Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Appl Environ Microbiol ; 88(2): e0189521, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34757823

RESUMEN

Cyclic dimeric GMP (c-di-GMP) is a universal second messenger in bacteria. A large number of c-di-GMP-related diguanylate cyclases (DGCs), phosphodiesterases (PDEs), and effectors are responsible for the complexity and dynamics of c-di-GMP signaling. Some of these components employ various methods to avoid undesired cross talk to maintain signaling specificity. The synthesis of the antibiotic HSAF (heat-stable antifungal factor) in Lysobacter enzymogenes is regulated by a specific c-di-GMP signaling pathway that includes a PDE, LchP, and a c-di-GMP effector, Clp (also a transcriptional regulator). In the present study, from among 19 DGCs, we identified a diguanylate cyclase, LchD, that participates in this pathway. Subsequent investigation indicates that LchD and LchP physically interact and that the catalytic center of LchD is required for both the formation of the LchD-LchP complex and HSAF production. All the detected phenotypes support that LchD and LchP display local c-di-GMP signaling to regulate HSAF biosynthesis. Although direct evidence is lacking, our investigation, which shows that the interaction between a DGC and a PDE maintains the specificity of c-di-GMP signaling, suggests the possibility of the existence of local c-di-GMP pools in bacteria. IMPORTANCE Cyclic dimeric GMP (c-di-GMP) is a universal second messenger in bacteria. The signaling of c-di-GMP is complex and dynamic, and it is mediated by a large number of components, including c-di-GMP synthases (diguanylate cyclases [DGCs]), c-di-GMP-degrading enzymes (phosphodiesterases [PDEs]), and c-di-GMP effectors. These components deploy various methods to avoid undesired cross talk to maintain signaling specificity. In the present study, we identified a DGC that interacted with a PDE to specifically regulate antibiotic biosynthesis in L. enzymogenes. We provide direct evidence to show that the DGC and PDE form a complex and also indirect evidence to argue that they may balance a local c-di-GMP pool to control antibiotic production. These results represent an important finding regarding the mechanism of a DGC and PDE pair to control the expression of specific c-di-GMP signaling pathways.


Asunto(s)
Proteínas de Escherichia coli , Hidrolasas Diéster Fosfóricas , Antibacterianos , Proteínas Bacterianas/genética , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Lysobacter , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética
2.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32144106

RESUMEN

In Lysobacter enzymogenes OH11, RpfB1 and RpfB2 were predicted to encode acyl coenzyme A (CoA) ligases. RpfB1 is located in the Rpf gene cluster. Interestingly, we found an RpfB1 homolog (RpfB2) outside this canonical gene cluster, and nothing is known about its functionality or mechanism. Here, we report that rpfB1 and rpfB2 can functionally replace EcFadD in the Escherichia colifadD mutant JW1794. RpfB activates long-chain fatty acids (n-C16:0 and n-C18:0) for the corresponding fatty acyl-CoA ligase (FCL) activity in vitro, and Glu-361 plays critical roles in the catalytic mechanism of RpfB1 and RpfB2. Deletion of rpfB1 and rpfB2 resulted in significantly increased heat-stable antifungal factor (HSAF) production, and overexpression of rpfB1 or rpfB2 completely suppressed HSAF production. Deletion of rpfB1 and rpfB2 resulted in increased L. enzymogenes diffusible signaling factor 3 (LeDSF3) synthesis in L. enzymogenes Overall, our results showed that changes in intracellular free fatty acid levels significantly altered HSAF production. Our report shows that intracellular free fatty acids are required for HSAF production and that RpfB affects HSAF production via FCL activity. The global transcriptional regulator Clp directly regulated the expression of rpfB1 and rpfB2 In conclusion, these findings reveal new roles of RpfB in antibiotic biosynthesis in L. enzymogenesIMPORTANCE Understanding the biosynthetic and regulatory mechanisms of heat-stable antifungal factor (HSAF) could improve the yield in Lysobacter enzymogenes Here, we report that RpfB1 and RpfB2 encode acyl coenzyme A (CoA) ligases. Our research shows that RpfB1 and RpfB2 affect free fatty acid metabolism via fatty acyl-CoA ligase (FCL) activity to reduce the substrate for HSAF synthesis and, thereby, block HSAF production in L. enzymogenes Furthermore, these findings reveal new roles for the fatty acyl-CoA ligases RpfB1 and RpfB2 in antibiotic biosynthesis in L. enzymogenes Importantly, the novelty of this work is the finding that RpfB2 lies outside the Rpf gene cluster and plays a key role in HSAF production, which has not been reported in other diffusible signaling factor (DSF)/Rpf-producing bacteria.


Asunto(s)
Antifúngicos/metabolismo , Proteínas Bacterianas/genética , Coenzima A Ligasas/genética , Lysobacter/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Coenzima A Ligasas/química , Coenzima A Ligasas/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Lysobacter/metabolismo , Oxidación-Reducción , Alineación de Secuencia
3.
Molecules ; 25(10)2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32414039

RESUMEN

The biocontrol agent Lysobacter enzymogenes OH11 produces several structurally distinct antibiotic compounds, including the antifungal HSAF (Heat Stable Antifungal Factor) and alteramides, along with their 3-dehydroxyl precursors (3-deOH). We previously showed that the 3-hydroxylation is the final step of the biosynthesis and is also a key structural moiety for the antifungal activity. However, the procedure through which OH11 regulates the 3-hydroxylation is still not clear. In OH11, the gene orf3232 was predicted to encode a TetR regulator (LeTetR) with unknown function. Here, we deleted orf3232 and found that the LeTetR mutant produced very little HSAF and alteramides, while the 3-deOH compounds were not significantly affected. The production of HSAF and alteramides was restored in orf3232-complemented mutant. qRT-PCR showed that the deletion of orf3232 impaired the transcription of a putative fatty acid hydroxylase gene, orf2195, but did not directly affect the expression of the HSAF biosynthetic gene cluster (hsaf). When an enzyme extract from E. coli expressing the fatty acid hydroxylase gene, hsaf-orf7, was added to the LeTetR mutant, the production of HSAF and alteramides increased by 13-14 fold. This study revealed a rare function of the TetR family regulator, which positively controls the final step of the antifungal biosynthesis and thus controls the antifungal activity of the biocontrol agent.


Asunto(s)
Antifúngicos/metabolismo , Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Lysobacter , Familia de Multigenes , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hidroxilación , Lysobacter/genética , Lysobacter/metabolismo
4.
Appl Environ Microbiol ; 84(3)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29101199

RESUMEN

Lysobacter enzymogenes is a Gram-negative, environmentally ubiquitous bacterium that produces a secondary metabolite, called heat-stable antifungal factor (HSAF), as an antifungal factor against plant and animal fungal pathogens. 4-Hydroxybenzoic acid (4-HBA) is a newly identified diffusible factor that regulates HSAF synthesis via L. enzymogenes LysR (LysRLe), an LysR-type transcription factor (TF). Here, to identify additional TFs within the 4-HBA regulatory pathway that control HSAF production, we reanalyzed the LenB2-based transcriptomic data, in which LenB2 is the enzyme responsible for 4-HBA production. This survey led to identification of three TFs (Le4806, Le4969, and Le3904). Of them, LarR (Le4806), a member of the MarR family proteins, was identified as a new TF that participated in the 4-HBA-dependent regulation of HSAF production. Our data show the following: (i) that LarR is a downstream component of the 4-HBA regulatory pathway controlling the HSAF level, while LysRLe is the receptor of 4-HBA; (ii) that 4-HBA and LysRLe have opposite regulatory effects on larR transcription whereby larR transcript is negatively modulated by 4-HBA while LysRLe, in contrast, exerts positive transcriptional regulation by directly binding to the larR promoter without being affected by 4-HBA in vitro; (iii) that LarR, similar to LysRLe, can bind to the promoter of the HSAF biosynthetic gene operon, leading to positive regulation of HSAF production; and (iv) that LarR and LysRLe cannot interact and instead control HSAF biosynthesis independently. These results outline a previously uncharacterized mechanism by which biosynthesis of the antibiotic HSAF in L. enzymogenes is modulated by the interplay of 4-HBA, a diffusible molecule, and two different TFs.IMPORTANCE Bacteria use diverse chemical signaling molecules to regulate a wide range of physiological and cellular processes. 4-HBA is an "old" chemical molecule that is produced by diverse bacterial species, but its regulatory function and working mechanism remain largely unknown. We previously found that 4-HBA in L. enzymogenes could serve as a diffusible factor regulating HSAF synthesis via LysRLe Here, we further identified LarR, an MarR family protein, as a second TF that participates in the 4-HBA-dependent regulation of HSAF biosynthesis. Our results dissected how LarR acts as a protein linker to connect 4-HBA and HSAF synthesis, whereby LarR also has cross talk with LysRLe Thus, our findings not only provide fundamental insight regarding how a diffusible molecule (4-HBA) adopts two different types of TFs for coordinating HSAF biosynthesis but also show the use of applied microbiology to increase the yield of the antibiotic HSAF by modification of the 4-HBA regulatory pathway in L. enzymogenes.


Asunto(s)
Antifúngicos/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Lysobacter/genética , Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Calor , Lysobacter/metabolismo , Parabenos/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Int J Mol Sci ; 19(7)2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29932128

RESUMEN

Alternaria alternata (Fries) Keissler is a lethal pear pathogen that causes leaf black spot disease of pear in Southern China. Heat-stable activity factor (HSAF) is a polycyclic tetramate macrolactam (PTM) produced by Lysobacter enzymogenes and many other microbes with a broad-spectrum antifungal activity against many filamentous fungi. In this study, we evaluated the antifungal effect of HSAF against A. alternata and proposed its antifungal mechanism in A. alternata. We report that HSAF inhibited the mycelial growth of A. alternata in a dose-dependent manner. Transcriptomics analysis revealed that HSAF treatment resulted in an expression alteration of a wide range of genes, with 3729 genes being up-regulated, and 3640 genes being down-regulated. Furthermore, we observed that HSAF treatment disrupted multiple signaling networks and essential cellular metabolisms in A. alternata, including the AMPK signaling pathway, sphingolipid metabolism and signaling pathway, carbon metabolism and the TCA (tricarboxylic acid) cycle, cell cycle, nitrogen metabolism, cell wall synthesis and a key hub protein phosphatase 2A (PP2A). These observations suggest that HSAF breaches metabolism networks and ultimately induces increased thickness of the cell wall and apoptosis in A. alternata. The improved understanding of the antifungal mechanism of HSAF against filamentous fungi will aid in the future identification of the direct interaction target of HSAF and development of HSAF as a novel bio-fungicide.


Asunto(s)
Alternaria/genética , Perfilación de la Expresión Génica/métodos , Regulación Fúngica de la Expresión Génica , Lactamas Macrocíclicas/metabolismo , Alternaria/efectos de los fármacos , Alternaria/fisiología , Antifúngicos/metabolismo , Antifúngicos/farmacología , Pared Celular/efectos de los fármacos , Pared Celular/microbiología , Ontología de Genes , Lactamas Macrocíclicas/farmacología , Lysobacter/metabolismo , Micelio/efectos de los fármacos , Micelio/genética , Micelio/fisiología , Enfermedades de las Plantas/microbiología , Pyrus/microbiología
6.
Angew Chem Int Ed Engl ; 57(21): 6221-6225, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29573092

RESUMEN

The biocontrol agent Lysobacter enzymogenes produces polycyclic tetramate macrolactams (PoTeMs), including the antifungal HSAF. To elucidate the biosynthesis of the cyclic systems, we identified eleven HSAF precursors/analogues with zero, one, two, or three rings through heterologous expression of the HSAF gene cluster. A series of combinatorial gene expression and deletion experiments showed that OX3 is the "gatekeeper" responsible for the formation of the first 5-membered ring from lysobacterene A, OX1 and OX2 are responsible for formation of the second ring but with different selectivity, and OX4 is responsible for formation of the 6-membered ring. In vitro experiments showed that OX4 is an NADPH-dependent enzyme that catalyzes the reductive cyclization of 3-dehydroxy alteramide C to form 3-dehydroxy HSAF. Thus, the multiplicity of OX genes is the basis for the structural diversity of the HSAF family, which is the only characterized PoTeM cluster that involves four redox enzymes in the formation of the cyclic system.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Lactamas/farmacología , Lysobacter/química , Compuestos Policíclicos/farmacología , Antifúngicos/química , Antifúngicos/metabolismo , Lactamas/química , Lactamas/metabolismo , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Compuestos Policíclicos/química , Compuestos Policíclicos/metabolismo
7.
Appl Environ Microbiol ; 83(7)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28087536

RESUMEN

Lysobacter enzymogenes is a ubiquitous soil gammaproteobacterium that produces a broad-spectrum antifungal antibiotic, known as heat-stable antifungal factor (HSAF). To increase HSAF production for use against fungal crop diseases, it is important to understand how HSAF synthesis is regulated. To gain insights into transcriptional regulation of the HSAF synthesis gene cluster, we generated a library with deletion mutations in the genes predicted to encode response regulators of the two-component signaling systems in L. enzymogenes strain OH11. By quantifying HSAF production levels in the 45 constructed mutants, we identified two strains that produced significantly smaller amounts of HSAF. One of the mutations affected a gene encoding a conserved bacterial response regulator, PilR, which is commonly associated with type IV pilus synthesis. We determined that L. enzymogenes PilR regulates pilus synthesis and twitching motility via a traditional pathway, by binding to the pilA promoter and upregulating pilA expression. Regulation of HSAF production by PilR was found to be independent of pilus formation. We discovered that the pilR mutant contained significantly higher intracellular levels of the second messenger cyclic di-GMP (c-di-GMP) and that this was the inhibitory signal for HSAF production. Therefore, the type IV pilus regulator PilR in L. enzymogenes activates twitching motility while downregulating antibiotic HSAF production by increasing intracellular c-di-GMP levels. This study identifies a new role of a common pilus regulator in proteobacteria and provides guidance for increasing antifungal antibiotic production in L. enzymogenesIMPORTANCE PilR is a widespread response regulator of the two-component system known for regulating type IV pilus synthesis in proteobacteria. Here we report that, in the soil bacterium Lysobacter enzymogenes, PilR regulates pilus synthesis and twitching motility, as expected. Unexpectedly, PilR was also found to control intracellular levels of the second messenger c-di-GMP, which in turn inhibits production of the antifungal antibiotic HSAF. The coordinated production of type IV pili and antifungal antibiotics has not been observed previously.


Asunto(s)
Antifúngicos/metabolismo , GMP Cíclico/análogos & derivados , Fimbrias Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Lysobacter/genética , Lysobacter/metabolismo , Microbiología del Suelo , Proteínas Bacterianas/genética , GMP Cíclico/metabolismo , Fimbrias Bacterianas/metabolismo , Biblioteca de Genes , Familia de Multigenes , Mutación , Transducción de Señal
8.
Microb Cell Fact ; 16(1): 202, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29137648

RESUMEN

BACKGROUND: Heat-stable antifungal factor (HSAF) is a polycyclic tetramate macrolactam secondary metabolite that exhibits broad-spectrum inhibitory activities against filamentous fungal pathogens. The native yield of this chemical is low. It is also a great challenge to synthesize HSAF artificially, due to its complex structure. Understanding the regulatory mechanism underlying HSAF biosynthesis could provide genetic basis for engineering high HSAF-producing strain. The transcription factor Clp is a global regulator that controls bacterial pathogenicity and the expression of one hundred related genes in the phytopathogenic bacterium Xanthomonas campestris pv. campestris (Xcc). Diffusible signal factor (DSF) chemical signaling is the only well-characterized upstream regulatory pathway that involves downstream Clp regulation in Xcc. Such a regulatory hierarchy between DSF signaling and Clp is also conserved in the Gram-negative biological control agent Lysobacter enzymogenes, where the DSF signaling system controls antifungal antibiotic HSAF biosynthesis via Clp. RESULTS: Here, using LLysobacter enzymogenes OH11 as a working organism, we examined a novel upstream regulator, LesR, a LuxR solo that controls Clp expression to modulate HSAF biosynthesis as well as cell aggregation. We found that the overexpression of lesR in strain OH11 almost entirely shut down HSAF production and accelerated cell aggregation. These changed phenotypes could be rescued by the introduction of plasmid-borne clp in the lesR overexpression background. Consistent with findings, we further found that overexpression of lesR led to a decrease in the Clp level. CONCLUSIONS: These results collectively have shown that LesR could exert its function, i.e., HSAF biosynthesis, via downstream Clp. These findings were subsequently validated by a comparative transcriptome analysis, where the regulatory action of LesR was found to largely overlap with that of Clp. Therefore, in addition to the well-known DSF signaling system, the present study reveals that LesR functions as a new upstream regulatory factor of Clp in L. enzymogenes. The key factor was important for the production of HSAF. The strains with high HSAF yield can presumably be constructed by deletion of the negative regulators or overexpression of the positive regulators by genetic engineering.


Asunto(s)
Antibacterianos/metabolismo , Proteínas Bacterianas/biosíntesis , Endopeptidasa Clp/genética , Regulación Bacteriana de la Expresión Génica , Lysobacter/genética , Antifúngicos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Lysobacter/fisiología , Metabolismo Secundario , Transducción de Señal
9.
Appl Microbiol Biotechnol ; 101(8): 3273-3282, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28108764

RESUMEN

Heat-stable antifungal factor (HSAF) is a newly identified and broad-spectrum antifungal antibiotic from Lysobacter enzymogenes, a ubiquitous environmental proteobacterium. Yet, the regulatory mechanism for HSAF biosynthesis in L. enzymogenes remains poorly understood. Here, we report the identification of a TetR-family protein Le1552 (LetR) from L. enzymogenes strain OH11 that is involved in transcriptional repression of HSAF production. Bacterial one-hybrid and gel mobility shift assays show that LetR directly binds to PHSAF (the promoter region of the HSAF biosynthesis operon). A DNA truncation assay further reveals a core region in PHSAF that is responsible for LetR binding. In-frame deletion of letR in wild-type OH11 is found to significantly increase HSAF levels and key biosynthetic gene transcription, while overexpression of letR in the wild-type background remarkably reduces HSAF levels as well as related gene expression instead. Together, we have identified not only a new regulator for the HSAF biosynthesis but also constructed a higher HSAF-producing deletion strain (ΔletR) of L. enzymogenes, which shall be of great value in promoting HSAF production for pharmaceutical and biological control purposes.


Asunto(s)
Antifúngicos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Lysobacter/genética , Factores de Transcripción/genética , Lysobacter/metabolismo , Familia de Multigenes
10.
Int J Biol Macromol ; 261(Pt 1): 129744, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281534

RESUMEN

Fusarium graminearum is a dominant phytopathogenic fungus causing Fusarium head blight (FHB) in cereal crops. Heat-stable antifungal factor (HSAF) is a polycyclic tetramate macrolactam (PoTeM) isolated from Lysobacter enzymogenes that exhibits strong antifungal activity against F. graminearum. HSAF significantly reduces the DON production and virulence of F. graminearum. Importantly, HSAF exhibited no cross-resistance to carbendazim, phenamacril, tebuconazole and pydiflumetofen. However, the target protein of HSAF in F. graminearum is unclear. In this study, the oxysterol-binding protein FgORP1 was identified as the potential target of HSAF using surface plasmon resonance (SPR) combined with RNA-sequence (RNA-seq). The RNA-seq results showed cell membrane and ergosterol biosynthesis were significantly impacted by HSAF in F. graminearum. Molecular docking showed that HSAF binds with arginine 1205 and glutamic acid 1212, which are located in the oxysterol-binding domain of FgORP1. The two amino acids in FgORP1 are responsible for HSAF resistance in F. graminearum though site-directed mutagenesis. Furthermore, deletion of FgORP1 led to significantly decreased sensitivity to HSAF. Additionally, FgORP1 regulates the mycelial growth, conidiation, DON production, ergosterol biosynthesis and virulence in F. graminearum. Overall, our findings revealed the mode of action of HSAF against F. graminearum, indicating that HSAF is a promising fungicide for controlling FHB.


Asunto(s)
Fusarium , Oxiesteroles , Antifúngicos/química , Fusarium/fisiología , Calor , Simulación del Acoplamiento Molecular , Membrana Celular/metabolismo , Ergosterol , Enfermedades de las Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA