Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 752
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant J ; 117(4): 1052-1068, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37934782

RESUMEN

Drought has a severe impact on the quality and yield of cotton. Deciphering the key genes related to drought tolerance is important for understanding the regulation mechanism of drought stress and breeding drought-tolerant cotton cultivars. Several studies have demonstrated that NAC transcription factors are crucial in the regulation of drought stress, however, the related functional mechanisms are still largely unexplored. Here, we identified that NAC transcription factor GhNAC4 positively regulated drought stress tolerance in cotton. The expression of GhNAC4 was significantly induced by abiotic stress and plant hormones. Silencing of GhNAC4 distinctly impaired the resistance to drought stress and overexpressing GhNAC4 in cotton significantly enhanced the stress tolerance. RNA-seq analysis revealed that overexpression of GhNAC4 enriched the expression of genes associated with the biosynthesis of secondary cell walls and ribosomal proteins. We confirmed that GhNAC4 positively activated the expressions of GhNST1, a master regulator reported previously in secondary cell wall formation, and two ribosomal protein-encoding genes GhRPL12 and GhRPL18p, by directly binding to their promoter regions. Overexpression of GhNAC4 promoted the expression of downstream genes associated with the secondary wall biosynthesis, resulting in enhancing secondary wall deposition in the roots, and silencing of GhRPL12 and GhRPL18p significantly impaired the resistance to drought stress. Taken together, our study reveals a novel pathway mediated by GhNAC4 that promotes secondary cell wall biosynthesis to strengthen secondary wall development and regulates the expression of ribosomal protein-encoding genes to maintain translation stability, which ultimately enhances drought tolerance in cotton.


Asunto(s)
Resistencia a la Sequía , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Ribosómicas/metabolismo , Plantas Modificadas Genéticamente/genética , Proteostasis , Fitomejoramiento , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Sequías , Gossypium/genética , Gossypium/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Plant J ; 119(1): 115-136, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38573794

RESUMEN

Salinity is frequently mentioned as a major constraint in worldwide agricultural production. Lint percentage (LP) is a crucial yield-component in cotton lint production. While the genetic factors affect cotton yield in saline soils are still unclear. Here, we employed a recombinant inbred line population in upland cotton (Gossypium hirsutum L.) and investigated the effects of salt stress on five yield and yield component traits, including seed cotton yield per plant, lint yield per plant, boll number per plant, boll weight, and LP. Between three datasets of salt stress (E1), normal growth (E2), and the difference values dataset of salt stress and normal conditions (D-value), 87, 82, and 55 quantitative trait loci (QTL) were detectable, respectively. In total, five QTL (qLY-Chr6-2, qBNP-Chr4-1, qBNP-Chr12-1, qBNP-Chr15-5, qLP-Chr19-2) detected in both in E1 and D-value were salt related QTL, and three stable QTL (qLP-Chr5-3, qLP-Chr13-1, qBW-Chr5-5) were detected both in E1 and E2 across 3 years. Silencing of nine genes within a stable QTL (qLP-Chr5-3) highly expressed in fiber developmental stages increased LP and decreased fiber length (FL), indicating that multiple minor-effect genes clustered on Chromosome 5 regulate LP and FL. Additionally, the difference in LP caused by Gh_A05G3226 is mainly in transcription level rather than in the sequence difference. Moreover, silencing of salt related gene (GhDAAT) within qBNP-Chr4-1 decreased salt tolerance in cotton. Our findings shed light on the regulatory mechanisms underlining cotton salt tolerance and fiber initiation.


Asunto(s)
Gossypium , Sitios de Carácter Cuantitativo , Estrés Salino , Gossypium/genética , Gossypium/fisiología , Sitios de Carácter Cuantitativo/genética , Estrés Salino/genética , Mapeo Cromosómico , Fibra de Algodón , Fenotipo
3.
Plant J ; 118(2): 423-436, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38184843

RESUMEN

Upland cotton, the mainly cultivated cotton species in the world, provides over 90% of natural raw materials (fibers) for the textile industry. The development of cotton fibers that are unicellular and highly elongated trichomes on seeds is a delicate and complex process. However, the regulatory mechanism of fiber development is still largely unclear in detail. In this study, we report that a homeodomain-leucine zipper (HD-ZIP) IV transcription factor, GhHOX4, plays an important role in fiber elongation. Overexpression of GhHOX4 in cotton resulted in longer fibers, while GhHOX4-silenced transgenic cotton displayed a "shorter fiber" phenotype compared with wild type. GhHOX4 directly activates two target genes, GhEXLB1D and GhXTH2D, for promoting fiber elongation. On the other hand, phosphatidic acid (PA), which is associated with cell signaling and metabolism, interacts with GhHOX4 to hinder fiber elongation. The basic amino acids KR-R-R in START domain of GhHOX4 protein are essential for its binding to PA that could alter the nuclear localization of GhHOX4 protein, thereby suppressing the transcriptional regulation of GhHOX4 to downstream genes in the transition from fiber elongation to secondary cell wall (SCW) thickening during fiber development. Thus, our data revealed that GhHOX4 positively regulates fiber elongation, while PA may function in the phase transition from fiber elongation to SCW formation by negatively modulating GhHOX4 in cotton.


Asunto(s)
Gossypium , Factores de Transcripción , Gossypium/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ácidos Fosfatidicos/metabolismo , Fibra de Algodón , Regulación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plant J ; 117(4): 999-1017, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38009661

RESUMEN

Vegetable oils are rich sources of polyunsaturated fatty acids and energy as well as valuable sources of human food, animal feed, and bioenergy. Triacylglycerols, which are comprised of three fatty acids attached to a glycerol backbone, are the main component of vegetable oils. Here, we review the development and application of multiple-level omics in major oilseeds and emphasize the progress in the analysis of the biological roles of key genes underlying seed oil content and quality in major oilseeds. Finally, we discuss future research directions in functional genomics research based on current omics and oil metabolic engineering strategies that aim to enhance seed oil content and quality, and specific fatty acids components according to either human health needs or industrial requirements.


Asunto(s)
Brassica napus , Multiómica , Humanos , Brassica napus/genética , Ácidos Grasos/metabolismo , Aceites de Plantas/metabolismo , Triglicéridos/metabolismo , Semillas/metabolismo
5.
Plant J ; 115(1): 190-204, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36994650

RESUMEN

Lignins and their antimicrobial-related polymers cooperatively enhance plant resistance to pathogens. Several isoforms of 4-coumarate-coenzyme A ligases (4CLs) have been identified as indispensable enzymes involved in lignin and flavonoid biosynthetic pathways. However, their roles in plant-pathogen interaction are still poorly understood. This study uncovers the role of Gh4CL3 in cotton resistance to the vascular pathogen Verticillium dahliae. The cotton 4CL3-CRISPR/Cas9 mutant (CR4cl) exhibited high susceptibility to V. dahliae. This susceptibility was most probably due to the reduction in the total lignin content and the biosynthesis of several phenolic metabolites, e.g., rutin, catechin, scopoletin glucoside, and chlorogenic acid, along with jasmonic acid (JA) attenuation. These changes were coupled with a significant reduction in 4CL activity toward p-coumaric acid substrate, and it is likely that recombinant Gh4CL3 could specifically catalyze p-coumaric acid to form p-coumaroyl-coenzyme A. Thus, overexpression of Gh4CL3 (OE4CL) showed increasing 4CL activity that augmented phenolic precursors, cinnamic, p-coumaric, and sinapic acids, channeling into lignin and flavonoid biosyntheses and enhanced resistance to V. dahliae. Besides, Gh4CL3 overexpression activated JA signaling that instantly stimulated lignin deposition and metabolic flux in response to pathogen, which all established an efficient plant defense response system, and inhibited V. dahliae mycelium growth. Our results propose that Gh4CL3 acts as a positive regulator for cotton resistance against V. dahliae by promoting JA signaling-mediated enhanced cell wall rigidity and metabolic flux.


Asunto(s)
Resistencia a la Enfermedad , Verticillium , Ligasas/metabolismo , Lignina/metabolismo , Verticillium/fisiología , Gossypium/genética , Gossypium/metabolismo , Enfermedades de las Plantas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
6.
BMC Genomics ; 25(1): 98, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38262967

RESUMEN

BACKGROUND: Universal stress proteins (USPs) are a class of stress-induced proteins that play a crucial role in biotic and abiotic stress responses. These proteins have previously been reported to participate directly in responses to various stress and protect plants against unfavorable environmental conditions. However, there is limited research on USPs in cotton, and systematic characterization of USPs in Gossypium species is lacking. RESULTS: In the present study, the USP genes in Gossypium hirsutum were systematically identified and classified into six distinct subfamilies. The expansion of USPs in Gossypium species is mainly caused by dispersed duplication and whole genome duplication. Notably, the USPs that have expanded through allotetraploidization events are highly conserved in the allotetraploid species. The promoter regions of GhUSPs contain a diverse range of cis-acting elements associated with stress response. The RNA-Seq analysis and RT-qPCR assays revealed a significant induction of numerous GhUSPs expressions in response to various abiotic stresses. The co-expression network of GhUSPs revealed their involvement in stress response. CONCLUSIONS: This study systematically analyzed the biological characteristics of GhUSPs and their response to abiotic stress. These findings serve as a theoretical basis for facilitating the breeding of cotton varieties in future research.


Asunto(s)
Gossypium , Fitomejoramiento , Proteínas de Choque Térmico , Perfilación de la Expresión Génica , RNA-Seq
7.
BMC Plant Biol ; 24(1): 312, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38649800

RESUMEN

BACKGROUND: DNA methylation is an important epigenetic mode of genomic DNA modification and plays a vital role in maintaining epigenetic content and regulating gene expression. Cytosine-5 DNA methyltransferase (C5-MTase) are the key enzymes in the process of DNA methylation. However, there is no systematic analysis of the C5-MTase in cotton so far, and the function of DNMT2 genes has not been studied. METHODS: In this study, the whole genome of cotton C5-MTase coding genes was identified and analyzed using a bioinformatics method based on information from the cotton genome, and the function of GhDMT6 was further validated by VIGS experiments and subcellular localization analysis. RESULTS: 33 C5-MTases were identified from three cotton genomes, and were divided into four subfamilies by systematic evolutionary analysis. After the protein domain alignment of C5-MTases in cotton, 6 highly conserved motifs were found in the C-terminus of 33 proteins involved in methylation modification, which indicated that C5-MTases had a basic catalytic methylation function. These proteins were divided into four classes based on the N-terminal difference, of which DNMT2 lacks the N-terminal regulatory domain. The expression of C5-MTases in different parts of cotton was different under different stress treatments, which indicated the functional diversity of cotton C5-MTase gene family. Among the C5-MTases, the GhDMT6 had a obvious up-regulated expression. After silencing GhDMT6 with VIGS, the phenotype of cotton seedlings under different stress treatments showed a significant difference. Compared with cotton seedlings that did not silence GhDMT6, cotton seedlings silencing GhDMT6 showed significant stress resistance. CONCLUSION: The results show that C5-MTases plays an important role in cotton stress response, which is beneficial to further explore the function of DNMT2 subfamily genes.


Asunto(s)
Sequías , Gossypium , Gossypium/genética , Gossypium/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Tolerancia a la Sal/genética , Familia de Multigenes , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Filogenia , Genoma de Planta , Genes de Plantas
8.
New Phytol ; 241(5): 2090-2107, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38168024

RESUMEN

High-affinity K+ (HAK) transporters play essential roles in facilitating root K+ uptake in higher plants. Our previous studies revealed that GhHAK5a, a member of the HAK family, is crucial for K+ uptake in upland cotton. Nevertheless, the precise regulatory mechanism governing the expression of GhHAK5a remains unclear. The yeast one-hybrid screening was performed to identify the transcription factors responsible for regulating GhHAK5a, and ethylene response factor 9 (GhERF9) was identified as a potential candidate. Subsequent dual-luciferase and electrophoretic mobility shift assays confirmed that GhERF9 binds directly to the GhHAK5a promoter, thereby activating its expression. Silencing of GhERF9 decreased the expression of GhHAK5a and exacerbated K+ deficiency symptoms in leaves, also decreased K+ uptake rate and K+ content in roots. Additionally, it was observed that the application of ethephon (an ethylene-releasing reagent) resulted in a significant upregulation of GhERF9 and GhHAK5a, accompanied by an increased rate of K+ uptake. Expectedly, GhEIN3b and GhEIL3c, the two key components involved in ethylene signaling, bind directly to the GhERF9 promoter. These findings provide valuable insights into the molecular mechanisms underlying the expression of GhHAK5a and ethylene-mediated K+ uptake and suggest a potential strategy to genetically enhance cotton K+ uptake by exploiting the EIN3/EILs-ERF9-HAK5 module.


Asunto(s)
Gossypium , Proteínas de Unión al ADN/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
New Phytol ; 242(3): 1172-1188, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501463

RESUMEN

Somatic cell totipotency in plant regeneration represents the forefront of the compelling scientific puzzles and one of the most challenging problems in biology. How somatic embryogenic competence is achieved in regeneration remains elusive. Here, we discover uncharacterized organelle-based embryogenic differentiation processes of intracellular acquisition and intercellular transformation, and demonstrate the underlying regulatory system of somatic embryogenesis-associated lipid transfer protein (SELTP) and its interactor calmodulin1 (CAM1) in cotton as the pioneer crop for biotechnology application. The synergistic CAM1 and SELTP exhibit consistent dynamical amyloplast-plasmodesmata (PD) localization patterns but show opposite functional effects. CAM1 inhibits the effect of SELTP to regulate embryogenic differentiation for plant regeneration. It is noteworthy that callus grafting assay reflects intercellular trafficking of CAM1 through PD for embryogenic transformation. This work originally provides insight into the mechanisms responsible for embryogenic competence acquisition and transformation mediated by the Ca2+/CAM1-SELTP regulatory pathway, suggesting a principle for plant regeneration and cell/genetic engineering.


Asunto(s)
Proteínas Portadoras , Plantas , Orgánulos
10.
Plant Cell Environ ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693776

RESUMEN

Partial root-zone drying irrigation (PRD) can improve water-use efficiency (WUE) without reductions in photosynthesis; however, the mechanism by which this is attained is unclear. To amend that, PRD conditions were simulated by polyethylene glycol 6000 in a root-splitting system and the effects of PRD on cotton growth were studied. Results showed that PRD decreased stomatal conductance (gs) but increased mesophyll conductance (gm). Due to the contrasting effects on gs and gm, net photosynthetic rate (AN) remained unaffected, while the enhanced gm/gs ratio facilitated a larger intrinsic WUE. Further analyses indicated that PRD-induced reduction of gs was related to decreased stomatal size and stomatal pore area in adaxial and abaxial surface which was ascribed to lower pore length and width. PRD-induced variation of gm was ascribed to the reduced liquid-phase resistance, due to increases in chloroplast area facing to intercellular airspaces and the ratio of chloroplast surface area to total mesophyll cell area exposed to intercellular airspaces, as well as to decreases in the distance between cell wall and chloroplast, and between adjacent chloroplasts. The above results demonstrate that PRD, through alterations to stomatal and mesophyll structures, decoupled gs and gm responses, which ultimately increased intrinsic WUE and maintained AN.

11.
J Exp Bot ; 75(11): 3579-3595, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38469756

RESUMEN

The potential mechanisms by which drought restricts cotton fiber cell wall synthesis and fiber strength are still not fully understood. Herein, drought experiments were conducted using two cultivars of upland cotton (Gossypium hirsutum), Dexiamian 1 (drought-tolerant) and Yuzaomian 9110 (drought-sensitive). Results showed that drought notably reduced sucrose efflux from cottonseed coats to fibers by down-regulating the expression of GhSWEET10 and GhSWEET15 in outer cottonseed coats, leading to enhanced sucrose accumulation in cottonseed coats but decreased sucrose accumulation in fibers. Within cotton fibers, drought restricted the hydrolysis of sucrose to uridine-5'-diphosphoglucose by suppressing sucrose synthase activity, and drought favored the conversion of uridine-5'-diphosphoglucose to ß-1,3-glucan rather than cellulose by up-regulating GhCALS5. Hence, cellulose content was reduced, which was the main reason for the decreased fiber strength under drought. Moreover, drought promoted lignin synthesis by up-regulating the expression of Gh4CL4, GhPAL9, GhCCR5, GhCAD11, and GhCOMT6, which partly offset the negative influence of reduced cellulose content on fiber strength. Compared with Yuzaomian 9110, the drought-tolerance of Dexiamian 1 was evidenced by the following under drought conditions: (i) greater sucrose flow from seedcoat to fiber, (ii) less ß-1,3-glucan accumulation, and (iii) more lignin biosynthesis. Overall, this study provides new insights into the mechanism of reduced cotton fiber strength induced by drought.


Asunto(s)
Fibra de Algodón , Sequías , Gossypium , Sacarosa , Sacarosa/metabolismo , Gossypium/metabolismo , Gossypium/genética , Gossypium/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Celulosa/metabolismo , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética
12.
J Exp Bot ; 75(11): 3483-3499, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38483180

RESUMEN

Yield of cotton (Gossypium hirsutum) does not always fall with high temperature (HT) even though this induces significant reductions in fruit retention. To investigate the underlying mechanisms, a greenhouse experiment was conducted with two temperature regimes [control treatment, 28 °C; high temperature (HT), 34 °C] for 7 d. Results showed HT did not significantly influence cotton yield, but reduced boll number and increased boll weight. The 13C distribution ratio of the leaf subtending the cotton boll (LSCB) decreased while that of the cotton boll increased under HT. Transcriptomic and proteomic analyses of the LSCB revealed up-regulated genes involved in cytokinin and jasmonic acid synthesis, as well as SWEET15 (GH_D01G0218), which positively regulated photosynthesis and transport photosynthate, ultimately leading to increased boll weight. After 7 d recovery from HT, the 13C distribution ratio of the LSCB increased while that of the cotton boll decreased. However, boll weight still increased, which was related to increased amylase and sucrose phosphate synthase activities and up-regulated sucrose transport genes in the main-stem leaf and capsule wall. Thus, both accelerated sucrose synthesis and transport in the LSCB under HT and increased sucrose supply ability of the main-stem leaf and capsule wall after recovery from HT contributed to an increased boll weight, which finally maintained cotton yield.


Asunto(s)
Gossypium , Fotosíntesis , Gossypium/metabolismo , Gossypium/genética , Gossypium/crecimiento & desarrollo , Gossypium/fisiología , Calor , Metabolismo de los Hidratos de Carbono , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Regulación de la Expresión Génica de las Plantas
13.
Transgenic Res ; 33(3): 75-88, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38578501

RESUMEN

Genetically engineered (GE) cotton event MON 88702, producing Mpp51Aa2 (previously mCry51Aa2) from Bacillus thuringiensis (Bt), controls sucking pests, such as Lygus spp. (Hemiptera: Miridae) and thrips (Thysanoptera). Ingesting high doses of the insecticidal protein resulted in adverse effects on life table parameters of beneficial, predatory Orius spp. (Hemiptera: Anthocoridae). This triggered laboratory studies with more realistic food treatments, including different combinations of prey types with and without Bt protein to further characterize risks to this important group of non-target organisms. In this work, exclusive feeding of frozen spider mites (Tetranychus urticae, Acari: Tetranychidae) from Bt cotton confirmed adverse effects on longevity and fecundity of O. majusculus adults. Alternate feeding of Bt protein-containing spider mites and Bt-free Ephestia kuehniella (Lepidoptera: Pyralidae) eggs mitigated effects on longevity, but not on fecundity. When living larvae of Spodoptera littoralis (Lepidoptera: Noctuidae) from Bt cotton were fed to the predators, however, no effects on longevity and reproduction of female O. majusculus were observed, despite the fact that Bt protein concentrations in larvae were almost as high as concentrations in spider mites. When a diverse mix of prey species with various Bt protein concentrations is consumed in the field, it is unlikely that exposure of Orius spp. to Mpp51Aa2 is high enough to exert adverse effects on predator populations. MON 88702 cotton may thus be a valuable tool for integrated management of sucking pests.


Asunto(s)
Bacillus thuringiensis , Gossypium , Longevidad , Control Biológico de Vectores , Plantas Modificadas Genéticamente , Reproducción , Animales , Gossypium/genética , Gossypium/parasitología , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/parasitología , Bacillus thuringiensis/genética , Reproducción/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Conducta Predatoria , Fertilidad/genética , Spodoptera/crecimiento & desarrollo , Spodoptera/fisiología , Spodoptera/genética , Larva/crecimiento & desarrollo , Larva/genética , Toxinas de Bacillus thuringiensis/genética , Endotoxinas/genética , Endotoxinas/metabolismo , Heterópteros/genética , Heterópteros/fisiología , Heterópteros/crecimiento & desarrollo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Tetranychidae/genética , Femenino
14.
Plant Cell Rep ; 43(3): 76, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381221

RESUMEN

KEY MESSAGE: GhHB14_D10 and GhREV_D5 regulated secondary cell wall formation and played an important role in fiber development. Cotton serves as an important source of natural fiber, and the biosynthesis of the secondary cell wall plays a pivotal role in determining cotton fiber quality. Nevertheless, the intricacies of this mechanism in cotton fiber remain insufficiently elucidated. This study investigates the functional roles of GhHB14_D10 and GhREV_D5, two HD-ZIP III transcription factors, in secondary cell wall biosynthesis in cotton fibers. Both GhHB14_D10 and GhREV_D5 were found to be localized in the nucleus with transcriptional activation activity. Ectopic overexpression of GhHB14_D10 and GhREV_D5 in Arabidopsis resulted in changed xylem differentiation, secondary cell wall deposition, and expression of genes related to the secondary cell wall. Silencing of GhHB14_D10 and GhREV_D5 in cotton led to enhanced fiber length, reduced cell wall thickness, cellulose contents and expression of secondary cell wall-related genes. Moreover, GhHB14_D10's direct interaction with GhREV_D5, and transcriptional regulation of cellulose biosynthesis genes GhCesA4-4 and GhCesA7-2 revealed their collaborative roles in secondary cell wall during cotton fiber development. Overall, these results shed light on the roles of GhHB14_D10 and GhREV_D5 in secondary cell wall biosynthesis, offering a strategy for the genetic improvement of cotton fiber quality.


Asunto(s)
Arabidopsis , Fibra de Algodón , Factores de Transcripción/genética , Gossypium/genética , Arabidopsis/genética , Pared Celular , Celulosa
15.
Plant Dis ; 108(5): 1363-1373, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105453

RESUMEN

Many oomycete species are associated with the seedlings of crops, including upland cotton (Gossypium hirsutum L.), which leads to annual threats. The diversity of oomycete species in Alabama needs to be better understood since the last survey of oomycetes associated with cotton in Alabama was 20 years ago-before significant updates to taxonomy and improvements in identification of oomycetes using molecular tools. Our current study aimed to identify oomycetes associated with Alabama cotton seedlings, correlate diversity with soil edaphic factors, and assess virulence toward cotton seed. Thirty symptomatic cotton seedlings were collected independently from 25 fields in 2021 and 2022 2 to 4 weeks after planting. Oomycetes were isolated by plating root sections onto a semiselective medium. The internal transcribed spacer (ITS) region was sequenced to identify the resulting isolates. A seed virulence assay was conducted in vitro to verify pathogenicity, and 347 oomycete isolates were obtained representing 36 species. Northern Alabama soils had the richest oomycete communities and a greater silt and clay concentration than sandier soils in the central and southern coastal plains. Globisporangium irregulare and Phytophthora nicotianae were consistently recovered from cotton roots in both years. Globisporangium irregulare was pathogenic and recovered from all Alabama regions, whereas P. nicotianae was pathogenic but recovered primarily in areas with lower sand content in northern Alabama. Many oomycete species have not been previously reported in Alabama or the southeastern United States. Altogether, this knowledge will help facilitate effective management strategies for cotton seedling diseases caused by oomycetes in Alabama and the United States.


Asunto(s)
Gossypium , Oomicetos , Enfermedades de las Plantas , Plantones , Gossypium/microbiología , Alabama , Plantones/microbiología , Oomicetos/genética , Oomicetos/clasificación , Enfermedades de las Plantas/microbiología , Microbiología del Suelo , Suelo , Biodiversidad , Virulencia , Raíces de Plantas/microbiología
16.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339199

RESUMEN

Multiple cis-acting elements are present in promoter sequences that play critical regulatory roles in gene transcription and expression. In this study, we isolated the cotton FDH (Fiddlehead) gene promoter (pGhFDH) using a real-time reverse transcription-PCR (qRT-PCR) expression analysis and performed a cis-acting elements prediction analysis. The plant expression vector pGhFDH::GUS was constructed using the Gateway approach and was used for the genetic transformation of Arabidopsis and upland cotton plants to obtain transgenic lines. Histochemical staining and a ß-glucuronidase (GUS) activity assay showed that the GUS protein was detected in the roots, stems, leaves, inflorescences, and pods of transgenic Arabidopsis thaliana lines. Notably, high GUS activity was observed in different tissues. In the transgenic lines, high GUS activity was detected in different tissues such as leaves, stalks, buds, petals, androecium, endosperm, and fibers, where the pGhFDH-driven GUS expression levels were 3-10-fold higher compared to those under the CaMV 35S promoter at 10-30 days post-anthesis (DPA) during fiber development. The results indicate that pGhFDH can be used as an endogenous constitutive promoter to drive the expression of target genes in various cotton tissues to facilitate functional genomic studies and accelerate cotton molecular breeding.


Asunto(s)
Arabidopsis , Gossypium , Gossypium/genética , Gossypium/metabolismo , Regiones Promotoras Genéticas , Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glucuronidasa/genética , Glucuronidasa/metabolismo
17.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397116

RESUMEN

Verticillium wilt (VW) is an important and widespread disease of cotton and once established is long-lived and difficult to manage. In Australia, the non-defoliating pathotype of Verticillium dahliae is the most common, and extremely virulent. Breeding cotton varieties with increased VW resistance is the most economical and effective method of controlling this disease and is greatly aided by understanding the genetics of resistance. This study aimed to investigate VW resistance in 240 F7 recombinant inbred lines (RIL) derived from a cross between MCU-5, which has good resistance, and Siokra 1-4, which is susceptible. Using a controlled environment bioassay, we found that resistance based on plant survival or shoot biomass was complex but with major contributions from chromosomes D03 and D09, with genomic prediction analysis estimating a prediction accuracy of 0.73 based on survival scores compared to 0.36 for shoot biomass. Transcriptome analysis of MCU-5 and Siokra 1-4 roots uninfected or infected with V. dahliae revealed that the two cultivars displayed very different root transcriptomes and responded differently to V. dahliae infection. Ninety-nine differentially expressed genes were located in the two mapped resistance regions and so are potential candidates for further identifying the genes responsible for VW resistance.


Asunto(s)
Verticillium , Fitomejoramiento , Mapeo Cromosómico , Sitios de Carácter Cuantitativo , Perfilación de la Expresión Génica , Gossypium/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Regulación de la Expresión Génica de las Plantas
18.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38339155

RESUMEN

Annexins (ANNs) are a structurally conserved protein family present in almost all plants. In the present study, 27 GhANNs were identified in cotton and were unevenly distributed across 14 chromosomes. Transcriptome data and RT-qPCR results revealed that multiple GhANNs respond to at least two abiotic stresses. Similarly, the expression levels of GhANN4 and GhANN11 were significantly upregulated under heat, cold, and drought stress. Using virus-induced gene silencing (VIGS), functional characterization of GhANN4 and GhANN11 revealed that, compared with those of the controls, the leaf wilting of GhANN4-silenced plants was more obvious, and the activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) were lower under NaCl and PEG stress. Moreover, the expression of stress marker genes (GhCBL3, GhDREB2A, GhDREB2C, GhPP2C, GhRD20-2, GhCIPK6, GhNHX1, GhRD20-1, GhSOS1, GhSOS2 and GhSnRK2.6) was significantly downregulated in GhANN4-silenced plants after stress. Under cold stress, the growth of the GHANN11-silenced plants was significantly weaker than that of the control plants, and the activities of POD, SOD, and CAT were also lower. However, compared with those of the control, the elasticity and orthostatic activity of the GhANN11-silenced plants were greater; the POD, SOD, and CAT activities were higher; and the GhDREB2C, GhHSP, and GhSOS2 expression levels were greater under heat stress. These results suggest that different GhANN family members respond differently to different types of abiotic stress.


Asunto(s)
Genoma de Planta , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Estrés Fisiológico/genética , Superóxido Dismutasa/metabolismo , Gossypium/genética , Gossypium/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia
19.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732136

RESUMEN

In the context of sustainable agriculture and biomaterial development, understanding and enhancing plant secondary cell wall formation are crucial for improving crop fiber quality and biomass conversion efficiency. This is especially critical for economically important crops like upland cotton (Gossypium hirsutum L.), for which fiber quality and its processing properties are essential. Through comprehensive genome-wide screening and analysis of expression patterns, we identified a particularly high expression of an R2R3 MYB transcription factor, GhMYB52 Like, in the development of the secondary cell wall in cotton fiber cells. Utilizing gene-editing technology to generate a loss-of-function mutant to clarify the role of GhMYB52 Like, we revealed that GhMYB52 Like does not directly contribute to cellulose synthesis in cotton fibers but instead represses a subset of lignin biosynthesis genes, establishing it as a lignin biosynthesis inhibitor. Concurrently, a substantial decrease in the lint index, a critical measure of cotton yield, was noted in parallel with an elevation in lignin levels. This study not only deepens our understanding of the molecular mechanisms underlying cotton fiber development but also offers new perspectives for the molecular improvement of other economically important crops and the enhancement of biomass energy utilization.


Asunto(s)
Fibra de Algodón , Regulación de la Expresión Génica de las Plantas , Gossypium , Lignina , Proteínas de Plantas , Lignina/biosíntesis , Gossypium/genética , Gossypium/metabolismo , Gossypium/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Pared Celular/metabolismo , Pared Celular/genética , Celulosa/biosíntesis , Celulosa/metabolismo , Vías Biosintéticas
20.
J Nematol ; 56(1): 20240014, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38650603

RESUMEN

The reniform nematode, Rotylenchulus reniformis, is a major yield-limiting pest of upland cotton (Gossypium hirsutum) in the United States that has been steadily increasing in incidence in many states. Reniform nematode-resistant cotton cultivars have recently become commercially available for cotton producers; however, few field trials have evaluated their efficacy as a nematode management tool. The aim of this study was to evaluate reniform nematode population development, plant growth, and seed cotton yield of reniform nematode-resistant cotton cultivars in two nematode-infested fields in Louisiana. Replicated small-plot field trials were conducted in St. Joseph, LA (NERS field) and Winnsboro, LA (MRRS field) during the 2022 and 2023 growing seasons. In 2022, cultivars evaluated included: (1) DP 1646 B2XF (susceptible/tolerant), (2) DP 2141NR B3XF (resistant), (3) PHY 332 W3FE (resistant), (4) PHY 411 W3FE (resistant), and (5) PHY 443 W3FE (resistant). In 2023, an additional susceptible cotton cultivar, PHY 340 W3FE, was also included. All nematode-resistant cotton cultivars evaluated provided suppression of reniform nematode population development relative to that of the susceptible cotton cultivars, with suppression of nematode soil population densities at harvest ranging from 49 - 81% relative to DP 1646 B2XF. The resistant cultivar PHY 411 W3FE provided the most consistent suppression of reniform nematode population development, reducing reniform nematode soil population densities at harvest in both field locations and both trial years. In contrast, DP 2141NR B3XF only reduced soil population densities at harvest in the NERS field in 2023. Despite relatively consistent nematode suppression and improvements in plant vigor ratings and canopy coverage associated with the resistant cotton cultivars, a yield increase was only observed with PHY 332 W3FE and PHY 411 W3FE planted at the NERS field in 2023. Despite strong resistance to reniform nematode in the evaluated cotton cultivars, nematode soil population densities still increased during the growing season in plots planted with resistant cotton cultivars, emphasizing the need for additional management tactics to use alongside host resistance. This study indicates that new reniform nematode-resistant cotton cultivars show promising potential to reduce nematode population development during the growing season in Louisiana.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA