Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 760
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(7): 1895-1913.e19, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33657410

RESUMEN

A dysfunctional immune response in coronavirus disease 2019 (COVID-19) patients is a recurrent theme impacting symptoms and mortality, yet a detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 196 COVID-19 patients and controls and created a comprehensive immune landscape with 1.46 million cells. The large dataset enabled us to identify that different peripheral immune subtype changes are associated with distinct clinical features, including age, sex, severity, and disease stages of COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was found in diverse epithelial and immune cell types, accompanied by dramatic transcriptomic changes within virus-positive cells. Systemic upregulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis of and developing effective therapeutic strategies for COVID-19.


Asunto(s)
COVID-19/inmunología , Megacariocitos/inmunología , Monocitos/inmunología , ARN Viral , SARS-CoV-2/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , China , Estudios de Cohortes , Citocinas/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , ARN Viral/sangre , ARN Viral/aislamiento & purificación , Análisis de la Célula Individual , Transcriptoma/inmunología , Adulto Joven
2.
Cell ; 184(9): 2384-2393.e12, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33794143

RESUMEN

The global spread of SARS-CoV-2/COVID-19 is devastating health systems and economies worldwide. Recombinant or vaccine-induced neutralizing antibodies are used to combat the COVID-19 pandemic. However, the recently emerged SARS-CoV-2 variants B.1.1.7 (UK), B.1.351 (South Africa), and P.1 (Brazil) harbor mutations in the viral spike (S) protein that may alter virus-host cell interactions and confer resistance to inhibitors and antibodies. Here, using pseudoparticles, we show that entry of all variants into human cells is susceptible to blockade by the entry inhibitors soluble ACE2, Camostat, EK-1, and EK-1-C4. In contrast, entry of the B.1.351 and P.1 variant was partially (Casirivimab) or fully (Bamlanivimab) resistant to antibodies used for COVID-19 treatment. Moreover, entry of these variants was less efficiently inhibited by plasma from convalescent COVID-19 patients and sera from BNT162b2-vaccinated individuals. These results suggest that SARS-CoV-2 may escape neutralizing antibody responses, which has important implications for efforts to contain the pandemic.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , SARS-CoV-2/inmunología , Animales , COVID-19/inmunología , COVID-19/terapia , COVID-19/virología , Línea Celular , Farmacorresistencia Viral , Humanos , Inmunización Pasiva , Cinética , Fusión de Membrana , Modelos Moleculares , Pruebas de Neutralización , Serina Endopeptidasas/metabolismo , Solubilidad , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Internalización del Virus , Sueroterapia para COVID-19
3.
Cell ; 177(3): 722-736.e22, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30955890

RESUMEN

Insulin receptor (IR) signaling is central to normal metabolic control and dysregulated in prevalent chronic diseases. IR binds insulin at the cell surface and transduces rapid signaling via cytoplasmic kinases. However, mechanisms mediating long-term effects of insulin remain unclear. Here, we show that IR associates with RNA polymerase II in the nucleus, with striking enrichment at promoters genome-wide. The target genes were highly enriched for insulin-related functions including lipid metabolism and protein synthesis and diseases including diabetes, neurodegeneration, and cancer. IR chromatin binding was increased by insulin and impaired in an insulin-resistant disease model. Promoter binding by IR was mediated by coregulator host cell factor-1 (HCF-1) and transcription factors, revealing an HCF-1-dependent pathway for gene regulation by insulin. These results show that IR interacts with transcriptional machinery at promoters and identify a pathway regulating genes linked to insulin's effects in physiology and disease.


Asunto(s)
Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Receptor de Insulina/metabolismo , Animales , Línea Celular Tumoral , Cromatina/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Factor C1 de la Célula Huésped/antagonistas & inhibidores , Factor C1 de la Célula Huésped/genética , Factor C1 de la Célula Huésped/metabolismo , Humanos , Insulina/metabolismo , Insulina/farmacología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Unión Proteica , Subunidades de Proteína/metabolismo , Interferencia de ARN , ARN Polimerasa II/metabolismo , ARN Interferente Pequeño/metabolismo , Receptor de Insulina/química , Transducción de Señal/efectos de los fármacos
4.
Annu Rev Biochem ; 85: 631-57, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27294441

RESUMEN

O-linked N-acetylglucosamine transferase (OGT) is found in all metazoans and plays an important role in development but at the single-cell level is only essential in dividing mammalian cells. Postmitotic mammalian cells and cells of invertebrates such as Caenorhabditis elegans and Drosophila can survive without copies of OGT. Why OGT is required in dividing mammalian cells but not in other cells remains unknown. OGT has multiple biochemical activities. Beyond its well-known role in adding ß-O-GlcNAc to serine and threonine residues of nuclear and cytoplasmic proteins, OGT also acts as a protease in the maturation of the cell cycle regulator host cell factor 1 (HCF-1) and serves as an integral member of several protein complexes, many of them linked to gene expression. In this review, we summarize current understanding of the mechanisms underlying OGT's biochemical activities and address whether known functions of OGT could be related to its essential role in dividing mammalian cells.


Asunto(s)
Células Eucariotas/enzimología , Factor C1 de la Célula Huésped/química , N-Acetilglucosaminiltransferasas/química , Procesamiento Proteico-Postraduccional , Acilación , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , División Celular , Supervivencia Celular , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Células Eucariotas/citología , Glicosilación , Factor C1 de la Célula Huésped/genética , Factor C1 de la Célula Huésped/metabolismo , Humanos , Mamíferos , Ratones , Modelos Moleculares , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Especificidad de la Especie
5.
Cell ; 166(6): 1423-1435.e12, 2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27594426

RESUMEN

Apicomplexan parasites are leading causes of human and livestock diseases such as malaria and toxoplasmosis, yet most of their genes remain uncharacterized. Here, we present the first genome-wide genetic screen of an apicomplexan. We adapted CRISPR/Cas9 to assess the contribution of each gene from the parasite Toxoplasma gondii during infection of human fibroblasts. Our analysis defines ∼200 previously uncharacterized, fitness-conferring genes unique to the phylum, from which 16 were investigated, revealing essential functions during infection of human cells. Secondary screens identify as an invasion factor the claudin-like apicomplexan microneme protein (CLAMP), which resembles mammalian tight-junction proteins and localizes to secretory organelles, making it critical to the initiation of infection. CLAMP is present throughout sequenced apicomplexan genomes and is essential during the asexual stages of the malaria parasite Plasmodium falciparum. These results provide broad-based functional information on T. gondii genes and will facilitate future approaches to expand the horizon of antiparasitic interventions.


Asunto(s)
Apicomplexa/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Estudio de Asociación del Genoma Completo , Interacciones Huésped-Parásitos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/genética , Células Cultivadas , Claudinas/genética , Claudinas/metabolismo , Fibroblastos/parasitología , Genoma de Protozoos/genética , Humanos , Malaria Falciparum/parasitología , Malaria Falciparum/fisiopatología , Plasmodium falciparum/genética , Toxoplasmosis/parasitología , Toxoplasmosis/fisiopatología
6.
J Biol Chem ; 300(9): 107579, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39025455

RESUMEN

NEIL1 is a DNA glycosylase that recognizes and initiates base excision repair of oxidized bases. The ubiquitous ssDNA binding scaffolding protein, replication protein A (RPA), modulates NEIL1 activity in a manner that depends on DNA structure. Interaction between NEIL1 and RPA has been reported, but the molecular basis of this interaction has yet to be investigated. Using a combination of NMR spectroscopy and isothermal titration calorimetry (ITC), we show that NEIL1 interacts with RPA through two contact points. An interaction with the RPA32C protein recruitment domain was mapped to a motif in the common interaction domain (CID) of NEIL1 and a dissociation constant (Kd) of 200 nM was measured. A substantially weaker secondary interaction with the tandem RPA70AB ssDNA binding domains was also mapped to the CID. Together these two contact points reveal NEIL1 has a high overall affinity (Kd ∼ 20 nM) for RPA. A homology model of the complex of RPA32C with the NEIL1 RPA binding motif in the CID was generated and used to design a set of mutations in NEIL1 to disrupt the interaction, which was confirmed by ITC. The mutant NEIL1 remains catalytically active against a thymine glycol lesion in duplex DNA in vitro. Testing the functional effect of disrupting the NEIL1-RPA interaction in vivo using a Fluorescence Multiplex-Host Cell Reactivation (FM-HCR) reporter assay revealed an unexpected role for NEIL1 in nucleotide excision repair. These findings are discussed in the context of the role of NEIL1 in replication-associated repair.


Asunto(s)
ADN Glicosilasas , Reparación del ADN , Unión Proteica , Proteína de Replicación A , Proteína de Replicación A/metabolismo , Proteína de Replicación A/genética , Proteína de Replicación A/química , ADN Glicosilasas/metabolismo , ADN Glicosilasas/química , ADN Glicosilasas/genética , Humanos , Modelos Moleculares , Dominios Proteicos , Reparación por Escisión
7.
Mol Microbiol ; 121(3): 368-384, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37891705

RESUMEN

The phenomenon of host cell escape exhibited by intracellular pathogens is a remarkably versatile occurrence, capable of unfolding through lytic or non-lytic pathways. Among these pathogens, the bacterium Legionella pneumophila stands out, having adopted a diverse spectrum of strategies to disengage from their host cells. A pivotal juncture that predates most of these host cell escape modalities is the initial escape from the intracellular compartment. This critical step is increasingly supported by evidence suggesting the involvement of several secreted pathogen effectors, including lytic proteins. In this intricate landscape, L. pneumophila emerges as a focal point for research, particularly concerning secreted phospholipases. While nestled within its replicative vacuole, the bacterium deftly employs both its type II (Lsp) and type IVB (Dot/Icm) secretion systems to convey phospholipases into either the phagosomal lumen or the host cell cytoplasm. Its repertoire encompasses numerous phospholipases A (PLA), including three enzymes-PlaA, PlaC, and PlaD-bearing the GDSL motif. Additionally, there are 11 patatin-like phospholipases A as well as PlaB. Furthermore, the bacterium harbors three extracellular phospholipases C (PLCs) and one phospholipase D. Within this comprehensive review, we undertake an exploration of the pivotal role played by phospholipases in the broader context of phagosomal and host cell egress. Moreover, we embark on a detailed journey to unravel the established and potential functions of the secreted phospholipases of L. pneumophila in orchestrating this indispensable process.


Asunto(s)
Legionella pneumophila , Enfermedad de los Legionarios , Humanos , Fosfolipasas/metabolismo , Enfermedad de los Legionarios/microbiología , Vacuolas/metabolismo , Proteínas Bacterianas/metabolismo , Legionella pneumophila/metabolismo , Fosfolipasas A/metabolismo
8.
Mol Microbiol ; 121(3): 413-430, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37278220

RESUMEN

Salmonella enterica is a common foodborne, facultative intracellular enteropathogen. Typhoidal serovars like Paratyphi A (SPA) are human restricted and cause severe systemic diseases, while many serovars like Typhimurium (STM) have a broad host range, and usually lead to self-limiting gastroenteritis. There are key differences between typhoidal and non-typhoidal Salmonella in pathogenesis, but underlying mechanisms remain largely unknown. Transcriptomes and phenotypes in epithelial cells revealed induction of motility, flagella and chemotaxis genes for SPA but not STM. SPA exhibited cytosolic motility mediated by flagella. In this study, we applied single-cell microscopy to analyze triggers and cellular consequences of cytosolic motility. Live-cell imaging (LCI) revealed that SPA invades host cells in a highly cooperative manner. Extensive membrane ruffling at invasion sites led to increased membrane damage in nascent Salmonella-containing vacuole, and subsequent cytosolic release. After release into the cytosol, motile bacteria showed the same velocity as under culture conditions in media. Reduced capture of SPA by autophagosomal membranes was observed by LCI and electron microscopy. Prior work showed that SPA does not use flagella-mediated motility for cell exit via the intercellular spread. However, cytosolic motile SPA was invasion-primed if released from host cells. Our results reveal flagella-mediated cytosolic motility as a possible xenophagy evasion mechanism that could drive disease progression and contributes to the dissemination of systemic infection.


Asunto(s)
Salmonella enterica , Salmonella paratyphi A , Humanos , Salmonella paratyphi A/genética , Citosol , Macroautofagia , Salmonella enterica/genética , Flagelos
9.
Mol Microbiol ; 121(3): 341-358, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37800630

RESUMEN

Human fungal pathogens are a deadly and underappreciated risk to global health that most severely affect immunocompromised individuals. A virulence attribute shared by some of the most clinically relevant fungal species is their ability to survive inside macrophages and escape from these immune cells. In this review, we discuss the mechanisms behind intracellular survival and elaborate how escape is mediated by lytic and non-lytic pathways as well as strategies to induce programmed host cell death. We also discuss persistence as an alternative to rapid host cell exit. In the end, we address the consequences of fungal escape for the host immune response and provide future perspectives for research and development of targeted therapies.


Asunto(s)
Interacciones Huésped-Patógeno , Evasión Inmune , Humanos , Fagocitos/microbiología , Hongos/genética , Macrófagos/microbiología
10.
Mol Microbiol ; 121(3): 593-604, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38063129

RESUMEN

The infection course of Mycobacterium tuberculosis is highly dynamic and comprises sequential stages that require damaging and crossing of several membranes to enable the translocation of the bacteria into the cytosol or their escape from the host. Many important breakthroughs such as the restriction of mycobacteria by the autophagy pathway and the recruitment of sophisticated host repair machineries to the Mycobacterium-containing vacuole have been gained in the Dictyostelium discoideum/M. marinum system. Despite the availability of well-established light and advanced electron microscopy techniques in this system, a correlative approach integrating both methods with near-native ultrastructural preservation is currently lacking. This is most likely due to the low ability of D. discoideum to adhere to surfaces, which results in cell loss even after fixation. To address this problem, we improved the adhesion of cells and developed a straightforward and convenient workflow for 3D-correlative light and electron microscopy. This approach includes high-pressure freezing, which is an excellent technique for preserving membranes. Thus, our method allows to monitor the ultrastructural aspects of vacuole escape which is of central importance for the survival and dissemination of bacterial pathogens.


Asunto(s)
Dictyostelium , Mycobacterium marinum , Mycobacterium , Dictyostelium/metabolismo , Dictyostelium/microbiología , Congelación , Microscopía Electrónica
11.
J Virol ; 98(2): e0167723, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38240590

RESUMEN

Rotavirus infection is a leading cause of gastroenteritis in children worldwide; the genome of this virus is composed of 11 segments of dsRNA packed in a triple-layered protein capsid. Here, we investigated the role of nucleolin, a protein with diverse RNA-binding domains, in rotavirus infection. Knocking down the expression of nucleolin in MA104 cells by RNA interference resulted in a remarkable 6.3-fold increase in the production of infectious rhesus rotavirus (RRV) progeny, accompanied by an elevated synthesis of viral mRNA and genome copies. Further analysis unveiled an interaction between rotavirus segment 10 (S10) and nucleolin, potentially mediated by G-quadruplex domains on the viral genome. To determine whether the nucleolin-RNA interaction regulates RRV replication, MA104 cells were transfected with AGRO100, a compound that forms G4 structures and selectively inhibits nucleolin-RNA interactions by blocking the RNA-binding domains. Under these conditions, viral production increased by 1.5-fold, indicating the inhibitory role of nucleolin on the yield of infectious viral particles. Furthermore, G4 sequences were identified in all 11 RRV dsRNA segments, and transfection of oligonucleotides representing G4 sequences in RRV S10 induced a significant increase in viral production. These findings show that rotavirus replication is negatively regulated by nucleolin through the direct interaction with the viral RNAs by sequences forming G4 structures.IMPORTANCEViruses rely on cellular proteins to carry out their replicative cycle. In the case of rotavirus, the involvement of cellular RNA-binding proteins during the replicative cycle is a poorly studied field. In this work, we demonstrate for the first time the interaction between nucleolin and viral RNA of rotavirus RRV. Nucleolin is a cellular protein that has a role in the metabolism of ribosomal rRNA and ribosome biogenesis, which seems to have regulatory effects on the quantity of viral particles and viral RNA copies of rotavirus RRV. Our study adds a new component to the current model of rotavirus replication, where cellular proteins can have a negative regulation on rotavirus replication.


Asunto(s)
Nucleolina , ARN Viral , Infecciones por Rotavirus , Rotavirus , Humanos , Nucleolina/metabolismo , ARN Viral/genética , Rotavirus/fisiología , Infecciones por Rotavirus/virología , Replicación Viral
12.
J Virol ; : e0093524, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283124

RESUMEN

The large group of negative-strand RNA viruses (NSVs) comprises many important pathogens. To identify conserved patterns in host responses, we systematically compared changes in the cellular RNA levels after infection of human hepatoma cells with nine different NSVs of different virulence degrees. RNA sequencing experiments indicated that the amount of viral RNA in host cells correlates with the number of differentially expressed host cell transcripts. Time-resolved differential gene expression analysis revealed a common set of 178 RNAs that are regulated by all NSVs analyzed. A newly developed open access web application allows downloads and visualizations of all gene expression comparisons for individual viruses over time or between several viruses. Most of the genes included in the core set of commonly differentially expressed genes (DEGs) encode proteins that serve as membrane receptors, signaling proteins and regulators of transcription. They mainly function in signal transduction and control immunity, metabolism, and cell survival. One hundred sixty-five of the DEGs encode host proteins from which 47 have already been linked to the regulation of viral infections in previous studies and 89 proteins form a complex interaction network that may function as a core hub to control NSV infections.IMPORTANCEThe infection of cells with negative-strand RNA viruses leads to the differential expression of many host cell RNAs. The differential spectrum of virus-regulated RNAs reflects a large variety of events including anti-viral responses, cell remodeling, and cell damage. Here, these virus-specific differences and similarities in the regulated RNAs were measured in a highly standardized model. A newly developed app allows interested scientists a wide range of comparisons and visualizations.

13.
J Virol ; 98(4): e0010224, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38470058

RESUMEN

The transmembrane serine protease 2 (TMPRSS2) activates the outer structural proteins of a number of respiratory viruses including influenza A virus (IAV), parainfluenza viruses, and various coronaviruses for membrane fusion. Previous studies showed that TMPRSS2 interacts with the carboxypeptidase angiotensin-converting enzyme 2 (ACE2), a cell surface protein that serves as an entry receptor for some coronaviruses. Here, by using protease activity assays, we determine that ACE2 increases the enzymatic activity of TMPRSS2 in a non-catalytic manner. Furthermore, we demonstrate that ACE2 knockdown inhibits TMPRSS2-mediated cleavage of IAV hemagglutinin (HA) in Calu-3 human airway cells and suppresses virus titers 100- to 1.000-fold. Transient expression of ACE2 in ACE2-deficient cells increased TMPRSS2-mediated HA cleavage and IAV replication. ACE2 knockdown also reduced titers of MERS-CoV and prevented S cleavage by TMPRSS2 in Calu-3 cells. By contrast, proteolytic activation and multicycle replication of IAV with multibasic HA cleavage site typically cleaved by furin were not affected by ACE2 knockdown. Co-immunoprecipitation analysis revealed that ACE2-TMPRSS2 interaction requires the enzymatic activity of TMPRSS2 and the carboxypeptidase domain of ACE2. Together, our data identify ACE2 as a new co-factor or stabilizer of TMPRSS2 activity and as a novel host cell factor involved in proteolytic activation and spread of IAV in human airway cells. Furthermore, our data indicate that ACE2 is involved in the TMPRSS2-catalyzed activation of additional respiratory viruses including MERS-CoV.IMPORTANCEProteolytic cleavage of viral envelope proteins by host cell proteases is essential for the infectivity of many viruses and relevant proteases provide promising drug targets. The transmembrane serine protease 2 (TMPRSS2) has been identified as a major activating protease of several respiratory viruses, including influenza A virus. TMPRSS2 was previously shown to interact with angiotensin-converting enzyme 2 (ACE2). Here, we report the mechanistic details of this interaction. We demonstrate that ACE2 increases or stabilizes the enzymatic activity of TMPRSS2. Furthermore, we describe ACE2 involvement in TMPRSS2-catalyzed cleavage of the influenza A virus hemagglutinin and MERS-CoV spike protein in human airway cells. These findings expand our knowledge of the activation of respiratory viruses by TMPRSS2 and the host cell factors involved. In addition, our results could help to elucidate a physiological role for TMPRSS2.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Virus de la Influenza A , Pulmón , Proteolisis , Serina Endopeptidasas , Animales , Perros , Humanos , Enzima Convertidora de Angiotensina 2/deficiencia , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Biocatálisis , Línea Celular , Furina/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Virus de la Influenza A/crecimiento & desarrollo , Virus de la Influenza A/metabolismo , Pulmón/citología , Pulmón/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Unión Proteica , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Replicación Viral
14.
Trends Biochem Sci ; 45(9): 794-805, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32505636

RESUMEN

Viruses rely on the host cell translation machinery for efficient synthesis of their own proteins. Emerging evidence highlights different roles for host transfer RNAs (tRNAs) in the process of virus replication. For instance, different RNA viruses manipulate host tRNA pools to favor viral protein translation. Interestingly, specific host tRNAs are used as reverse transcription primers and are packaged into retroviral virions. Recent data also demonstrate the formation of tRNA-derived fragments (tRFs) upon infection to facilitate viral replication. Here, we comprehensively discuss how RNA viruses exploit distinct aspects of the host tRNA biology for their benefit. In light of the recent advances in the field, we propose that host tRNA-related pathways and mechanisms represent promising cellular targets for the development of novel antiviral strategies.


Asunto(s)
Infecciones por Virus ARN , Virus ARN , Humanos , Virus ARN/genética , ARN de Transferencia/genética
15.
J Bacteriol ; 206(5): e0010924, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38597609

RESUMEN

Pseudomonas aeruginosa is a significant cause of global morbidity and mortality. Although it is often regarded as an extracellular pathogen toward human cells, numerous investigations report its ability to survive and replicate within host cells, and additional studies demonstrate specific mechanisms enabling it to adopt an intracellular lifestyle. This ability of P. aeruginosa remains less well-investigated than that of other intracellular bacteria, although it is currently gaining attention. If intracellular bacteria are not killed after entering host cells, they may instead receive protection from immune recognition and experience reduced exposure to antibiotic therapy, among additional potential advantages shared with other facultative intracellular pathogens. For this review, we compiled studies that observe intracellular P. aeruginosa across strains, cell types, and experimental systems in vitro, as well as contextualize these findings with the few studies that report similar observations in vivo. We also seek to address key findings that drove the perception that P. aeruginosa remains extracellular in order to reconcile what is currently understood about intracellular pathogenesis and highlight open questions regarding its contribution to disease.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Humanos , Infecciones por Pseudomonas/microbiología , Animales , Interacciones Huésped-Patógeno
16.
J Proteome Res ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39382319

RESUMEN

Many shotgun proteomics experiments are negatively influenced by highly abundant proteins, such as those measuring residual host cell proteins (HCP) amidst highly abundant recombinant biotherapeutic or plasma proteins amidst albumin and immunoglobulins. While western blotting and ELISAs can reveal the presence of specific low abundance proteins from highly abundant background proteins, mass spectrometry approaches are required to define the low abundance protein composition in these scenarios. The challenge in detecting low abundance proteins in a high protein background by standard shotgun approaches is that spectra are often not triggered on their peptides in data dependent acquisition methods but rather on the highly abundant background peptides. Here, we use tandem mass tags (TMT) to introduce a carrier proteome approach to enhance the detection of proteins, such as from residual host cell proteomes amidst a highly abundant background. Using a mixture of bovine serum albumin (BSA) and E. coli as a mock high background/low abundance target protein formulation, we demonstrate proof-of-principle experiments allowing the improved detection of target proteins amidst a high protein background. While we observed significant coisolation interference, we mitigated it by using a spike-in interference detection TMT channel. Finally, we use the approach to identify 300 residual E. coli proteins from a protein A pulldown of a human IgG antibody, demonstrating that it may be applicable to analysis of HCPs in biotherapeutic protein formulations.

17.
Infect Immun ; 92(10): e0026624, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39133016

RESUMEN

Salmonella enterica serovar Typhimurium (S. Typhimurium) infection triggers an inflammatory response that changes the concentration of metabolites in the gut impacting the luminal environment. Some of these environmental adjustments are conducive to S. Typhimurium growth, such as the increased concentrations of nitrate and tetrathionate or the reduced levels of Clostridia-produced butyrate. We recently demonstrated that S. Typhimurium can form biofilms within the host environment and respond to nitrate as a signaling molecule, enabling it to transition between sessile and planktonic states. To investigate whether S. Typhimurium utilizes additional metabolites to regulate its behavior, our study delved into the impact of inflammatory metabolites on biofilm formation. The results revealed that lactate, the most prevalent metabolite in the inflammatory environment, impedes biofilm development by reducing intracellular c-di-GMP levels, suppressing the expression of curli and cellulose, and increasing the expression of flagellar genes. A transcriptomic analysis determined that the expression of the de novo purine pathway increases during high lactate conditions, and a transposon mutagenesis genetic screen identified that PurA and PurG, in particular, play a significant role in the inhibition of curli expression and biofilm formation. Lactate also increases the transcription of the type III secretion system genes involved in tissue invasion. Finally, we show that the pyruvate-modulated two-component system BtsSR is activated in the presence of high lactate, which suggests that lactate-derived pyruvate activates BtsSR system after being exported from the cytosol. All these findings propose that lactate is an important inflammatory metabolite used by S. Typhimurium to transition from a biofilm to a motile state and fine-tune its virulence.IMPORTANCEWhen colonizing the gut, Salmonella enterica serovar Typhimurium (S. Typhimurium) adopts a dynamic lifestyle that alternates between a virulent planktonic state and a multicellular biofilm state. The coexistence of biofilm formers and planktonic S. Typhimurium in the gut suggests the presence of regulatory mechanisms that control planktonic-to-sessile transition. The signals triggering the transition of S. Typhimurium between these two lifestyles are not fully explored. In this work, we demonstrated that in the presence of lactate, the most dominant host-derived metabolite in the inflamed gut, there is a reduction of c-di-GMP in S. Typhimurium, which subsequently inhibits biofilm formation and induces the expression of its invasion machinery, motility genes, and de novo purine metabolic pathway genes. Furthermore, high levels of lactate activate the BtsSR two-component system. Collectively, this work presents new insights toward the comprehension of host metabolism and gut microenvironment roles in the regulation of S. Typhimurium biology during infection.


Asunto(s)
Biopelículas , Regulación Bacteriana de la Expresión Génica , Ácido Láctico , Purinas , Salmonella typhimurium , Biopelículas/crecimiento & desarrollo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/fisiología , Salmonella typhimurium/genética , Ácido Láctico/metabolismo , Purinas/metabolismo , Ratones , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Animales , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/metabolismo , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Virulencia
18.
Infect Immun ; 92(2): e0028923, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38174929

RESUMEN

Brucella species are Gram-negative intracellular bacterial pathogens that cause the worldwide zoonotic disease brucellosis. Brucella can infect many mammals, including humans and domestic and wild animals. Brucella manipulates various host cellular processes to invade and multiply in professional and non-professional phagocytic cells. However, the host targets and their modulation by Brucella to facilitate the infection process remain obscure. Here, we report that the host ubiquitin-specific protease, USP8, negatively regulates the invasion of Brucella into macrophages through the plasma membrane receptor, CXCR4. Upon silencing or chemical inhibition of USP8, the membrane localization of the CXCR4 receptor was enriched, which augmented the invasion of Brucella into macrophages. Activation of USP8 through chemical inhibition of 14-3-3 protein affected the invasion of Brucella into macrophages. Brucella suppressed the expression of Usp8 at its early stage of infection in the infected macrophages. Furthermore, we found that only live Brucella could negatively regulate the expression of Usp8, suggesting the role of secreted effector protein of Brucella in modulating the gene expression. Subsequent studies revealed that the Brucella effector protein, TIR-domain containing protein from Brucella, TcpB, plays a significant role in downregulating the expression of Usp8 by targeting the cyclic-AMP response element-binding protein pathway. Treatment of mice with USP8 inhibitor resulted in enhanced survival of B. melitensis, whereas mice treated with CXCR4 or 14-3-3 antagonists showed a diminished bacterial load. Our experimental data demonstrate a novel role of Usp8 in the host defense against microbial intrusion. The present study provides insights into the microbial subversion of host defenses, and this information may ultimately help to develop novel therapeutic interventions for infectious diseases.


Asunto(s)
Brucella melitensis , Brucella , Brucelosis , Animales , Humanos , Ratones , Proteasas Ubiquitina-Específicas/metabolismo , Macrófagos/microbiología , Brucelosis/microbiología , Proteínas Bacterianas/genética , Mamíferos , Endopeptidasas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo
19.
Int J Cancer ; 155(6): 1091-1100, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38680109

RESUMEN

People living with HIV (PLWH) are at highest risk of anal cancer and will benefit from optimized screening for early disease detection. We compared host DNA methylation markers in high-grade squamous intraepithelial lesions (HSIL) versus samples negative for intraepithelial lesions (NILM) or low-grade intraepithelial lesions (LSIL) in PLWH. We recruited PLWH identifying as male aged ≥18 years undergoing high-resolution anoscopy (HRA) in Seattle, Washington, 2015-2016. Anal brush samples were collected for HPV detection, genotyping, and pyrosequencing methylation (host genes ASCL1, PAX1, FMN2, and ATP10A); clinical data were abstracted from medical records. We assessed associations between methylation and presence and extent of HSIL using generalized estimating equation logistic regression, adjusting for age, CD4 count and HIV viral load. Marker panels using HPV DNA and methylation were also evaluated to predict prevalent HSIL. We analyzed 125 samples from 85 participants (mean age 50.1; standard deviation 11.0 years). ASCL1 (adjusted odds ratio [aOR] per 1 unit increase mean percent methylation: 1.07, 95% CI: 1.01-1.13) and FMN2 (aOR per 1 unit increase mean percent methylation: 1.14, 95% CI: 1.08-1.20) methylation were significantly associated with HSIL versus NILM/LSIL. ASCL1 (aOR: 1.06, 95% CI: 1.01-1.11) and FMN2 (aOR: 1.13, 95% CI: 1.08-1.17) methylation were positively associated with increasing HSIL extent. A panel combining methylation (ASCL1 and FMN2) and HPV DNA (HPV16, HPV18, and HPV31) demonstrated best balance of sensitivity (78.2%) and specificity (73.9%) for HSIL detection compared with methylation or HPV alone. Increasing levels of DNA methylation of ASCL1 and FMN2 were positively associated with HSIL detection in PLWH. Host gene methylation testing shows promise for HSIL screening and triage.


Asunto(s)
Neoplasias del Ano , Metilación de ADN , Detección Precoz del Cáncer , Infecciones por VIH , Infecciones por Papillomavirus , Humanos , Masculino , Persona de Mediana Edad , Neoplasias del Ano/virología , Neoplasias del Ano/genética , Neoplasias del Ano/diagnóstico , Estudios Transversales , Infecciones por VIH/virología , Infecciones por VIH/complicaciones , Infecciones por VIH/genética , Adulto , Detección Precoz del Cáncer/métodos , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/diagnóstico , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Biomarcadores de Tumor/genética , Lesiones Intraepiteliales Escamosas/virología , Lesiones Intraepiteliales Escamosas/genética , ADN Viral/genética , Anciano , Factores de Transcripción Paired Box
20.
Arch Biochem Biophys ; 752: 109856, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38104958

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-stranded RNA virus that sits at the centre of the recent global pandemic. As a member of the coronaviridae family of viruses, it shares features such as a very large genome (>30 kb) that is replicated in a purpose-built replication organelle. Biogenesis of the replication organelle requires significant and concerted rearrangement of the endoplasmic reticulum membrane, a job that is carried out by a group of integral membrane non-structural proteins (NSP3, 4 and 6) expressed by the virus along with a host of viral replication enzymes and other factors that support transcription and replication. The primary sites for RNA replication within the replication organelle are double membrane vesicles (DMVs). The small size of DMVs requires generation of high membrane curvature, as well as stabilization of a double-membrane arrangement, but the mechanisms that underlie DMV formation remain elusive. In this review, we discuss recent breakthroughs in our understanding of the molecular basis for membrane rearrangements by coronaviruses. We incorporate established models of NSP3-4 protein-protein interactions to drive double membrane formation, and recent data highlighting the roles of lipid composition and host factor proteins (e.g. reticulons) that influence membrane curvature, to propose a revised model for DMV formation in SARS-CoV-2.


Asunto(s)
Retículo Endoplásmico , Proteínas no Estructurales Virales , Línea Celular , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA