Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.130
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 53(1): 115-126.e5, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32640258

RESUMEN

Type I interferon (IFN) response is commonly recognized as the main signaling activity of STING. Here, we generate the Sting1S365A/S365A mutant mouse that precisely ablates IFN-dependent activities while preserving IFN-independent activities of STING. StingS365A/S365A mice protect against HSV-1 infection, despite lacking the STING-mediated IFN response. This challenges the prevailing view and suggests that STING controls HSV-1 infection through IFN-independent activities. Transcriptomic analysis reveals widespread IFN-independent activities of STING in macrophages and T cells, and STING activities in T cells are predominantly IFN independent. In mouse tumor models, T cells in the tumor experience substantial cell death that is in part mediated by IFN-independent activities of STING. We found that the tumor induces STING-mediated cell death in T cells to evade immune control. Our data demonstrate that mammalian STING possesses widespread IFN-independent activities that are important for restricting HSV-1 infection, tumor immune evasion and likely also adaptive immunity.


Asunto(s)
Herpesvirus Humano 1/inmunología , Interferón Tipo I/inmunología , Proteínas de la Membrana/inmunología , Neoplasias/inmunología , Escape del Tumor/inmunología , Inmunidad Adaptativa/inmunología , Animales , Línea Celular , Femenino , Células HEK293 , Herpes Simple/inmunología , Herpes Simple/prevención & control , Herpes Simple/virología , Humanos , Inmunidad Innata/inmunología , Interferón Tipo I/biosíntesis , Macrófagos/inmunología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/inmunología , Linfocitos T/inmunología
2.
Immunity ; 53(5): 1050-1062.e5, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33207210

RESUMEN

Herpes simplex virus type 1 (HSV-1)-infected corneas can develop a blinding immunoinflammatory condition called herpes stromal keratitis (HSK), which involves the loss of corneal sensitivity due to retraction of sensory nerves and subsequent hyperinnervation with sympathetic nerves. Increased concentrations of the cytokine VEGF-A in the cornea are associated with HSK severity. Here, we examined the impact of VEGF-A on neurologic changes that underly HSK using a mouse model of HSV-1 corneal infection. Both CD4+ T cells and myeloid cells produced pathogenic levels of VEGF-A within HSV-1-infected corneas, and CD4+ cell depletion promoted reinnervation of HSK corneas with sensory nerves. In vitro, VEGF-A from infected corneas repressed sensory nerve growth and promoted sympathetic nerve growth. Neutralizing VEGF-A in vivo using bevacizumab inhibited sympathetic innervation, promoted sensory nerve regeneration, and alleviated disease. Thus, VEGF-A can shape the sensory and sympathetic nerve landscape within the cornea, with implications for the treatment of blinding corneal disease.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Córnea/inervación , Córnea/metabolismo , Queratitis Herpética/etiología , Células Mieloides/inmunología , Células Mieloides/metabolismo , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Fibras Adrenérgicas , Animales , Córnea/inmunología , Córnea/virología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Técnica del Anticuerpo Fluorescente , Herpesvirus Humano 1 , Humanos , Inmunofenotipificación , Queratitis Herpética/metabolismo , Queratitis Herpética/patología , Leucocitos/inmunología , Leucocitos/metabolismo , Leucocitos/patología , Depleción Linfocítica , Ratones , Neuritis , Índice de Severidad de la Enfermedad
3.
Mol Cell ; 74(3): 466-480.e4, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30930055

RESUMEN

The mTOR pathway integrates both extracellular and intracellular signals and serves as a central regulator of cell metabolism, growth, survival, and stress responses. Neurotropic viruses, such as herpes simplex virus-1 (HSV-1), also rely on cellular AKT-mTORC1 signaling to achieve viral latency. Here, we define a novel genotoxic response whereby spatially separated signals initiated by extracellular neurotrophic factors and nuclear DNA damage are integrated by the AKT-mTORC1 pathway. We demonstrate that endogenous DNA double-strand breaks (DSBs) mediated by Topoisomerase 2ß-DNA cleavage complex (TOP2ßcc) intermediates are required to achieve AKT-mTORC1 signaling and maintain HSV-1 latency in neurons. Suppression of host DNA-repair pathways that remove TOP2ßcc trigger HSV-1 reactivation. Moreover, perturbation of AKT phosphorylation dynamics by downregulating the PHLPP1 phosphatase led to AKT mis-localization and disruption of DSB-induced HSV-1 reactivation. Thus, the cellular genome integrity and environmental inputs are consolidated and co-opted by a latent virus to balance lifelong infection with transmission.


Asunto(s)
ADN-Topoisomerasas de Tipo II/genética , Herpesvirus Humano 1/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas c-akt/genética , Latencia del Virus/genética , Animales , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN/genética , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Herpesvirus Humano 1/patogenicidad , Humanos , Proteína Homóloga de MRE11/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Neuronas/metabolismo , Neuronas/virología , Fosforilación , Ratas , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética
4.
Proc Natl Acad Sci U S A ; 121(19): e2401341121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38696466

RESUMEN

Neurotropic alphaherpesviruses, including herpes simplex virus type 1 (HSV-1), recruit microtubule motor proteins to invade cells. The incoming viral particle traffics to nuclei in a two-step process. First, the particle uses the dynein-dynactin motor to sustain transport to the centrosome. In neurons, this step is responsible for long-distance retrograde axonal transport and is an important component of the neuroinvasive property shared by these viruses. Second, a kinesin-dependent mechanism redirects the particle from the centrosome to the nucleus. We have reported that the kinesin motor used during the second step of invasion is assimilated into nascent virions during the previous round of infection. Here, we report that the HSV-1 pUL37 tegument protein suppresses the assimilated kinesin-1 motor during retrograde axonal transport. Region 2 (R2) of pUL37 was required for suppression and functioned independently of the autoinhibitory mechanism native to kinesin-1. Furthermore, the motor domain and proximal coiled coil of kinesin-1 were sufficient for HSV-1 assimilation, pUL37 suppression, and nuclear trafficking. pUL37 localized to the centrosome, the site of assimilated kinesin-1 activation during infection, when expressed in cells in the absence of other viral proteins; however, pUL37 did not suppress kinesin-1 in this context. These results indicate that the pUL37 tegument protein spatially and temporally regulates kinesin-1 via the amino-terminal motor region in the context of the incoming viral particle.


Asunto(s)
Herpesvirus Humano 1 , Cinesinas , Proteínas Estructurales Virales , Cinesinas/metabolismo , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 1/metabolismo , Humanos , Animales , Transporte Axonal/fisiología , Chlorocebus aethiops , Centrosoma/metabolismo , Neuronas/metabolismo , Neuronas/virología , Células Vero , Núcleo Celular/metabolismo , Núcleo Celular/virología
5.
Immunity ; 47(1): 159-170.e10, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28723548

RESUMEN

Clearance of pathogens or tumor cells by antibodies traditionally requires both Fab and Fc domains of IgG. Here, we show the Fc domain of IgG alone mediates recognition and clearance of herpes simplex virus (HSV1)-infected cells. The human natural killer (NK) cell surface is naturally coated with IgG bound by its Fc domain to the Fcγ receptor CD16a. NK cells utilize the Fc domain of bound IgG to recognize gE, an HSV1-encoded glycoprotein that also binds the Fc domain of IgG but at a site distinct from CD16a. The bridge formed by the Fc domain between the HSV1-infected cell and the NK cell results in NK cell activation and lysis of the HSV1-infected cell in the absence of HSV1-specific antibody in vitro and prevents fatal HSV1 infection in vivo. This mechanism also explains how bacterial IgG-binding proteins regulate NK cell function and may be broadly applicable to Fcγ-receptor-bearing cells.


Asunto(s)
Anticuerpos Antivirales/metabolismo , Herpes Simple/inmunología , Fragmentos Fc de Inmunoglobulinas/metabolismo , Inmunoglobulina G/metabolismo , Células Asesinas Naturales/inmunología , Simplexvirus/inmunología , Animales , Anticuerpos Antivirales/inmunología , Células Cultivadas , Citotoxicidad Inmunológica , Femenino , Humanos , Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoglobulina G/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Unión Proteica , Agregación de Receptores , Receptores de IgG/metabolismo , Transducción de Señal , Proteínas Virales/inmunología
6.
Clin Microbiol Rev ; 37(3): e0000624, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39078136

RESUMEN

SUMMARYHuman alphaherpesvirus 1 (HSV-1) is a highly successful neurotropic pathogen that primarily infects the epithelial cells lining the orofacial mucosa. After primary lytic replication in the oral, ocular, and nasal mucosal epithelial cells, HSV-1 establishes life-long latency in neurons within the trigeminal ganglion. Patients with compromised immune systems experience frequent reactivation of HSV-1 from latency, leading to virus entry in the sensory neurons, followed by anterograde transport and lytic replication at the innervated mucosal epithelial surface. Although recurrent infection of the corneal mucosal surface is rare, it can result in a chronic immuno-inflammatory condition called herpetic stromal keratitis (HSK). HSK leads to gradual vision loss and can cause permanent blindness in severe untreated cases. Currently, there is no cure or successful vaccine to prevent latent or recurrent HSV-1 infections, posing a significant clinical challenge to managing HSK and preventing vision loss. The conventional clinical management of HSK primarily relies on anti-virals to suppress HSV-1 replication, anti-inflammatory drugs (such as corticosteroids) to provide symptomatic relief from pain and inflammation, and surgical interventions in more severe cases to replace damaged cornea. However, each clinical treatment strategy has limitations, such as local and systemic drug toxicities and the emergence of anti-viral-resistant HSV-1 strains. In this review, we summarize the factors and immune cells involved in HSK pathogenesis and highlight alternate therapeutic strategies for successful clinical management of HSK. We also discuss the therapeutic potential of immunoregulatory cytokines and immunometabolism modulators as promising HSK therapies against emerging anti-viral-resistant HSV-1 strains.


Asunto(s)
Herpesvirus Humano 1 , Queratitis Herpética , Humanos , Queratitis Herpética/inmunología , Queratitis Herpética/virología , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/fisiología , Antivirales/uso terapéutico , Animales
7.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38879872

RESUMEN

Antiviral therapy is constantly challenged by the emergence of resistant pathogens. At the same time, experimental approaches to understand and predict resistance are limited by long periods required for evolutionary processes. Here, we present a herpes simplex virus 1 mutant with impaired proofreading capacity and consequently elevated mutation rates. Comparing this hypermutator to parental wild type virus, we study the evolution of antiviral drug resistance in vitro. We model resistance development and elucidate underlying genetic changes against three antiviral substances. Our analyzes reveal no principle difference in the evolutionary behavior of both viruses, adaptive processes are overall similar, however significantly accelerated for the hypermutator. We conclude that hypermutator viruses are useful for modeling adaptation to antiviral therapy. They offer the benefit of expedited adaptation without introducing apparent bias and can therefore serve as an accelerator to predict natural evolution.


Asunto(s)
Antivirales , Farmacorresistencia Viral , Evolución Molecular , Herpesvirus Humano 1 , Farmacorresistencia Viral/genética , Antivirales/farmacología , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/efectos de los fármacos , Mutación , Tasa de Mutación , Evolución Biológica , Humanos
8.
J Virol ; : e0096824, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39475273

RESUMEN

Herpes simplex virus type 1 (HSV-1) primarily targets the oral and nasal epithelia before establishing latency in the trigeminal ganglion (TG) and other peripheral ganglia. HSV-1 can also infect and become latent in the central nervous system (CNS) independent of latency in the TGs. Recent studies suggest entry to the CNS via two distinct routes: the TG-brainstem connection and olfactory nerve; however, to date, there is no characterization of brain regions targeted during HSV-1 primary infection. Furthermore, the immune response by microglia may also contribute to the heterogeneity between different brain regions. However, the response to HSV-1 by microglia has not been characterized in a region-specific manner. This study investigated the time course of HSV-1 spread within the olfactory epithelium (OE) and CNS following intranasal inoculation and the corresponding macrophage/microglial response in a C57BL/6 mouse model. We found an apical to basal spread of HSV-1 within the OE and underlying tissue accompanied by an inflammatory response of macrophages. OE infection was followed by infection of a small subset of brain regions targeted by the TG in the brainstem and other cranial nerve nuclei, including the vagus and hypoglossal nerve. Furthermore, other brain regions were positive for HSV-1 antigens, such as the locus coeruleus (LC), raphe nucleus (RaN), and hypothalamus while sparing the hippocampus and cortex. Within each brain region, microglia activation also varied widely. These findings provide critical insights into the region-specific dissemination of HSV-1 within the CNS, elucidating potential mechanisms linking viral infection to neurological and neurodegenerative diseases.IMPORTANCEThis study shows how herpes simplex virus type 1 (HSV-1) spreads within the brain after infecting the nasal passages. Our data reveal the distinct pattern of HSV-1 through the brain during a non-encephalitic infection. Furthermore, microglial activation was also temporally and spatially specific, with some regions of the brain having sustained microglial activation even in the absence of viral antigens. Previous reports have identified specific brain regions found to be positive for HSV-1 infection; however, to date, there has not been a concise investigation of the anatomical spread of HSV-1 and the brain regions consistently vulnerable to viral entry and spread. Understanding these region-specific differences in infection and immune response is crucial because it links HSV-1 infection to potential triggers for neurological and neurodegenerative diseases.

9.
J Virol ; 98(8): e0073724, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39016551

RESUMEN

Facilitates chromatin transcription (FACT) interacts with nucleosomes to promote gene transcription by regulating the dissociation and reassembly of nucleosomes downstream and upstream of RNA polymerase II (Pol II). A previous study reported that herpes simplex virus 1 (HSV-1) regulatory protein ICP22 interacted with FACT and was required for its recruitment to the viral DNA genome in HSV-1-infected cells. However, the biological importance of interactions between ICP22 and FACT in relation to HSV-1 infection is unclear. Here, we mapped the minimal domain of ICP22 required for its efficient interaction with FACT to a cluster of five basic amino acids in ICP22. A recombinant virus harboring alanine substitutions in this identified cluster led to the decreased accumulation of viral mRNAs from UL54, UL38, and UL44 genes, reduced Pol II occupancy of these genes in MRC-5 cells, and impaired HSV-1 virulence in mice following ocular or intracranial infection. Furthermore, the treatment of mice infected with wild-type HSV-1 with CBL0137, a FACT inhibitor currently being investigated in clinical trials, significantly improved the survival rate of mice. These results suggested that the interaction between ICP22 and FACT was required for efficient HSV-1 gene expression and pathogenicity. Therefore, FACT might be a potential therapeutic target for HSV-1 infection.IMPORTANCEICP22 is a well-known regulatory factor of HSV-1 gene expression, but its mechanism(s) are poorly understood. Although the interaction of FACT with ICP22 was reported previously, its significance in HSV-1 infection is unknown. Given that FACT is involved in gene transcription, it is of interest to investigate this interaction as it relates to HSV-1 gene expression. To determine a direct link between the interaction and HSV-1 infection, we mapped a minimal domain of ICP22 required for its efficient interaction with FACT and generated a recombinant virus carrying mutations in the identified domain. Using the recombinant virus, we obtained evidence suggesting that the interaction between ICP22 and FACT promoted Pol II transcription from HSV-1 genes and viral virulence in mice. In addition, CBL0137, an inhibitor of FACT, effectively protected mice from lethal HSV-1 infection, suggesting FACT might be a potential target for the development of novel anti-HSV drugs.


Asunto(s)
Regulación Viral de la Expresión Génica , Herpes Simple , Herpesvirus Humano 1 , Proteínas Inmediatas-Precoces , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiología , Animales , Ratones , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , Herpes Simple/virología , Herpes Simple/metabolismo , Humanos , Células Vero , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Chlorocebus aethiops , Replicación Viral , Virulencia , Línea Celular , Femenino , Ratones Endogámicos BALB C , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Transcripción Genética
10.
J Virol ; 98(5): e0003224, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38651900

RESUMEN

Critical stages of lytic herpes simplex virus type 1 (HSV-1) replication are marked by the sequential expression of immediate early (IE) to early (E), then late (L) viral genes. HSV-1 can also persist in neuronal cells via a non-replicative, transcriptionally repressed infection called latency. The regulation of lytic and latent transcriptional profiles is critical to HSV-1 pathogenesis and persistence. We sought a fluorescence-based approach to observe the outcome of neuronal HSV-1 infection at the single-cell level. To achieve this goal, we constructed and characterized a novel HSV-1 recombinant that enables discrimination between lytic and latent infection. The dual reporter HSV-1 encodes a human cytomegalovirus-immediate early (hCMV-IE) promoter-driven enhanced yellow fluorescent protein (eYFP) to visualize the establishment of infection and an endogenous mCherry-VP26 fusion to report lytic replication. We confirmed that viral gene expression, replication, and spread of infection are not altered by the incorporation of the fluorescent reporters, and fluorescent protein (FP) detection virtuously reports the progression of lytic replication. We demonstrate that the outcome of HSV-1 infection of compartmentalized primary neurons is determined by viral inoculating dose: high-dose axonal inoculation proceeds to lytic replication, whereas low-dose axonal inoculation establishes a latent HSV-1 infection. Interfering with low-dose axonal inoculation via small molecule drugs reports divergent phenotypes of eYFP and mCherry reporter detection, correlating with altered states of viral gene expression. We report that the transcriptional state of neuronal HSV-1 infection is variable in response to changes in the intracellular neuronal environment.IMPORTANCEHerpes simplex virus type 1 (HSV-1) is a prevalent human pathogen that infects approximately 67% of the global human population. HSV-1 invades the peripheral nervous system, where latent HSV-1 infection persists within the host for life. Immunological evasion, viral persistence, and herpetic pathologies are determined by the regulation of HSV-1 gene expression. Studying HSV-1 gene expression during neuronal infection is challenging but essential for the development of antiviral therapeutics and interventions. We used a recombinant HSV-1 to evaluate viral gene expression during infection of primary neurons. Manipulation of cell signaling pathways impacts the establishment and transcriptional state of HSV-1 latency in neurons. The work here provides critical insight into the cellular and viral factors contributing to the establishment of latent HSV-1 infection.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Neuronas , Animales , Humanos , Chlorocebus aethiops , Citomegalovirus/genética , Citomegalovirus/fisiología , Regulación Viral de la Expresión Génica , Genes Reporteros , Herpes Simple/virología , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Neuronas/virología , Neuronas/metabolismo , Células Vero , Latencia del Virus/genética , Replicación Viral
11.
Rev Med Virol ; 34(3): e2550, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38801246

RESUMEN

Alzheimer's disease (AD) is a real and current scientific and societal challenge. Alzheimer's disease is characterised by a neurodegenerative neuroinflammatory process, but the etiopathogenetic mechanisms are still unclear. The possible infectious aetiology and potential involvement of Herpes viruses as triggers for the formation of extracellular deposits of amyloid beta (Aß) peptide (amyloid plaques) and intraneuronal aggregates of hyperphosphorylated and misfold could be a possible explanation. In fact, the possible genetic interference of Herpes viruses with the genome of the host neuronal cell or the stimulation of the infection to a continuous immune response with a consequent chronic inflammation could constitute those mechanisms underlying the development of AD, with possible implications in the understanding and management of the disease. Herpes viruses could be significantly involved in the pathogenesis of AD and in particular, their ability to reactivate in particular conditions such as immunocompromise and immunosenescence, could explain the neurological damage characteristic of AD. Our review aims to evaluate the state of the art of knowledge and perspectives regarding the potential relationship between Herpes viruses and AD, in order to be able to identify the possible etiopathogenetic mechanisms and the possible therapeutic implications.


Asunto(s)
Enfermedad de Alzheimer , Infecciones por Herpesviridae , Herpesviridae , Humanos , Enfermedad de Alzheimer/virología , Enfermedad de Alzheimer/inmunología , Herpesviridae/patogenicidad , Herpesviridae/genética , Herpesviridae/fisiología , Infecciones por Herpesviridae/virología , Infecciones por Herpesviridae/inmunología , Péptidos beta-Amiloides/metabolismo , Animales
12.
J Proteome Res ; 23(8): 3249-3268, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564653

RESUMEN

Fundamental to mammalian intrinsic and innate immune defenses against pathogens is the production of Type I and Type II interferons, such as IFN-ß and IFN-γ, respectively. The comparative effects of IFN classes on the cellular proteome, protein interactions, and virus restriction within cell types that differentially contribute to immune defenses are needed for understanding immune signaling. Here, a multilayered proteomic analysis, paired with biochemical and molecular virology assays, allows distinguishing host responses to IFN-ß and IFN-γ and associated antiviral impacts during infection with several ubiquitous human viruses. In differentiated macrophage-like monocytic cells, we classified proteins upregulated by IFN-ß, IFN-γ, or pro-inflammatory LPS. Using parallel reaction monitoring, we developed a proteotypic peptide library for shared and unique ISG signatures of each IFN class, enabling orthogonal confirmation of protein alterations. Thermal proximity coaggregation analysis identified the assembly and maintenance of IFN-induced protein interactions. Comparative proteomics and cytokine responses in macrophage-like monocytic cells and primary keratinocytes provided contextualization of their relative capacities to restrict virus production during infection with herpes simplex virus type-1, adenovirus, and human cytomegalovirus. Our findings demonstrate how IFN classes induce distinct ISG abundance and interaction profiles that drive antiviral defenses within cell types that differentially coordinate mammalian immune responses.


Asunto(s)
Proteómica , Humanos , Proteómica/métodos , Inflamación/virología , Inflamación/inmunología , Interferón gamma/inmunología , Interferón beta/metabolismo , Interferón beta/inmunología , Interferón beta/genética , Inmunidad Innata , Queratinocitos/virología , Queratinocitos/inmunología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Replicación Viral/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/virología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Citomegalovirus/inmunología , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 1/inmunología , Interferones/inmunología , Interferones/metabolismo , Interferones/genética , Lipopolisacáridos/farmacología , Monocitos/inmunología , Monocitos/virología , Monocitos/metabolismo , Monocitos/efectos de los fármacos , Interacciones Huésped-Patógeno/inmunología , Proteoma
13.
J Biol Chem ; 299(6): 104749, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37100284

RESUMEN

The recent SARS-CoV-2 and mpox outbreaks have highlighted the need to expand our arsenal of broad-spectrum antiviral agents for future pandemic preparedness. Host-directed antivirals are an important tool to accomplish this as they typically offer protection against a broader range of viruses than direct-acting antivirals and have a lower susceptibility to viral mutations that cause drug resistance. In this study, we investigate the exchange protein activated by cAMP (EPAC) as a target for broad-spectrum antiviral therapy. We find that the EPAC-selective inhibitor, ESI-09, provides robust protection against a variety of viruses, including SARS-CoV-2 and Vaccinia (VACV)-an orthopox virus from the same family as mpox. We show, using a series of immunofluorescence experiments, that ESI-09 remodels the actin cytoskeleton through Rac1/Cdc42 GTPases and the Arp2/3 complex, impairing internalization of viruses that use clathrin-mediated endocytosis (e.g. VSV) or micropinocytosis (e.g. VACV). Additionally, we find that ESI-09 disrupts syncytia formation and inhibits cell-to-cell transmission of viruses such as measles and VACV. When administered to immune-deficient mice in an intranasal challenge model, ESI-09 protects mice from lethal doses of VACV and prevents formation of pox lesions. Altogether, our finding shows that EPAC antagonists such as ESI-09 are promising candidates for broad-spectrum antiviral therapy that can aid in the fight against ongoing and future viral outbreaks.


Asunto(s)
Antivirales , COVID-19 , Mpox , Vaccinia , Animales , Ratones , Antivirales/farmacología , Mpox/tratamiento farmacológico , SARS-CoV-2/efectos de los fármacos , Vaccinia/tratamiento farmacológico , Virus Vaccinia/efectos de los fármacos
14.
Proteins ; 92(7): 830-841, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38372168

RESUMEN

Infected cell protein 0 (ICP0) is an immediate-early regulatory protein of herpes simplex virus 1 (HSV-1) that possesses E3 ubiquitin ligase activity. ICP0 transactivates viral genes, in part, through its C-terminal dimer domain (residues 555-767). Deletion of this dimer domain results in reduced viral gene expression, lytic infection, and reactivation from latency. Since ICP0's dimer domain is associated with its transactivation activity and efficient viral replication, we wanted to determine the structure of this specific domain. The C-terminus of ICP0 was purified from bacteria and analyzed by X-ray crystallography to solve its structure. Each subunit or monomer in the ICP0 dimer is composed of nine ß-strands and two α-helices. Interestingly, two adjacent ß-strands from one monomer "reach" into the adjacent subunit during dimer formation, generating two ß-barrel-like structures. Additionally, crystallographic analyses indicate a tetramer structure is formed from two ß-strands of each dimer, creating a "stacking" of the ß-barrels. The structural protein database searches indicate the fold or structure adopted by the ICP0 dimer is novel. The dimer is held together by an extensive network of hydrogen bonds. Computational analyses reveal that ICP0 can either form a dimer or bind to SUMO1 via its C-terminal SUMO-interacting motifs but not both. Understanding the structure of the dimer domain will provide insights into the activities of ICP0 and, ultimately, the HSV-1 life cycle.


Asunto(s)
Herpesvirus Humano 1 , Proteínas Inmediatas-Precoces , Multimerización de Proteína , Ubiquitina-Proteína Ligasas , Proteínas Inmediatas-Precoces/química , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , Cristalografía por Rayos X , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Modelos Moleculares , Humanos , Dominios Proteicos , Pliegue de Proteína , Secuencia de Aminoácidos , Conformación Proteica en Lámina beta
15.
J Gen Virol ; 105(3)2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38471041

RESUMEN

Many viruses downregulate their cognate receptors, facilitating virus replication and pathogenesis via processes that are not yet fully understood. In the case of herpes simplex virus 1 (HSV1), the receptor binding protein glycoprotein D (gD) has been implicated in downregulation of its receptor nectin1, but current understanding of the process is limited. Some studies suggest that gD on the incoming virion is sufficient to achieve nectin1 downregulation, but the virus-encoded E3 ubiquitin ligase ICP0 has also been implicated. Here we have used the physiologically relevant nTERT human keratinocyte cell type - which we have previously shown to express readily detectable levels of endogenous nectin1 - to conduct a detailed investigation of nectin1 expression during HSV1 infection. In these cells, nectin1, but not nectin2 or the transferrin receptor, disappeared from the cell surface in a process that required virus protein synthesis rather than incoming virus, but did not involve virus-induced host shutoff. Furthermore, gD was not only required but was sufficient for nectin1 depletion, indicating that no other virus proteins are essential. NK cells were shown to be activated in the presence of keratinocytes, a process that was greatly inhibited in cells infected with wild-type virus. However, degranulation of NK cells was also inhibited in ΔgD-infected cells, indicating that blocking of NK cell activation was independent of gD downregulation of nectin1. By contrast, a superinfection time-course revealed that the ability of HSV1 infection to block subsequent infection of a GFP-expressing HSV1 was dependent on gD and occurred in line with the timing of nectin1 downregulation. Thus, the role of gD-dependent nectin1 impairment during HSV infection is important for virus infection, but not immune evasion, which is achieved by other mechanisms.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Sobreinfección , Humanos , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Regulación hacia Abajo , Herpesvirus Humano 1/fisiología , Queratinocitos , Receptores Virales/metabolismo , Proteínas del Envoltorio Viral/genética
16.
J Gen Virol ; 105(4)2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572740

RESUMEN

The herpes simplex virus 1 (HSV1) virion host shutoff (vhs) protein is an endoribonuclease that regulates the translational environment of the infected cell, by inducing the degradation of host mRNA via cellular exonuclease activity. To further understand the relationship between translational shutoff and mRNA decay, we have used ectopic expression to compare HSV1 vhs (vhsH) to its homologues from four other alphaherpesviruses - varicella zoster virus (vhsV), bovine herpesvirus 1 (vhsB), equine herpesvirus 1 (vhsE) and Marek's disease virus (vhsM). Only vhsH, vhsB and vhsE induced degradation of a reporter luciferase mRNA, with poly(A)+ in situ hybridization indicating a global depletion of cytoplasmic poly(A)+ RNA and a concomitant increase in nuclear poly(A)+ RNA and the polyA tail binding protein PABPC1 in cells expressing these variants. By contrast, vhsV and vhsM failed to induce reporter mRNA decay and poly(A)+ depletion, but rather, induced cytoplasmic G3BP1 and poly(A)+ mRNA- containing granules and phosphorylation of the stress response proteins eIF2α and protein kinase R. Intriguingly, regardless of their apparent endoribonuclease activity, all vhs homologues induced an equivalent general blockade to translation as measured by single-cell puromycin incorporation. Taken together, these data suggest that the activities of translational arrest and mRNA decay induced by vhs are separable and we propose that they represent sequential steps of the vhs host interaction pathway.


Asunto(s)
Herpesvirus Humano 1 , Proteínas Virales , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ribonucleasas , ADN Helicasas , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Herpesvirus Humano 1/genética , Endorribonucleasas/metabolismo , Estabilidad del ARN , Virión/genética , Virión/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
17.
J Clin Microbiol ; 62(6): e0026324, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38687020

RESUMEN

Herpes simplex virus (HSV) infections are one of the most common and stigmatized infections of humankind, affecting more than 4 billion people around the world and more than 100 million Americans. Yet, most people do not know their infection status, and antibody testing is not recommended, partly due to poor test performance. Here, we compared the test performance of the Roche Elecsys HSV-1 IgG and HSV-2 IgG, DiaSorin LIAISON HSV-1/2 IgG, and Bio-Rad BioPlex 2200 HSV-1 and HSV-2 IgG assays with the gold-standard HSV western blot in 1,994 persons, including 1,017 persons with PCR or culture-confirmed HSV-1 and/or HSV-2 infection. Across all samples, the Bio-Rad and Roche assays had similar performance metrics with low sensitivity (<85%) but high specificity (>97%) for detecting HSV-1 IgG and both high sensitivity (>97%) and high specificity (>98%) for detecting HSV-2 IgG. The DiaSorin assay had a higher sensitivity (92.1%) but much lower specificity (88.7%) for detecting HSV-1 IgG and comparatively poor sensitivity (94.5%) and specificity (94.2%) for detecting HSV-2 IgG. The DiaSorin assay performed poorly at low-positive index values with 60.9% of DiaSorin HSV-1 results and 20.8% of DiaSorin HSV-2 results with positive index values <3.0 yielding false positive results. Based on an estimated HSV-2 seroprevalence of 12% in the United States, positive predictive values for HSV-2 IgG were 96.1% for Roche, 87.4% for Bio-Rad, and 69.0% for DiaSorin, meaning nearly one of every three positive DiaSorin HSV-2 IgG results would be falsely positive. Further development in HSV antibody diagnostics is needed to provide appropriate patient care.IMPORTANCESerological screening for HSV infections is currently not recommended in part due to the poor performance metrics of widely used commercial HSV-1 and HSV-2 IgG assays. Here, we compare three Food and Drug Administration (FDA)-cleared automated HSV-1 and HSV-2 IgG assays to the gold-standard western blot across nearly 2,000 samples. We find that not all commercially available HSV assays are created equal, with comparably low sensitivities for HSV-1 IgG across platforms and high false positivity rates for DiaSorin on HSV-2 IgG. This study is the first large-scale comparison of performance metrics for the Bio-Rad and Roche assays in over 10 years. Our study confirms that there remains room for improvement in HSV serological diagnostic testing-especially in regard to low sensitivities for HSV-1 IgG detection-and highlights that some previously less-studied assays may have better performance metrics than previously considered typical of commercially available HSV-2 IgG assays.


Asunto(s)
Anticuerpos Antivirales , Herpes Simple , Herpesvirus Humano 1 , Herpesvirus Humano 2 , Inmunoglobulina G , Sensibilidad y Especificidad , Humanos , Inmunoglobulina G/sangre , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 2/inmunología , Herpesvirus Humano 2/aislamiento & purificación , Anticuerpos Antivirales/sangre , Herpes Simple/diagnóstico , Herpes Simple/virología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Adolescente , Adulto Joven , Anciano , Automatización de Laboratorios , Niño , Anciano de 80 o más Años , Inmunoensayo/métodos , Preescolar
18.
J Virol ; 97(10): e0130523, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37823644

RESUMEN

IMPORTANCE: A correlation exists between stress and increased episodes of human alpha-herpes virus 1 reactivation from latency. Stress increases corticosteroid levels; consequently, the glucocorticoid receptor (GR) is activated. Recent studies concluded that a GR agonist, but not an antagonist, accelerates productive infection and reactivation from latency. Furthermore, GR and certain stress-induced transcription factors cooperatively transactivate promoters that drive the expression of infected cell protein 0 (ICP0), ICP4, and VP16. This study revealed female mice expressing a GR containing a serine to alanine mutation at position 229 (GRS229A) shed significantly lower levels of infectious virus during explant-induced reactivation compared to male GRS229A or wild-type parental C57BL/6 mice. Furthermore, female GRS229A mice contained fewer VP16 + TG neurons compared to male GRS229A mice or wild-type mice during the early stages of explant-induced reactivation from latency. Collectively, these studies revealed that GR transcriptional activity has female-specific effects, whereas male mice can compensate for the loss of GR transcriptional activation.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Receptores de Glucocorticoides , Activación Viral , Animales , Femenino , Masculino , Ratones , Herpes Simple/genética , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Ratones Endogámicos C57BL , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Ganglio del Trigémino , Ubiquitina-Proteína Ligasas/metabolismo , Activación Viral/genética , Latencia del Virus/genética
19.
J Virol ; 97(5): e0038123, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37093003

RESUMEN

Herpes simplex virus 1 (HSV-1) infection exerts a profound shutoff of host gene expression at multiple levels. Recently, HSV-1 infection was reported to also impact promoter-proximal RNA polymerase II (Pol II) pausing, a key step in the eukaryotic transcription cycle, with decreased and increased Pol II pausing observed for activated and repressed genes, respectively. Here, we demonstrate that HSV-1 infection induces more complex alterations in promoter-proximal pausing than previously suspected for the vast majority of cellular genes. While pausing is generally retained, it is shifted to more downstream and less well-positioned sites for most host genes. The downstream shift of Pol II pausing was established between 1.5 and 3 h of infection, remained stable until at least 6 hours postinfection, and was observed in the absence of ICP22. The shift in Pol II pausing does not result from alternative de novo transcription initiation at downstream sites or read-in transcription originating from disruption of transcription termination of upstream genes. The use of downstream secondary pause sites associated with +1 nucleosomes was previously observed upon negative elongation factor (NELF) depletion. However, downstream shifts of Pol II pausing in HSV-1 infection were much more pronounced than observed upon NELF depletion. Thus, our study reveals a novel aspect in which HSV-1 infection fundamentally reshapes host transcriptional processes, providing new insights into the regulation of promoter-proximal Pol II pausing in eukaryotic cells. IMPORTANCE This study provides a genome-wide analysis of changes in promoter-proximal polymerase II (Pol II) pausing on host genes induced by HSV-1 infection. It shows that standard measures of pausing, i.e., pausing indices, do not properly capture the complex and unsuspected alterations in Pol II pausing occurring in HSV-1 infection. Instead of a reduction of pausing with increased elongation, as suggested by pausing index analysis, HSV-1 infection leads to a shift of pausing to downstream and less well-positioned sites than in uninfected cells for the majority of host genes. Thus, HSV-1 infection fundamentally reshapes a key regulatory step at the beginning of the host transcriptional cycle on a genome-wide scale.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Humanos , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transcripción Genética
20.
J Virol ; 97(4): e0007323, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37022165

RESUMEN

Stress-mediated activation of the glucocorticoid receptor (GR) and specific stress-induced transcription factors stimulate herpes simplex virus 1 (HSV-1) productive infection, explant-induced reactivation, and immediate early (IE) promoters that drive expression of infected cell protein 0 (ICP0), ICP4, and ICP27. Several published studies concluded the virion tegument protein VP16, ICP0, and/or ICP4 drives early steps of reactivation from latency. Notably, VP16 protein expression was induced in trigeminal ganglionic neurons of Swiss Webster or C57BL/6J mice during early stages of stress-induced reactivation. If VP16 mediates reactivation, we hypothesized stress-induced cellular transcription factors would stimulate its expression. To address this hypothesis, we tested whether stress-induced transcription factors transactivate a VP16 cis-regulatory module (CRM) located upstream of the VP16 TATA box (-249 to -30). Initial studies revealed the VP16 CRM cis-activated a minimal promoter more efficiently in mouse neuroblastoma cells (Neuro-2A) than mouse fibroblasts (NIH-3T3). GR and Slug, a stress-induced transcription factor that binds enhancer boxes (E-boxes), were the only stress-induced transcription factors examined that transactivated the VP16 CRM construct. GR- and Slug-mediated transactivation was reduced to basal levels when the E-box, two 1/2 GR response elements (GREs), or NF-κB binding site was mutated. Previous studies revealed GR and Slug cooperatively transactivated the ICP4 CRM, but not ICP0 or ICP27. Silencing of Slug expression in Neuro-2A cells significantly reduced viral replication, indicating Slug-mediated transactivation of ICP4 and VP16 CRM activity correlates with enhanced viral replication and reactivation from latency. IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes lifelong latency in several types of neurons. Periodically cellular stressors trigger reactivation from latency. Viral regulatory proteins are not abundantly expressed during latency, indicating cellular transcription factors mediate early stages of reactivation. Notably, the glucocorticoid receptor (GR) and certain stress-induced transcription factors transactivate cis-regulatory modules (CRMs) essential for expression of infected cell protein 0 (ICP0) and ICP4, key viral transcriptional regulatory proteins linked to triggering reactivation from latency. Virion protein 16 (VP16) specifically transactivates IE promoter and was also reported to mediate early stages of reactivation from latency. GR and Slug, a stress-induced enhancer box (E-box) binding protein, transactivate a minimal promoter downstream of VP16 CRM, and these transcription factors occupy VP16 CRM sequences in transfected cells. Notably, Slug stimulates viral replication in mouse neuroblastoma cells suggesting Slug, by virtue of transactivating VP16 and ICP4 CRM sequences, can trigger reactivation in certain neurons.


Asunto(s)
Proteína Vmw65 de Virus del Herpes Simple , Herpesvirus Humano 1 , Regiones Promotoras Genéticas , Replicación Viral , Animales , Ratones , Regulación Viral de la Expresión Génica , Infecciones por Herpesviridae/virología , Herpesvirus Humano 1/fisiología , Ratones Endogámicos C57BL , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Replicación Viral/genética , Femenino , Proteína Vmw65 de Virus del Herpes Simple/genética , Proteína Vmw65 de Virus del Herpes Simple/metabolismo , Células 3T3 NIH , Latencia del Virus/genética , Mutación , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA