Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.655
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(24): 4604-4620.e32, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36423582

RESUMEN

Natural and induced somatic mutations that accumulate in the genome during development record the phylogenetic relationships of cells; whether these lineage barcodes capture the complex dynamics of progenitor states remains unclear. We introduce quantitative fate mapping, an approach to reconstruct the hierarchy, commitment times, population sizes, and commitment biases of intermediate progenitor states during development based on a time-scaled phylogeny of their descendants. To reconstruct time-scaled phylogenies from lineage barcodes, we introduce Phylotime, a scalable maximum likelihood clustering approach based on a general barcoding mutagenesis model. We validate these approaches using realistic in silico and in vitro barcoding experiments. We further establish criteria for the number of cells that must be analyzed for robust quantitative fate mapping and a progenitor state coverage statistic to assess the robustness. This work demonstrates how lineage barcodes, natural or synthetic, enable analyzing progenitor fate and dynamics long after embryonic development in any organism.


Asunto(s)
Desarrollo Embrionario , Linaje de la Célula/genética , Estudios Retrospectivos , Filogenia , Mutagénesis
2.
Annu Rev Biochem ; 85: 515-42, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27145844

RESUMEN

Ice-binding proteins (IBPs) are a diverse class of proteins that assist organism survival in the presence of ice in cold climates. They have different origins in many organisms, including bacteria, fungi, algae, diatoms, plants, insects, and fish. This review covers the gamut of IBP structures and functions and the common features they use to bind ice. We discuss mechanisms by which IBPs adsorb to ice and interfere with its growth, evidence for their irreversible association with ice, and methods for enhancing the activity of IBPs. The applications of IBPs in the food industry, in cryopreservation, and in other technologies are vast, and we chart out some possibilities.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas Anticongelantes/química , Criopreservación/métodos , Hielo/análisis , Animales , Proteínas Anticongelantes/genética , Proteínas Anticongelantes/metabolismo , Bacterias/genética , Bacterias/metabolismo , Frío , Almacenamiento de Alimentos/métodos , Expresión Génica , Humanos , Modelos Moleculares , Plantas/genética , Plantas/metabolismo , Unión Proteica , Dominios Proteicos , Ingeniería de Proteínas , Estructura Secundaria de Proteína , Levaduras/genética , Levaduras/metabolismo
3.
Annu Rev Microbiol ; 77: 89-109, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37001148

RESUMEN

Hypersaline waters and glacial ice are inhospitable environments that have low water activity and high concentrations of osmolytes. They are inhabited by diverse microbial communities, of which extremotolerant and extremophilic fungi are essential components. Some fungi are specialized in only one of these two environments and can thrive in conditions that are lethal to most other life-forms. Others are generalists, highly adaptable species that occur in both environments and tolerate a wide range of extremes. Both groups efficiently balance cellular osmotic pressure and ion concentration, stabilize cell membranes, remodel cell walls, and neutralize intracellular oxidative stress. Some species use unusual reproductive strategies. Further investigation of these adaptations with new methods and carefully designed experiments under ecologically relevant conditions will help predict the role of fungi in hypersaline and glacial environments affected by climate change, decipher their stress resistance mechanisms and exploit their biotechnological potential.


Asunto(s)
Biotecnología , Microbiota , Membrana Celular , Pared Celular , Hongos
4.
Proc Natl Acad Sci U S A ; 121(26): e2407062121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38900794

RESUMEN

Particular frost patterns on natural leaves had prompted Yao et al. [Y. Yao et al., Proc. Natl. Acad. Sci. U.S.A. 117, 6323-6329 (2020)] to investigate the underlying physics. Their work revealed why on corrugated surfaces ice forms on crests and dries out adjacent grooves. In the absence of frost, in contrast, grooves tend to constitute niches on a leaf where microorganisms are less limited by moisture than in other locations. Here, we show that microorganisms able to nucleate ice before it forms on crests can modify the frosting pattern to their advantage. This ability might drive in cold arid environments the association between certain microorganisms and plants.


Asunto(s)
Congelación , Hojas de la Planta , Hielo
5.
Proc Natl Acad Sci U S A ; 121(20): e2322853121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38709921

RESUMEN

Mounting experimental evidence supports the existence of a liquid-liquid transition (LLT) in high-pressure supercooled water. However, fast crystallization of supercooled water has impeded identification of the LLT line TLL(p) in experiments. While the most accurate all-atom (AA) water models display a LLT, their computational cost limits investigations of its interplay with ice formation. Coarse-grained (CG) models provide over 100-fold computational efficiency gain over AA models, enabling the study of water crystallization, but have not yet shown to have a LLT. Here, we demonstrate that the CG machine-learned water model Machine-Learned Bond-Order Potential (ML-BOP) has a LLT that ends in a critical point at pc = 170 ± 10 MPa and Tc = 181 ± 3 K. The TLL(p) of ML-BOP is almost identical to the one of TIP4P/2005, adding to the similarity in the equation of state of liquid water in both models. Cooling simulations reveal that ice crystallization is fastest at the LLT and its supercritical continuation of maximum heat capacity, supporting a mechanistic relationship between the structural transformation of water to a low-density liquid (LDL) and ice formation. We find no signature of liquid-liquid criticality in the ice crystallization temperatures. ML-BOP replicates the competition between formation of LDL and ice observed in ultrafast experiments of decompression of the high-density liquid (HDL) into the region of stability of LDL. The simulations reveal that crystallization occurs prior to the coarsening of the HDL and LDL domains, obscuring the distinction between the highly metastable first-order LLT and pronounced structural fluctuations along its supercritical continuation.

6.
Proc Natl Acad Sci U S A ; 121(30): e2322330121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39008665

RESUMEN

Ice is emerging as a promising sacrificial material in the rapidly expanding area of advanced manufacturing for creating precise 3D internal geometries. Freeform 3D printing of ice (3D-ICE) can produce microscale ice structures with smooth walls, hierarchical transitions, and curved and overhang features. However, controlling 3D-ICE is challenging due to an incomplete understanding of its complex physics involving heat transfer, fluid dynamics, and phase changes. This work aims to advance our understanding of 3D-ICE physics by combining numerical modeling and experimentation. We developed a 2D thermo-fluidic model to analyze the transition from layered to continuous printing and a 3D thermo-fluidic model for the oblique deposition, which enables curved and overhang geometries. Experiments are conducted and compared with model simulations. We found that high droplet deposition rates enable the continuous deposition mode with a sustained liquid cap on top of the ice, facilitating smooth geometries. The diameter of ice structures is controlled by the droplet deposition frequency. Oblique deposition causes unidirectional spillover of the liquid cap and asymmetric heat transfer at the freeze front, rotating the freeze front. These results provide valuable insights for reproducible 3D-ICE printing that could be applied across various fields, including tissue engineering, microfluidics, and soft robotics.

7.
Proc Natl Acad Sci U S A ; 121(21): e2319652121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739805

RESUMEN

The last glacial period was punctuated by cold intervals in the North Atlantic region that culminated in extensive iceberg discharge events. These cold intervals, known as Heinrich Stadials, are associated with abrupt climate shifts worldwide. Here, we present CO2 measurements from the West Antarctic Ice Sheet Divide ice core across Heinrich Stadials 2 to 5 at decadal-scale resolution. Our results reveal multi-decadal-scale jumps in atmospheric CO2 concentrations within each Heinrich Stadial. The largest magnitude of change (14.0 ± 0.8 ppm within 55 ± 10 y) occurred during Heinrich Stadial 4. Abrupt rises in atmospheric CO2 are concurrent with jumps in atmospheric CH4 and abrupt changes in the water isotopologs in multiple Antarctic ice cores, the latter of which suggest rapid warming of both Antarctica and Southern Ocean vapor source regions. The synchroneity of these rapid shifts points to wind-driven upwelling of relatively warm, carbon-rich waters in the Southern Ocean, likely linked to a poleward intensification of the Southern Hemisphere westerly winds. Using an isotope-enabled atmospheric circulation model, we show that observed changes in Antarctic water isotopologs can be explained by abrupt and widespread Southern Ocean warming. Our work presents evidence for a multi-decadal- to century-scale response of the Southern Ocean to changes in atmospheric circulation, demonstrating the potential for dynamic changes in Southern Ocean biogeochemistry and circulation on human timescales. Furthermore, it suggests that anthropogenic CO2 uptake in the Southern Ocean may weaken with poleward strengthening westerlies today and into the future.

8.
Proc Natl Acad Sci U S A ; 121(21): e2320384121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38743620

RESUMEN

A recent advance in the study of emergent magnetic monopoles was the discovery that monopole motion is restricted to dynamical fractal trajectories [J. N. Hallén et al., Science 378, 1218 (2022)], thus explaining the characteristics of magnetic monopole noise spectra [R. Dusad et al., Nature 571, 234 (2019); A. M. Samarakoon et al., Proc. Natl. Acad. Sci. U.S.A. 119, e2117453119 (2022)]. Here, we apply this novel theory to explore the dynamics of field-driven monopole currents, finding them composed of two quite distinct transport processes: initially swift fractal rearrangements of local monopole configurations followed by conventional monopole diffusion. This theory also predicts a characteristic frequency dependence of the dissipative loss angle for AC field-driven currents. To explore these novel perspectives on monopole transport, we introduce simultaneous monopole current control and measurement techniques using SQUID-based monopole current sensors. For the canonical material Dy2Ti2O7, we measure [Formula: see text], the time dependence of magnetic flux threading the sample when a net monopole current [Formula: see text] is generated by applying an external magnetic field [Formula: see text] These experiments find a sharp dichotomy of monopole currents, separated by their distinct relaxation time constants before and after t ~[Formula: see text] from monopole current initiation. Application of sinusoidal magnetic fields [Formula: see text] generates oscillating monopole currents whose loss angle [Formula: see text] exhibits a characteristic transition at frequency [Formula: see text] over the same temperature range. Finally, the magnetic noise power is also dichotomic, diminishing sharply after t ~[Formula: see text]. This complex phenomenology represents an unprecedented form of dynamical heterogeneity generated by the interplay of fractionalization and local spin configurational symmetry.

9.
Proc Natl Acad Sci U S A ; 121(29): e2400355121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38976732

RESUMEN

The ongoing and projected retreat of Arctic sea ice has garnered international interest toward the utilization of Arctic maritime corridors for shipping, tourism, and development. Yet, with potential for increasing traffic in Arctic regions, it's important to consider additional environmental variables affected by climate change which may threaten maritime operations. Here, we use four climate model projections to produce ocean wave simulations and investigate the future magnitude and seasonality of sea ice risk coupled with wave hazards. Analyzing the potential 5 mo shipping season spanning July to November along the Northwest Passage maritime route between 2020 and 2070, our results show a substantial decline in sea ice risk over the analysis time period, resulting in near open-water conditions along the route for a 5 mo period by 2070. However, as seasonal ice coverage retreats, there is a significant upward trend in wave heights along the route during July and November, with the timing of the greatest wave height shifting away from September toward later in the season. This result is pertinent as the possibility of seasonally unprecedented extreme waves coupled with subfreezing late fall temperatures makes for an especially hazardous environment, thus emphasizing the importance of considering the interaction between evolving sea ice and interdependent hazards when predicting the risks and challenges faced by Arctic maritime operations.

10.
Proc Natl Acad Sci U S A ; 121(11): e2321595121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437551

RESUMEN

Polynyas, areas of open water embedded within sea ice, are a key component of ocean-atmosphere interactions that act as hotspots of sea-ice production, bottom-water formation, and primary productivity. The specific drivers of polynya dynamics remain, however, elusive and coupled climate models struggle to replicate Antarctic polynya activity. Here, we leverage a 44-y time series of Antarctic sea ice to elucidate long-term trends. We identify Antarctic-wide linear increases and a hitherto undescribed cyclical pattern of polynya activity across the Ross Sea region that potentially arises from interactions between the Amundsen Sea Low and Southern Annular Mode. While their specific drivers remain unknown, identifying these emerging patterns augments our capacity to understand the processes that influence sea ice. As we enter a potentially new age of Antarctic sea ice, this advance in understanding will, in turn, lead to more accurate predictions of environmental change, and its implications for Antarctic ecosystems.

11.
Proc Natl Acad Sci U S A ; 121(30): e2401970121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39008668

RESUMEN

In topological magnetic materials, the topology of the electronic wave function is strongly coupled to the structure of the magnetic order. In general, ferromagnetic Weyl semimetals generate a strong anomalous Hall conductivity (AHC) due to a large Berry curvature that scales with their magnetization. In contrast, a comparatively small AHC is observed in noncollinear antiferromagnets. We investigated HoAgGe, an antiferromagnetic (AFM) Kagome spin-ice compound, which crystallizes in a hexagonal ZrNiAl-type structure in which Ho atoms are arranged in a distorted Kagome lattice, forming an intermetallic Kagome spin-ice state in the ab-plane. It exhibits a large topological Hall resistivity of ~1.6 µΩ-cm at 2.0 K in a field of ~3 T owing to the noncoplanar structure. Interestingly, a total AHC of 2,800 Ω-1 cm-1 is observed at ~45 K, i.e., 4 TN, which is quite unusual and goes beyond the normal expectation considering HoAgGe as an AFM Kagome spin-ice compound with a TN of ~11 K. We demonstrate further that the AHC below TN results from the nonvanishing Berry curvature generated by the formation of Weyl points under the influence of the external magnetic field, while the skew scattering led by Kagome spins dominates above the TN. These results offer a unique opportunity to study frustration in AFM Kagome lattice compounds.

12.
Proc Natl Acad Sci U S A ; 121(31): e2402120121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39042680

RESUMEN

Disentangling inputs of aeolian dust, ice-rafted debris (IRD), and eroded continental detritus delivered by ocean currents to marine sediments provide important insights into Earth System processes and climate. This study uses Sr-Nd-Pb isotope ratios of the continent-derived (lithogenic) fraction in deep-sea core TN057-6 from the subantarctic Southern Ocean southwest of Africa over the past 150,000 y to identify source regions and quantify their relative contributions and fluxes utilizing a mixing model set in a Bayesian framework. The data are compared with proxies from parallel core Ocean Drilling Program Site 1090 and newly presented data from potential South America aeolian dust source areas (PSAs), allowing for an integrated investigation into atmospheric, oceanic, and cryospheric dynamics. PSA inputs varied on glacial/interglacial timescales, with southern South American sources dominating up to 88% of the lithogenic fraction (mainly Patagonia, which provided up to 68%) during cold periods, while southern African sources were more important during interglacials. During the warmer Marine Isotope Stage (MIS) 3 of the last glacial period, lithogenic fluxes were twice that of colder MIS2 and MIS4 at times, and showed unique isotope ratios best explained by Antarctic-derived IRD, likely from the Weddell Sea. The IRD intrusions contributed up to 41% at times and followed Antarctic millennial warming events that raised temperatures, causing instability of icesheet margins. High IRD was synchronous with increased bioavailable iron, nutrient utilization, high biological productivity, and decreased atmospheric CO2. Overall, TN057-6 sediments record systematic Southern Hemisphere climate shifts and cryospheric changes that impacted biogeochemical cycling on both glacial/interglacial and subglacial timescales.

13.
Proc Natl Acad Sci U S A ; 121(12): e2302983121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38437529

RESUMEN

Terrestrial glacial records from the Patagonian Andes and New Zealand Alps document quasi-synchronous Southern Hemisphere-wide glacier advances during the late Quaternary. However, these records are inherently incomplete. Here, we provide a continuous marine record of western-central Patagonian ice sheet (PIS) extent over a complete glacial-interglacial cycle back into the penultimate glacial (~140 ka). Sediment core MR16-09 PC03, located at 46°S and ~150 km offshore Chile, received high terrestrial sediment and meltwater input when the central PIS extended westward. We use biomarkers, foraminiferal oxygen isotopes, and major elemental data to reconstruct terrestrial sediment and freshwater input related to PIS variations. Our sediment record documents three intervals of general PIS marginal fluctuations, during Marine Isotope Stage (MIS) 6 (140 to 135 ka), MIS 4 (~70 to 60 ka), and late MIS 3 to MIS 2 (~40 to 18 ka). These higher terrigenous input intervals occurred during sea-level low stands, when the western PIS covered most of the Chilean fjords, which today retain glaciofluvial sediments. During these intervals, high-amplitude phases of enhanced sediment supply occur at millennial timescales, reflecting increased ice discharge most likely due to a growing PIS. We assign the late MIS 3 to MIS 2 phases and, by inference, older advances to Antarctic cold stages. We conclude that the increased sediment/meltwater release during Southern Hemisphere millennial-scale cold phases was likely related to higher precipitation caused by enhanced westerly winds at the northwestern margin of the PIS. Our records complement terrestrial archives and provide evidence for PIS climate sensitivity.

14.
Proc Natl Acad Sci U S A ; 120(27): e2220380120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364125

RESUMEN

Attaining molecular-level control over solidification processes is a crucial aspect of materials science. To control ice formation, organisms have evolved bewildering arrays of ice-binding proteins (IBPs), but these have poorly understood structure-activity relationships. We propose that reverse engineering using de novo computational protein design can shed light on structure-activity relationships of IBPs. We hypothesized that the model alpha-helical winter flounder antifreeze protein uses an unusual undertwisting of its alpha-helix to align its putative ice-binding threonine residues in exactly the same direction. We test this hypothesis by designing a series of straight three-helix bundles with an ice-binding helix projecting threonines and two supporting helices constraining the twist of the ice-binding helix. Our findings show that ice-recrystallization inhibition by the designed proteins increases with the degree of designed undertwisting, thus validating our hypothesis, and opening up avenues for the computational design of IBPs.


Asunto(s)
Lenguado , Hielo , Animales , Proteínas Anticongelantes/química , Caspasa 1
15.
Proc Natl Acad Sci U S A ; 120(44): e2304148120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37844213

RESUMEN

Premelting of ice, a quasi-liquid layer (QLL) at the surface below the melting temperature, was first postulated by Michael Faraday 160 y ago. Since then, it has been extensively studied theoretically and experimentally through many techniques. Existing work has been performed predominantly on hexagonal ice, at conditions close to the triple point. Whether the same phenomenon can persist at much lower pressure and temperature, where stacking disordered ice sublimates directly into water vapor, remains unclear. Herein, we report direct observations of surface premelting on ice nanocrystals below the sublimation temperature using transmission electron microscopy (TEM). Similar to what has been reported on hexagonal ice, a QLL is found at the solid-vapor interface. It preferentially decorates certain facets, and its thickness increases as the phase transition temperature is approached. In situ TEM reveals strong diffusion of the QLL, while electron energy loss spectroscopy confirms its amorphous nature. More significantly, the premelting observed in this work is thought to be related to the metastable low-density ultraviscous water, instead of ambient liquid water as in the case of hexagonal ice. This opens a route to understand premelting and grassy liquid state, far away from the normal water triple point.

16.
Proc Natl Acad Sci U S A ; 120(46): e2303243120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37943838

RESUMEN

Biological ice nucleation plays a key role in the survival of cold-adapted organisms. Several species of bacteria, fungi, and insects produce ice nucleators (INs) that enable ice formation at temperatures above -10 °C. Bacteria and fungi produce particularly potent INs that can promote water crystallization above -5 °C. Bacterial INs consist of extended protein units that aggregate to achieve superior functionality. Despite decades of research, the nature and identity of fungal INs remain elusive. Here, we combine ice nucleation measurements, physicochemical characterization, numerical modeling, and nucleation theory to shed light on the size and nature of the INs from the fungus Fusarium acuminatum. We find ice-binding and ice-shaping activity of Fusarium IN, suggesting a potential connection between ice growth promotion and inhibition. We demonstrate that fungal INs are composed of small 5.3 kDa protein subunits that assemble into ice-nucleating complexes that can contain more than 100 subunits. Fusarium INs retain high ice-nucleation activity even when only the ~12 kDa fraction of size-excluded proteins are initially present, suggesting robust pathways for their functional aggregation in cell-free aqueous environments. We conclude that the use of small proteins to build large assemblies is a common strategy among organisms to create potent biological INs.


Asunto(s)
Hielo , Agua , Congelación , Temperatura , Proteínas de la Membrana Bacteriana Externa/metabolismo
17.
Proc Natl Acad Sci U S A ; 120(7): e2208738120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745804

RESUMEN

Founding populations of the first Americans likely occupied parts of Beringia during the Last Glacial Maximum (LGM). The timing, pathways, and modes of their southward transit remain unknown, but blockage of the interior route by North American ice sheets between ~26 and 14 cal kyr BP (ka) favors a coastal route during this period. Using models and paleoceanographic data from the North Pacific, we identify climatically favorable intervals when humans could have plausibly traversed the Cordilleran coastal corridor during the terminal Pleistocene. Model simulations suggest that northward coastal currents strengthened during the LGM and at times of enhanced freshwater input, making southward transit by boat more difficult. Repeated Cordilleran glacial-calving events would have further challenged coastal transit on land and at sea. Following these events, ice-free coastal areas opened and seasonal sea ice was present along the Alaskan margin until at least 15 ka. Given evidence for humans south of the ice sheets by 16 ka and possibly earlier, we posit that early people may have taken advantage of winter sea ice that connected islands and coastal refugia. Marine ice-edge habitats offer a rich food supply and traversing coastal sea ice could have mitigated the difficulty of traveling southward in watercraft or on land over glaciers. We identify 24.5 to 22 ka and 16.4 to 14.8 ka as environmentally favorable time periods for coastal migration, when climate conditions provided both winter sea ice and ice-free summer conditions that facilitated year-round marine resource diversity and multiple modes of mobility along the North Pacific coast.


Asunto(s)
Ecosistema , Agua Dulce , Humanos , América del Norte , Migración Humana , Océanos y Mares , Cubierta de Hielo
18.
Proc Natl Acad Sci U S A ; 120(43): e2310777120, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37851675

RESUMEN

Direct detection of spontaneous spin fluctuations, or "magnetization noise," is emerging as a powerful means of revealing and studying magnetic excitations in both natural and artificial frustrated magnets. Depending on the lattice and nature of the frustration, these excitations can often be described as fractionalized quasiparticles possessing an effective magnetic charge. Here, by combining ultrasensitive optical detection of thermodynamic magnetization noise with Monte Carlo simulations, we reveal emergent regimes of magnetic excitations in artificial "tetris ice." A marked increase of the intrinsic noise at certain applied magnetic fields heralds the spontaneous proliferation of fractionalized excitations, which can diffuse independently, without cost in energy, along specific quasi-1D spin chains in the tetris ice lattice.

19.
Proc Natl Acad Sci U S A ; 120(50): e2313447120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38048472

RESUMEN

Astrobiology studies are a top priority in answering one of the most fundamental questions in planetary science: Is there life beyond Earth? Saturn's icy moon Enceladus is a prime target in the search for life in our solar system, identified by NASA as the second-highest priority site for a flagship mission in the next decade. The orbital sampling technique of impact ionization mass spectrometry indicated the presence of complex organics in the small icy plume particles ejected by Enceladus encountered previously by Cassini. However, high interaction velocities caused ambiguity as to the origin and identity of the organics. Laboratory validation of this technique is needed to show that biosignature molecules can survive an impact at hypervelocity speeds for detection. Here, we present results on the hypervelocity impact of organic-laden submicron ice grains for in situ mass spectrometric characterization with the first technique to accurately replicate this plume sampling scenario: the Hypervelocity Ice Grain Impact Mass Spectrometer. Our results show good agreement with Cassini data at comparable compositions. We show that amino acids entrained in ice grains can be detected intact after impact at speeds up to 4.2 km/s and that salt reduces their detectability, validating the predictions from other model systems. Our results provide a benchmark for this orbital sampling method to successfully detect signs of life and for the interpretation of past and future data. This work has implications not only for a potential Enceladus mission but also for the forthcoming Europa Clipper mission.

20.
Proc Natl Acad Sci U S A ; 120(47): e2307587120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37976260

RESUMEN

Marine phytoplankton are primary producers in ocean ecosystems and emit dimethyl sulfide (DMS) into the atmosphere. DMS emissions are the largest biological source of atmospheric sulfur and are one of the largest uncertainties in global climate modeling. DMS is oxidized to methanesulfonic acid (MSA), sulfur dioxide, and hydroperoxymethyl thioformate, all of which can be oxidized to sulfate. Ice core records of MSA are used to investigate past DMS emissions but rely on the implicit assumption that the relative yield of oxidation products from DMS remains constant. However, this assumption is uncertain because there are no long-term records that compare MSA to other DMS oxidation products. Here, we share the first long-term record of both MSA and DMS-derived biogenic sulfate concentration in Greenland ice core samples from 1200 to 2006 CE. While MSA declines on average by 0.2 µg S kg-1 over the industrial era, biogenic sulfate from DMS increases by 0.8 µg S kg-1. This increasing biogenic sulfate contradicts previous assertions of declining North Atlantic primary productivity inferred from decreasing MSA concentrations in Greenland ice cores over the industrial era. The changing ratio of MSA to biogenic sulfate suggests that trends in MSA could be caused by time-varying atmospheric chemistry and that MSA concentrations alone should not be used to infer past primary productivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA