Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cancer Cell Int ; 24(1): 228, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951897

RESUMEN

BACKGROUND: In the treatment of oral cavity cancer, margin status is one of the most critical prognostic factors. Positive margins are associated with higher local recurrence and lower survival rates. Therefore, the universal goal of oral surgical oncology is to achieve microscopically clear margins. Near-infrared fluorescence guided surgery (FGS) could improve surgical resection using fluorescent probes. αVß6 integrin has shown great potential for cancer targeting due to its overexpression in oral cancers. Red fluorescent contrast agent IRDye 680 coupled with anti-αVß6 peptide (IRDye-A20) represents an asset to improve FGS of oral cancer. This study investigates the potential of IRDye-A20 as a selective imaging agent in 3D three-dimensional tongue cancer cells. METHODS: αVß6 integrin expression was evaluated by RT-qPCR and Western Blotting in 2D HSC-3 human tongue cancer cells and MRC-5 human fibroblasts. Targeting ability of IRDye-A20 was studied in both cell lines by flow cytometry technique. 3D tumor spheroid models, homotypic (HSC-3) and stroma-enriched heterotypic (HSC-3/MRC-5) spheroids were produced by liquid overlay procedure and further characterized using (immuno)histological and fluorescence-based techniques. IRDye-A20 selectivity was evaluated in each type of spheroids and each cell population. RESULTS: αVß6 integrin was overexpressed in 2D HSC-3 cancer cells but not in MRC-5 fibroblasts and consistently, only HSC-3 were labelled with IRDye-A20. Round shaped spheroids with an average diameter of 400 µm were produced with a final ratio of 55%/45% between HSC-3 and MRC-5 cells, respectively. Immunofluorescence experiments demonstrated an uniform expression of αVß6 integrin in homotypic spheroid, while its expression was restricted to cancer cells only in heterotypic spheroid. In stroma-enriched 3D model, Cytokeratin 19 and E-cadherin were expressed only by cancer cells while vimentin and fibronectin were expressed by fibroblasts. Using flow cytometry, we demonstrated that IRDye-A20 labeled the whole homotypic spheroid, while in the heterotypic model all cancer cells were highly fluorescent, with a negligible fluorescence in fibroblasts. CONCLUSIONS: The present study demonstrated an efficient selective targeting of A20FMDV2-conjugated IRDye 680 in 3D tongue cancer cells stroma-enriched spheroids. Thus, IRDye-A20 could be a promising candidate for the future development of the fluorescence-guided surgery of oral cancers.

2.
Mol Pharm ; 21(7): 3296-3309, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38861020

RESUMEN

Cetuximab (Cet)-IRDye800CW, among other antibody-IRDye800CW conjugates, is a potentially effective tool for delineating tumor margins during fluorescence image-guided surgery (IGS). However, residual disease often leads to recurrence. Photodynamic therapy (PDT) following IGS is proposed as an approach to eliminate residual disease but suffers from a lack of molecular specificity for cancer cells. Antibody-targeted PDT offers a potential solution for this specificity problem. In this study, we show, for the first time, that Cet-IRDye800CW is capable of antibody-targeted PDT in vitro when the payload of dye molecules is increased from 2 (clinical version) to 11 per antibody. Cet-IRDye800CW (1:11) produces singlet oxygen, hydroxyl radicals, and peroxynitrite upon activation with 810 nm light. In vitro assays on FaDu head and neck cancer cells confirm that Cet-IRDye800CW (1:11) maintains cancer cell binding specificity and is capable of inducing up to ∼90% phototoxicity in FaDu cancer cells. The phototoxicity of Cet-IRDye800CW conjugates using 810 nm light follows a dye payload-dependent trend. Cet-IRDye800CW (1:11) is also found to be more phototoxic to FaDu cancer cells and less toxic in the dark than the approved chromophore indocyanine green, which can also act as a PDT agent. We propose that antibody-targeted PDT using high-payload Cet-IRDye800CW (1:11) could hold potential for eliminating residual disease postoperatively when using sustained illumination devices, such as fiber optic patches and implantable surgical bed balloon applicators. This approach could also potentially be applicable to a wide variety of resectable cancers that are amenable to IGS-PDT, using their respective approved full-length antibodies as a template for high-payload IRDye800CW conjugation.


Asunto(s)
Cetuximab , Indoles , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Indoles/química , Cetuximab/química , Cetuximab/farmacología , Línea Celular Tumoral , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Fármacos Fotosensibilizantes/química , Bencenosulfonatos
3.
Front Med (Lausanne) ; 11: 1342456, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633313

RESUMEN

There is a significant overlap in the genetic, metabolic and epigenetic alterations between human and companion animal cancers, including those of the oral cavity, breast, bladder, skin, lungs and pancreas. In many cancer types, the identification and removal of affected lymph nodes are essential for accurate cancer management, including treatment and prognosis. Historically, lymphadenectomy and subsequent radical resection based on regional anatomy, palpation and lymph node aspirates were considered sufficient; however, modern approaches with sentinel lymph node mapping (SLN) mapping have increased the accuracy of surgical decision-making. Preoperative and intraoperative SLN mapping techniques in veterinary patients parallel those used in human medicine. While many of these techniques are highly successful, the main challenges with current methodologies are their sensitivity and specificity for the presence of cancer, which can be overcome via precision medicine and targeted SLN mapping agents. Given the large population of dogs and cats with cancer, the crossover of knowledge between species can help to deepen our understanding of many of these cancers and can be useful in evaluating new drugs and/or therapies. In this review, we discuss SLN mapping techniques in veterinary medicine and the concept of precision medicine as it relates to targeted SLN mapping imaging agents. The large number of companion animals affected by cancer is an underutilized resource to bridge the translational gap and we aim to provide a reference for the use of dogs and cats as a comparative model for human SLN mapping.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA