Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Environ Sci (China) ; 138: 102-111, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135379

RESUMEN

Aiming at purification of NOx from hydrogen internal combustion engines (HICEs), the hydrogen selective catalytic reduction (H2-SCR) reaction was investigated over a series of Pt/KFI zeolite catalysts. H2 can readily reduce NOx to N2 and N2O while O2 inhibited the deNOx efficiency by consuming the reductant H2. The Pt/KFI zeolite catalysts with Pt loading below 0.1 wt.% are optimized H2-SCR catalysts due to its suitable operation temperature window since high Pt loading favors the H2-O2 reaction which lead to the insufficient of reactants. Compared to metal Pt0 species, Ptδ+ species showed lower activation energy of H2-SCR reaction and thought to be as reasonable active sites. Further, Eley-Rideal (E-R) reaction mechanism was proposed as evidenced by the reaction orders in kinetic studies. Last, the optimized reactor was designed with hybrid Pt/KFI catalysts with various Pt loading which achieve a high NOx conversion in a wide temperature range.


Asunto(s)
Hidrógeno , Zeolitas , Hidrógeno/química , Oxidación-Reducción , Cinética , Amoníaco/química , Catálisis
2.
Environ Res ; 227: 115707, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36931382

RESUMEN

Superior de-NOx activity and N2 selectivity of the Pd/ZSM-5 catalyst was observed at low temperature (<200 °C) for the selective catalytic reduction of NOx by H2 (H2-SCR). Various Pd/ZSM-5 catalysts were prepared by calcinating at different temperatures (e.g., 500 °C, 650 °C, 750 °C, and 850 °C) and treated at reductive conditions before the H2-SCR reaction was performed. Among the prepared catalysts, the one prepared at the calcination temperature at 750 °C resulted in 96.7% NOx conversion and 96.8% N2 selectivity at 150 °C. Based on the H2-O2 reaction, the higher activity of the Pd/ZSM-5 catalyst calcined at 750 °C was attributed to its superior H2 activation ability for the H2-SCR reaction. The combined X-ray diffraction (XRD), temperature-programmed hydride decomposition (TPHD), and transmission electron microscopy (TEM) results revealed that highly dispersed Pd particles were generated on the catalyst calcined at 750 °C, while large Pd agglomerates were formed on the one calcined at 500 °C. It can be concluded that the catalytic activity of Pd/ZSM-5 improves by optimizing the calcination temperature, resulting in high Pd dispersion. Moreover, the Pd catalyst calcined at 750 °C showed high resistance to CO, maintaining >94% NOx conversion at 175 °C under 1000 ppm CO in the feed gas. Therefore, the catalyst calcined at 750 °C can be potentially used for industrial applications because of its simple preparation method and high resistance to CO.


Asunto(s)
Amoníaco , Frío , Temperatura , Catálisis , Oxidación-Reducción
3.
Nanomaterials (Basel) ; 12(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35407160

RESUMEN

Selective catalytic reduction (SCR) is probably the most widespread process for limiting NOx emissions under lean conditions (O2 excess) and, in addition to the currently used NH3 or urea as a reducing agent, many other alternative reductants could be more promising, such as CxHy/CxHyOz, H2 and CO. Different catalysts have been used thus far for NOx abatement from mobile (automotive) and stationary (fossil fuel combustion plants) sources, however, perovskites demand considerable attention, partly due to their versatility to combine and incorporate various chemical elements in their lattice that favor deNOx catalysis. In this work, the CxHy/CxHyOz-, H2-, and CO-SCR of NOx on perovskite-based catalysts is reviewed, with particular emphasis on the role of the reducing agent nature and perovskite composition. An effort has also been made to further discuss the correlation between the physicochemical properties of the perovskite-based catalysts and their deNOx activity. Proposed kinetic models are presented as well, that delve deeper into deNOx mechanisms over perovskite-based catalysts and potentially pave the way for further improving their deNOx efficiency.

4.
Chem Asian J ; 16(5): 530-537, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33450118

RESUMEN

H2 -SCR is served as the promising technology for the controlling of NOx emission, and the Pd-based derivative catalyst exhibited high NOx reduction performance. Effectively regulating the electronic configuration of the active component is favorable to the rational optimization of noble Pd. In this work, a series of Pr1-x Cex Mn1-y Pdy O3 @Ni were successfully synthesized and exhibited superior NO conversion efficiency at low temperatures. 92.7 % conversion efficiency was achieved at 200 °C over Pr0.9 Ce0.1 Mn0.9 Pd0.1 O3 @Ni in the presence of 4 % O2 with a GHSV of 32000 h-1 . Meanwhile, the outstanding performance was obtained in the resistance to SO2 (200 ppm) and H2 O (8 %). Deduced from the results of XRD, Raman, XPS, and H2 -TPR, the modification of d orbit states in palladium was confirmed originating from the incorporation in the B site of Pr0.9 Ce0.1 Mn0.9 Pd0.1 O3 . The existence of higher valence (Pd3+ and Pd4+ ) than the bivalence in Pr0.9 Ce0.1 Mn0.9 Pd0.1 O3 catalyst was evidenced by XPS analysis. Our research provides a new sight into the H2 -SCR through the higher utilization of Pd.

5.
Environ Sci Pollut Res Int ; 24(1): 676-684, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27744591

RESUMEN

In this paper, Pt supports on carbon black powder (Vulcan XC-72) were synthesized via a hydrothermal method for selective catalytic reduction (SCR) of NO with H2 in the presence of 2 vol% O2 over a wide temperature of 20-300 °C. The results showed that the 3 and 5 wt% Pt/C catalysts resulted in high NO conversion (>90 %) over a temperature range of 120 to 300 °C, and the maximum NO conversion of 98.6 % was achieved over 5 wt% Pt/C at 120 °C. Meanwhile, the influence of SO2 and H2O on the catalyst performance of 3 wt% Pt/C was investigated. The catalysts exhibited good SO2 poisoning resistance when the SO2 concentration was lower than 260 ppm. Moreover, a positive effect on NO conversion was detected with the addition of 3 and 5 vol% H2O in the feed gas stream. Graphical abstract TEM image and good NO conversion performance of the Pt/C catalysts.


Asunto(s)
Contaminantes Atmosféricos/química , Óxido Nítrico/química , Platino (Metal)/química , Hollín/química , Dióxido de Azufre/química , Catálisis , Temperatura , Agua/química
6.
ACS Comb Sci ; 18(4): 195-202, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-26982816

RESUMEN

H2 selective catalytic reduction (H2-SCR) has been proposed as a promising technology for controlling NOx emission because hydrogen is clean and does not emit greenhouse gases. We demonstrate that Pt doped into a nickel ferrite spinel structure can afford a high catalytic activity of H2-SCR. A superior NO conversion of 96% can be achieved by employing a novel NiFe1.95Pt0.05O4 spinel-type catalyst at 60 °C. This novel catalyst is different from traditional H2-SCR catalysts, which focus on the role of metallic Pt species and neglect the effect of oxidized Pt states in the reduction of NO. The obtained Raman and XPS spectra indicate that Pt in the spinel lattice has different valence states with Pt(2+) occupying the tetrahedral sites and Pt(4+) residing in the octahedral ones. These oxidation states of Pt enhance the back-donation process, and the lack of filling electrons of the 5d band causes Pt to more readily hybridize with the 5σ orbital of the NO molecule, especially for octahedral Pt(4+), which enhances the NO chemisorption on the Pt sites. We also performed DFT calculations to confirm the enhancement of adsorption of NO onto Pt sites when doped into the Ni-Fe spinel structure. The prepared Pt/Ni-Fe catalysts indicate that increasing the dispersity of Pt on the surfaces of the individual Ni-Fe spinel-type catalysts can efficiently promote the H2-SCR activity. Our demonstration provides new insight into designing advanced catalysts for H2-SCR.


Asunto(s)
Hidrógeno/química , Hierro/química , Níquel/química , Óxido Nítrico/química , Oxígeno/química , Platino (Metal)/química , Temperatura , Catálisis , Técnicas Químicas Combinatorias , Oxidación-Reducción , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA