heterópteros/crecimiento & desarrollo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Tetranychidae/genética , Femenino
14.
Br J Clin Pharmacol ; 90(5): 1203-1212, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565322

RESUMEN

Great advances have been made in the knowledge of development and regulatory approval of medicinal product containing genetically modified cells. Although a guideline has been available in the EU since 2012, the current updated version provides a useful guide to developers and professionals involved in the regulatory process of these medicines. This article presents the main issues communicated in that guidance, the regulators' insights and a commentary from the academic developers' point of view.


Asunto(s)
Aprobación de Drogas , Unión Europea , Guías como Asunto , Humanos , Aprobación de Drogas/legislación & jurisprudencia , Animales
15.
Conserv Biol ; 38(2): e14222, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37990833

RESUMEN

Intensification in agriculture affects many insect species, including butterflies. Insect-resistant crops, such as Bt (Bacillus thuringiensis) maize, which produces a toxin active against Lepidoptera, are an alternative to insecticide sprays. Genetically modified crops are regulated in most countries and require an environmental risk assessment. In the European Union, such assessments include the use of simulation models to predict the effects on nontarget Lepidoptera (NTL). To support the assessment of protected NTL, we extended an individual-based, stochastic, spatially explicit mathematical model (LepiX) to include a wider range of exposure scenarios, a species-sensitivity distribution, and an option for repeated exposure of individuals. We applied the model to transgenic maize DAS-1507, which expresses a high concentration of Bt toxin in pollen that may be consumed by NTL larvae on their host plants nearby. Even in the most conservative scenario without repeated exposure, mortality estimates for highly sensitive species ranged from 41% to 6% at distances of 10-1000 m from the nearest maize field. Repeated exposure can cause additional mortality and thus is relevant for the overall risk assessment. Uncertainties in both exposure and ecotoxicity estimates strongly influenced the predicted mortalities. Care should be taken to include these uncertainties in the model scenarios used for decision-making. In accordance with other modeling results, our simulations demonstrated that mean mortality may not be safe for protected species. With its high pollen expression, DAS-1507 maize may pose risks to sensitive and protected butterfly and moth species that may be difficult to manage. High expression of Bt toxin in pollen is unnecessary for controlling target pests. Consequently, we suggest that Bt maize with high pollen expression not be cultivated in regions where protected butterflies are to be conserved.


La intensificación en la agricultura afecta a muchas especies de insectos, incluyendo a las mariposas. Los cultivos resistentes a los insectos, como el maíz Bt (Bacillus thuringiensis), el cual produce una toxina activa contra los lepidópteros, son una alternativa a los insecticidas. Los cultivos genéticamente modificados (GM) están regulados en la mayoría de los países y requieren de una evaluación de riesgo ambiental. En la Unión Europea (EU), dichas evaluaciones incluyen el uso de modelos de simulación para pronosticar los efectos sobre los lepidópteros no objetivo (LNO). Para apoyar a la evaluación de LNO protegidos, extendimos un modelo matemático espacialmente explícito, estocástico y basado en el individuo (LepiX) para incluir una mayor gama de escenarios de exposición, una distribución de la sensibilidad de las especies y una opción para la exposición repetida de los individuos. Aplicamos el modelo al maíz transgénico DAS­1507, el cual expresa una alta concentración de toxina Bt en el polen que puede ser consumido por las larvas de LNO en una planta hospedera cercana. Incluso en el escenario más conservador sin una exposición repetida, las estimaciones de mortalidad para las especies altamente sensibles variaron entre el 41% y el 6% en distancias de 10­1000 m a partir del campo de maíz más cercano. La exposición repetida puede causar mortalidad adicional y por lo tanto es relevante para la evaluación general del riesgo. La incertidumbre en las estimaciones de la exposición y la ecotoxicidad influyeron fuertemente sobre la mortalidad pronosticada. Se debe tener cuidado de incluir estas incertidumbres en los escenarios modelados usados para la toma de decisiones. De acuerdo con los resultados de otros modelos, nuestras simulaciones demostraron que la mortalidad media podría no ser segura para las especies protegidas. Con su alta producción de polen, el maíz DAS­1507 podría representar un riesgo difícil de manejar para las especies de mariposas y polillas sensibles y protegidas. No se necesita una expresión elevada de la toxina Bt en el polen para controlar a las plagas. En consecuencia, sugerimos que no se cultive el maíz Bt con una alta producción de polen en las regiones en donde se busca conservar a las mariposas protegidas. Presión del maíz resistente a insectos sobre mariposas y polillas protegidas.


Asunto(s)
Mariposas Diurnas , Mariposas Nocturnas , Animales , Mariposas Diurnas/genética , Mariposas Nocturnas/genética , Zea mays/genética , Zea mays/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Productos Agrícolas , Plantas Modificadas Genéticamente/genética , Conservación de los Recursos Naturales , Insectos , Larva/genética
16.
Transpl Int ; 37: 13607, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39399753

RESUMEN

Xenotransplantation of porcine hearts has become a promising alternative to human allotransplantation, where organ demand still greatly surpasses organ availability. Before entering the clinic, however, feasibility of cardiac xenotransplantation needs to be proven, ideally in the life supporting orthotopic pig-to-nonhuman primate xenotransplantation model. In this review, we shortly outline the last three decades of research and then discuss in detail its most recent advances. These include the genetic modifications of donor pigs to overcome hyperacute rejection and coagulation dysregulation, new organ preservation methods to prevent perioperative xenograft dysfunction, experimental immunosuppressive and immunomodulatory therapies to inhibit the adaptive immune system and systemic inflammation in the recipient, growth control concepts to avoid detrimental overgrowth of the porcine hearts in nonhuman primates, and lastly, the avoidance of porcine cytomegalovirus infections in donor pigs. With these strategies, consistent survival of 6-9 months was achieved in the orthotopic xenotransplantation model, thereby fulfilling the prerequisites for the initiation of a clinical trial.


Asunto(s)
Rechazo de Injerto , Trasplante de Corazón , Primates , Trasplante Heterólogo , Animales , Trasplante de Corazón/métodos , Trasplante Heterólogo/métodos , Porcinos , Rechazo de Injerto/prevención & control , Rechazo de Injerto/inmunología , Humanos , Supervivencia de Injerto , Preservación de Órganos/métodos , Inmunosupresores/uso terapéutico , Xenoinjertos/inmunología
17.
Mol Biol Rep ; 51(1): 680, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796595

RESUMEN

Menstrual blood-derived endometrial stem cells (MenSCs) have attracted increasing interest due to their excellent safety, and lack of ethical dilemma as well as their ability to be periodically obtained in a noninvasive manner. However, although preclinical research as shown the therapeutic potential of MenSCs in several diseases, their poor cell survival and low engraftment at disease sites reduce their clinical efficacy. Flotillins (including Flot1 and Flot2) are implicated in various cellular processes, such as vesicular trafficking, signal transduction, cell proliferation, migration and apoptosis. In this study, we aimed to determine the effects of Flotillins on MenSCs survival, proliferation and migration. Our experimental results show that MenSCs were modified to overexpress Flot1 and/or Flot2 without altering their intrinsic characteristics. Flot1 and Flot2 co-overexpression promoted MenSC viability and proliferation capacity. Moreover, Flot1 or Flot2 overexpression significantly promoted the migration and inhibited the apoptosis of MenSCs compared with the negative control group, and these effects were stronger in the Flot1 and Flot2 gene co-overexpression group. However, these effects were significantly reversed after Flot1 and/or Flot2 knockdown. In conclusion, our results indicate that Flot1 and Flot2 overexpression in MenSCs improved their proliferation and migration and inhibited their apoptosis, and this might be an effective approach to improve the efficiency of cell-based therapies.


Asunto(s)
Apoptosis , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Proteínas de la Membrana , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Femenino , Endometrio/citología , Endometrio/metabolismo , Células Madre/metabolismo , Células Madre/citología , Células Cultivadas , Transducción de Señal
18.
Exp Cell Res ; 433(1): 113826, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37858836

RESUMEN

The phenotype of individuals carrying the apolipoprotein A-IMilano (apoA-IM), the mutant form of human apoA-I (apoA-I), is characterized by very low concentrations of HDL and apoA-I, and hypertriglyceridemia. Paradoxically, these subjects are not found to be at increased risk of premature cardiovascular disease compared to controls. Besides, various in vitro and in vivo studies have demonstrated that apoA-IM possesses greater anti-atherosclerotic activity compared to apoA-I. The molecular mechanisms explaining the apoA-IM carrier's phenotype and the apoA-IM higher efficacy are still not fully elucidated. To investigate such mechanisms, we crossed previously generated apoA-I (A-I k-in) or apoA-IM knock-in mice (A-IM k-in) with transgenic mice expressing human apoA-II but lacking murine apoA-I (hA-II) to generate hA-II/A-I k-in, and hA-II/A-IM k-in, respectively. These genetically modified mice completely reproduced the apoA-IM carrier's phenotype, including hypoalphalipoproteinemia and hypertriglyceridemia. Furthermore, by using the microarray methodology, we investigated the intrinsic differences in hepatic gene expression among these k-in mouse lines. The expression of 871, 1,018, 1129 and 764 genes was significantly altered between 1) hA-II/A-I and hA-II/A-IM k-in; 2) A-IM and hA-II/A-IM k-in; 3) A-I and A-IM; 4) A-I and hA-II/A-I k-in liver samples, respectively. Bioinformatics analysis highlighted that the hepatic expression of two genes, Elovl6 and Gatm, related to fatty acid/lipid and energy metabolism, respectively, is influenced by the presence of the apoA-IM natural variant and/or apoA-II.

19.
Mol Ther ; 31(12): 3376-3388, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37927037

RESUMEN

Progress in the understanding of human diseases has coincided with the advent of precision medicine, whereby the underlying genetic and molecular contributors can be used as diagnostic and therapeutic biomarkers. To address these, drug developers have designed a range of different treatment strategies, including gene therapy, which the American Society of Gene and Cell Therapy defines as the use of genetic material to treat or prevent disease. A number of approaches exist, including the delivery of genetic material in vivo or ex vivo, as well as the use of RNA species to alter gene expression in particular disease states. Through the end of the first quarter of 2023, there were more than 100 different approved gene, cell, and RNA therapies throughout the world, with over 3,700 more in clinical and preclinical development. This review comprehensively captures the landscape for such advanced therapies, including the different genetic technologies used and diseases targeted in clinical trials.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Terapia Genética , Humanos , Estados Unidos , ARN
20.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33658388

RESUMEN

Ki-67 is a nuclear protein that is expressed in all proliferating vertebrate cells. Here, we demonstrate that, although Ki-67 is not required for cell proliferation, its genetic ablation inhibits each step of tumor initiation, growth, and metastasis. Mice lacking Ki-67 are resistant to chemical or genetic induction of intestinal tumorigenesis. In established cancer cells, Ki-67 knockout causes global transcriptome remodeling that alters the epithelial-mesenchymal balance and suppresses stem cell characteristics. When grafted into mice, tumor growth is slowed, and metastasis is abrogated, despite normal cell proliferation rates. Yet, Ki-67 loss also down-regulates major histocompatibility complex class I antigen presentation and, in the 4T1 syngeneic model of mammary carcinoma, leads to an immune-suppressive environment that prevents the early phase of tumor regression. Finally, genes involved in xenobiotic metabolism are down-regulated, and cells are sensitized to various drug classes. Our results suggest that Ki-67 enables transcriptional programs required for cellular adaptation to the environment. This facilitates multiple steps of carcinogenesis and drug resistance, yet may render cancer cells more susceptible to antitumor immune responses.


Asunto(s)
Carcinogénesis/metabolismo , Regulación Neoplásica de la Expresión Génica , Antígeno Ki-67/metabolismo , Neoplasias Mamarias Animales/metabolismo , Proteínas de Neoplasias/metabolismo , Transcripción Genética , Animales , Carcinogénesis/genética , Femenino , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes , Antígeno Ki-67/genética , Neoplasias Mamarias Animales/genética , Ratones , Ratones Noqueados , Proteínas de Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA