Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Biomed Microdevices ; 26(1): 7, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175269

RESUMEN

An investigation was conducted to examine the effect of magnetic bead (MB) size on the effectiveness of isolating lung cancer cells using the immunomagnetic separation (IMS) method in a serpentine microchannel with added cavities (SMAC) structure. Carboxylated magnetic beads were specifically conjugated to target cells through a modification procedure using aptamer materials. Cells immobilized with different sizes (in micrometers) of MBs were captured and isolated in the proposed device for comparison and analysis. The study yields significance regarding the clarification of device working principles by using a computational model. Furthermore, an accurate evaluation of the MB size impact on capture efficiency was achieved, including the issue of MB-cell accumulation at the inlet-channel interface, despite it being overlooked in many previous studies. As a result, our findings demonstrated an increasing trend in binding efficiency as the MB size decreased, evidenced by coverages of 50.5%, 60.1%, and 73.4% for sizes of 1.36 µm, 3.00 µm, and 4.50 µm, respectively. Additionally, the overall capture efficiency (without considering the inlet accumulation) was also higher for smaller MBs. However, when accounting for the actual number of cells entering the channel (i.e., the effective capture), larger MBs showed higher capture efficiency. The highest effective capture achieved was 88.4% for the size of 4.50 µm. This research provides an extensive insight into the impact of MB size on the performance of IMS-based devices and holds promise for the efficient separation of circulating cancer cells (CTCs) in practical applications.


Asunto(s)
Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Separación Inmunomagnética , Ácidos Carboxílicos , Fenómenos Magnéticos
2.
Mikrochim Acta ; 191(8): 454, 2024 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976069

RESUMEN

An intelligent colorimetric sensing platform integrated with in situ immunomagnetic separation function was developed for ultrasensitive detection of Escherichia coli O157: H7 (E. coli O157: H7) in food. Captured antibody modified magnetic nanoparticles (cMNPs) and detection antibody/horseradish peroxidase (HRP) co-functionalized AuNPs (dHAuNPs) were firstly synthesized for targeted enrichment and colorimetric assay of E. coli O157: H7, in which remarkable signal amplification was realized by loading large amounts of HRP on the surface of AuNPs. Coupling with the optical collimation attachments and embedded magnetic separation module, a highly integrated optical device was constructed, by which in situ magnetic separation and high-quality imaging of 96-well microplates containing E. coli O157: H7 was achieved with a smartphone. The concentration of E. coli O157: H7 could be achieved in one-step by performing digital image colorimetric analysis of the obtained image with a custom-designed app. This biosensor possesses high sensitivity (1.63 CFU/mL), short detecting time (3 h), and good anti-interference performance even in real-sample testing. Overall, the developed method is expected to be a novel field detection platform for foodborne pathogens in water and food as well as for the diagnosis of infections due to its portability, ease of operation, and high feasibility.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Escherichia coli O157 , Microbiología de Alimentos , Oro , Peroxidasa de Rábano Silvestre , Separación Inmunomagnética , Nanopartículas del Metal , Escherichia coli O157/aislamiento & purificación , Colorimetría/métodos , Oro/química , Peroxidasa de Rábano Silvestre/química , Separación Inmunomagnética/métodos , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Contaminación de Alimentos/análisis , Límite de Detección , Teléfono Inteligente , Anticuerpos Inmovilizados/inmunología , Anticuerpos Inmovilizados/química , Nanopartículas de Magnetita/química
3.
Anal Bioanal Chem ; 415(21): 5139-5149, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37204446

RESUMEN

Legionella pneumophila are pathogenic bacteria that can be found in high concentrations in artificial water systems like evaporative cooling towers, which have been the source of frequent outbreaks in recent years. Since inhaled L. pneumophila can lead to Legionnaires' disease, the development of suitable sampling and rapid analysis strategies for these bacteria in aerosols is therefore of great relevance. In this work, different concentrations of viable L. pneumophila Sg 1 were nebulized and sampled by the cyclone sampler Coriolis® µ under defined conditions in a bioaerosol chamber. To quantify intact Legionella cells, the collected bioaerosols were subsequently analyzed by immunomagnetic separation coupled with flow cytometry (IMS-FCM) on the platform rqmicro.COUNT. For analytical comparison, measurements with qPCR and cultivation were performed. Limits of detection (LOD) of 2.9 × 103 intact cells m-3 for IMS-FCM and 7.8 × 102 intact cells m-3 for qPCR indicating a comparable sensitivity as in culture (LOD = 1.5 × 103 culturable cells m-3). Over a working range of 103 - 106 cells mL-1, the analysis of nebulized and collected aerosol samples with IMS-FCM and qPCR provides higher recovery rates and more consistent results than by cultivation. Overall, IMS-FCM is a suitable culture-independent method for quantification of L. pneumophila in bioaerosols and is promising for field application due to its simplicity in sample preparation.


Asunto(s)
Legionella pneumophila , Enfermedad de los Legionarios , Humanos , Separación Inmunomagnética/métodos , Citometría de Flujo , Aerosoles y Gotitas Respiratorias , Enfermedad de los Legionarios/microbiología , Microbiología del Agua
4.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36724265

RESUMEN

AIM: Fusobacterium nucleatum (F. nucleatum) is associated with the initiation, development, and metastasis of colorectal cancer. However, it is difficult to isolate F. nucleatum from clinical specimens. In this study, we aimed to develop an effective and rapid method for isolating F. nucleatum from human feces using polyclonal antibody (PAB)-coated immunomagnetic beads (IMBs) with selective media. METHODS AND RESULTS: IMBs conjugated with PAB were prepared and used to isolate F. nucleatum from human feces, and the bacteria were cultured with selective culture media (fastidious anaerobe agar + nalidixic acid + vancomycin). Under optimized experimental conditions, IMBs could selectively recover F. nucleatum from fecal microbiota samples spiked with Peptostreptococcus or Bacteroides fragilis. In artificial fecal samples, the detection sensitivity of IMBs for F. nucleatum was 103 CFU mL-1. In addition, IMBs combined with selective media could rapidly isolate F. nucleatum from human feces. CONCLUSIONS: This study successfully established an effective method for the rapid isolation of F. nucleatum from human feces by IMBs. The whole procedure requires 2-3 days, and has a sensitivity of 103 CFU mL-1 feces.


Asunto(s)
Fusobacterium nucleatum , Separación Inmunomagnética , Humanos , Agar , Separación Inmunomagnética/métodos , Medios de Cultivo , Bacterias Anaerobias , Heces/microbiología
5.
Arch Toxicol ; 97(2): 429-439, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36371551

RESUMEN

Transient receptor potential (TRP) channels are important in the sensing of pain and other stimuli. They may be triggered by electrophilic agonists after covalent modification of certain cysteine residues. Sulfur mustard (SM) is a banned chemical warfare agent and its reactivity is also based on an electrophilic intermediate. The activation of human TRP ankyrin 1 (hTRPA1) channels by SM has already been documented, however, the mechanism of action is not known in detail. The aim of this work was to purify hTRPA1 channel from overexpressing HEK293 cells for identification of SM-induced alkylation sites. To confirm hTRPA1 isolation, Western blot analysis was performed showing a characteristic double band at 125 kDa. Immunomagnetic separation was carried out using either an anti-His-tag or an anti-hTRPA1 antibody to isolate hTRPA1 from lysates of transfected HEK293 cells. The identity of the channel was confirmed by micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry. Following SM exposure, hTRPA1 channel modifications were found at Cys462 and Cys665, as well as at Asp339 and Glu341 described herein for the first time. Since Cys665 is a well-known target of hTRPA1 agonists and is involved in hTRPA1 activation, SM-induced modifications of cysteine, as well as aspartic acid and glutamic acid residues may play a role in hTRPA1 activation. Considering hTRPA1 as a target of other SM-related chemical warfare agents, analogous adducts may be predicted and identified applying the analytical approach described herein.


Asunto(s)
Sustancias para la Guerra Química , Gas Mostaza , Humanos , Gas Mostaza/toxicidad , Gas Mostaza/química , Canal Catiónico TRPA1/genética , Células HEK293 , Cisteína , Sustancias para la Guerra Química/toxicidad , Sustancias para la Guerra Química/química , Alquilación
6.
Foodborne Pathog Dis ; 20(5): 186-196, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37172301

RESUMEN

The Gram-positive bacterium Listeria monocytogenes causes a significantly high percentage of fatalities among human foodborne illnesses. Surface proteins, specifically expressed from a wide range of L. monocytogenes serotypes under selective enrichment culture conditions, can serve as targets for the isolation of this pathogen using antibody-based methods to facilitate molecular detection. In this study, monoclonal antibodies (MAbs), previously raised against the L. monocytogenes LPXTG surface proteins LMOf2365_0639 and LMOf2365_0148, were investigated for their ability to isolate L. monocytogenes from bacterial samples with immunomagnetic separation (IMS). Only 1 out of 35 MAbs against LMOf2365_0639, M3644, was capable of capturing L. monocytogenes. Among all the 24 MAbs examined against LMOf2365_0148, 4 MAbs, M3686, M3697, M3699, and M3700, were capable of capturing L. monocytogenes cells specifically from abbreviated primary selective enrichment cultures in either Palcam or LEB/UVM1 media or from mixed samples containing target and nontarget bacteria. MAb M3686 showed a unique specificity with the capability to capture strains of seven L. monocytogenes serotypes (1/2a, 1/2b, 1/2c, 3a, 4a, 4b, and 4d). These promising MAbs were subsequently characterized by quantitative measurements of antigen-binding affinity using surface plasmon resonance analysis and epitope mapping using overlapping recombinant polypeptides. The usefulness of these MAbs to LMOf2365_0148 in bacterial capture was consistent with their high affinities with KD constants in the nanomolar range and can be explored further for the development of an automated IMS method suitable for routine isolation of L. monocytogenes from food and environmental samples.


Asunto(s)
Listeria monocytogenes , Humanos , Anticuerpos Monoclonales/metabolismo , Proteínas de la Membrana/genética , Separación Inmunomagnética/métodos , Serogrupo
7.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139101

RESUMEN

Neutrophils are considered as the main player in innate immunity. In the last few years, it has been shown that they are involved in different physiological conditions and diseases. However, progress in the field of neutrophil biology is relatively slow due to existing difficulties in neutrophil isolation and maintenance in culture. Here we compare four protocols based on density-gradient and immunomagnetic methods for isolation of murine neutrophils from bone marrow and spleen. Neutrophil isolation was performed using Ficoll 1.077/1.119 g/mL density gradient, Ficoll 1.083/1.090/1.110 g/mL density gradient and immunomagnetic method of negative and positive selection. The different protocols were compared with respect to sample purity, cell viability, yield, and cost. The functionality of isolated neutrophils was checked by NETosis analysis and neutrophil oxidative burst test. Obtained data revealed that given purity/yield/viability/cost ratio the protocol based on cell centrifugation on Ficoll 1.077/1.119 g/mL density gradient is recommended for isolation of neutrophils from bone marrow, whereas immunomagnetic method of positive selection using Dynabeads is recommended for isolation of splenic neutrophils.


Asunto(s)
Médula Ósea , Neutrófilos , Animales , Ratones , Bazo , Ficoll , Centrifugación por Gradiente de Densidad/métodos , Separación Celular/métodos
8.
J Appl Microbiol ; 133(6): 3741-3754, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36073301

RESUMEN

AIMS: The aim of this study was to develop a novel approach using lateral flow recombinase polymerase amplification (RPA-LF) combined with immunomagnetic separation (IMS) for the rapid detection of Staphylococcus aureus in milk. METHODS AND RESULTS: Under optimum conditions, the average capture efficiency values for S. aureus strains (104 colony-forming units [CFU] per ml) was above 95.0% in PBST and ~80% in milk within 45 min with 0.7 mg immunomagnetic beads. The RPA-LF assay, which comprised DNA amplification via RPA at 39°C for 10 min and visualization of the amplicons through LF strips for 5 min, detected S. aureus within 15 min. The method only detected S. aureus and did not show cross-reaction with other bacteria, exhibiting a high level of specificity. Sensitivity experiments confirmed a detection limit of RPA-LF assay as low as 600 fg per reaction for the S. aureus genome (corresponding to approximately 36 CFU of S. aureus), which was about 16.7-fold more sensitive than that of the conventional polymerase chain reaction method. When RPA-LF was used in combination with IMS to detect S. aureus inoculated into artificially contaminated milk, it exhibited a detection limit of approximately 40 CFU per reaction. CONCLUSIONS: The newly developed IMS-RPA-LF method enabled detection of S. aureus at levels as low as 40 CFU per reaction in milk samples without culture enrichment for an overall testing time of only 70 min. SIGNIFICANCE AND IMPACT OF THE STUDY: The newly developed IMS-lateral flow RPA-LF assay effectively combines sample preparation, amplification and detection into a single platform. Because of its high sensitivity, specificity and speed, the IMS-RPA-LF assay will have important implications for the rapid detection of S. aureus in contaminated food.


Asunto(s)
Recombinasas , Infecciones Estafilocócicas , Humanos , Animales , Staphylococcus aureus/genética , Leche/microbiología , Separación Inmunomagnética , Técnicas de Amplificación de Ácido Nucleico/métodos , Infecciones Estafilocócicas/diagnóstico , Sensibilidad y Especificidad
9.
J Nanobiotechnology ; 20(1): 400, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064405

RESUMEN

BACKGROUND: Sepsis is caused mainly by infection in the blood with a broad range of bacterial species. It can be diagnosed by molecular diagnostics once compounds in the blood that interfere with molecular diagnostics are removed. However, this removal relies on ultracentrifugation. Immunomagnetic separation (IMS), which typically uses antibody-conjugated silica-coated magnetic nanoparticles (Ab-SiO2-MNPs), has been widely applied to isolate specific pathogens in various types of samples, such as food and environmental samples. However, its direct use in blood samples containing bacteria is limited due to the aggregation of SiO2-MNPs in the blood and inability to isolate multiple species of bacteria causing sepsis. RESULTS: In this study, we report the synthesis of vancomycin-conjugated polydopamine-coated (van-PDA-MNPs) enabling preconcentration of multiple bacterial species from blood without aggregation. The presence of PDA and van on MNPs was verified using transmission electron microscopy, X-ray photoelectron spectroscopy, and energy disruptive spectroscopy. Unlike van-SiO2-MNPs, van-PDA-MNPs did not aggregate in the blood. Van-PDA-MNPs were able to preconcentrate several species of Gram-positive bacteria in the blood, lowering the limit of detection (LOD) to 10 colony forming units/mL by polymerase chain reaction (PCR) and quantitative PCR (qPCR). This is 10 times more sensitive than the LOD obtained by PCR and qPCR using van-SiO2-MNPs. CONCLUSION: These results suggest that PDA-MNPs can avoid aggregation in blood and be conjugated with receptors, thereby improving the sensitivity of molecular diagnostics of bacteria in blood samples.


Asunto(s)
Nanopartículas de Magnetita , Sepsis , Bacterias , Bacterias Grampositivas , Humanos , Indoles , Nanopartículas de Magnetita/química , Patología Molecular , Polímeros , Dióxido de Silicio , Vancomicina/química
10.
Appl Environ Microbiol ; 87(24): e0177421, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34613762

RESUMEN

In this study, we addressed different aspects regarding the implementation of quasimetagenomic sequencing as a hybrid surveillance method in combination with enrichment for early detection of Listeria monocytogenes in the food industry. Different experimental enrichment cultures were used, comprising seven L. monocytogenes strains of different sequence types (STs), with and without a background microbiota community. To assess whether the proportions of the different STs changed over time during enrichment, the growth and population dynamics were assessed using dapE colony sequencing and dapE and 16S rRNA amplicon sequencing. There was a tendency of some STs to have a higher relative abundance during the late stage of enrichment when L. monocytogenes was enriched without background microbiota. When coenriched with background microbiota, the population dynamics of the different STs was more consistent over time. To evaluate the earliest possible time point during enrichment that allows the detection of L. monocytogenes and at the same time the generation of genetic information that enables an estimation regarding the strain diversity in a sample, quasimetagenomic sequencing was performed early during enrichment in the presence of the background microbiota using Oxford Nanopore Technologies Flongle and Illumina MiSeq sequencing. The application of multiple displacement amplification (MDA) enabled detection of L. monocytogenes (and the background microbiota) after only 4 h of enrichment using both applied sequencing approaches. The MiSeq sequencing data additionally enabled the prediction of cooccurring L. monocytogenes strains in the samples. IMPORTANCE We showed that a combination of a short primary enrichment combined with MDA and Nanopore sequencing can accelerate the traditional process of cultivation and identification of L. monocytogenes. The use of Illumina MiSeq sequencing additionally allowed us to predict the presence of cooccurring L. monocytogenes strains. Our results suggest quasimetagenomic sequencing is a valuable and promising hybrid surveillance tool for the food industry that enables faster identification of L. monocytogenes during early enrichment. Routine application of this approach could lead to more efficient and proactive actions in the food industry that prevent contamination and subsequent product recalls and food destruction, economic and reputational losses, and human listeriosis cases.


Asunto(s)
Microbiología de Alimentos , Listeria monocytogenes , Microbiota , Genes Bacterianos , Listeria monocytogenes/genética , Listeria monocytogenes/aislamiento & purificación , Metagenómica , Dinámica Poblacional , ARN Ribosómico 16S/genética
11.
Biomed Microdevices ; 23(4): 51, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34596785

RESUMEN

The manipulation and separation of circulating tumor cells (CTCs) in continuous fluidic flows play an essential role in various biomedical applications, particularly the early diagnosis and treatment of diseases. Recent advances in magnetic bead development have provided promising solutions to the challenges encountered in CTC manipulation and isolation. In this study, we proposed a biomicrofluidic platform for specifically isolating human lung carcinoma A549 cells in microfluidic channels. The principle of separation was based on the effect of the magnetic field on aptamer-conjugated magnetic beads, also known as immunomagnetic beads, in a serpentine microchannel with added cavities (SMAC). The magnetic cell separation performance of the proposed structure was modeled and simulated by using COMSOL Multiphysics. The experimental procedures for aptamer molecular conjugation on 1.36 µm-diameter magnetic beads and magnetic bead immobilization on A549 cells were also reported. The lung carcinoma cell-bead complexes were then experimentally separated by an external magnetic field. Separation performance was also confirmed by optical microscopic observations and fluorescence analysis, which showed the high selectivity and efficiency of the proposed system in the isolation and capture of A549 cells in our proposed SMAC. At the flow rate of 5 µL/s, the capture rate of human lung carcinoma cells exceeded 70% in less than 15 min, whereas that of the nontarget cells was approximately 4%. The proposed platform demonstrated its potential for high selectivity, portability, and facile operation, which are suitable considerations for developing point-of-care applications for various biological and clinical purposes.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Línea Celular Tumoral , Separación Celular , Humanos , Separación Inmunomagnética
12.
J Dairy Sci ; 104(6): 6588-6597, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33715855

RESUMEN

In this study, we established a rapid and sensitive method for the detection of viable Salmonella Typhimurium, Staphylococcus aureus, and Listeria monocytogenes in milk using biotin-exposure-based immunomagnetic separation (IMS) combined with sodium dodecyl sulfate (SDS), propidium monoazide (PMA), and multiplex real-time PCR (mRT-PCR). We used IMS to lessen the assay time for isolation of target bacteria. We then optimized the coupling conditions and immunomagnetic capture process. The immunoreaction and incubation times for 5 µg of mAb coupled with 500 µg of streptavidin-functionalized magnetic beads using a streptavidin-biotin system were 90 and 30 min, respectively. Treatment with SDS-PMA before mRT-PCR amplification eliminated false-positive outcomes from dead bacteria and identified viable target bacteria with good sensitivity and specificity. The limit of detection of IMS combined with the SDS-PMA-mRT-PCR assay for the detection of viable Salmonella Typhimurium, Staph. aureus, and L. monocytogenes in spiked milk matrix samples was 10 cfu/mL and remained significant even in the appearance of 106 cfu/mL of nontarget bacteria. The entire detection process was able to identify viable bacteria within 9 h. The combination of biotin-exposure-mediated IMS and SDS-PMA-mRT-PCR has potential value for the rapid and sensitive detection of foodborne pathogens.


Asunto(s)
Listeria monocytogenes , Animales , Azidas , Biotina , Separación Inmunomagnética/veterinaria , Leche , Propidio/análogos & derivados , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Salmonella typhimurium/genética , Dodecil Sulfato de Sodio , Staphylococcus aureus/genética
13.
Mikrochim Acta ; 189(1): 41, 2021 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-34970724

RESUMEN

A host-guest colorimetric strategy is described for the detection of Listeria monocytogenes (L. monocytogenes). The optical probes were self-assembled based on the supramolecular interactions between the carbonyl groups of cucurbit[7]uril portals and gold nanoparticles (CB[7]-AuNPs). Aptamer and urease modified magnetic nanoparticles were used to specifically recognize and binding to L. monocytogenes, simultaneously hydrolyzing urea to produce ammonium ion (NH4+) that can reverse CB[7] induced AuNPs aggregation. In the presence of L. monocytogenes, the above-mentioned magnetic conjugates preferentially bind to the bacterial surface, which results in blocking the catalytic active sites, thus inhibiting the production of ammonium ions. The normalized absorbance ratio of A700 nm/A525 nm was proportional to the L. monocytogenes concentration ranging from 10 to 106 cfu·mL-1, and the visual determination can be done down to 10 cfu·mL-1. For spiked food samples analyzed without pre-enrichment, recoveries of 98.4% to 99.3% were achieved could be verified and RSD were less than 10%. This work may offer a broad prospect for sensitive and specific determination  of pathogens.


Asunto(s)
Aptámeros de Nucleótidos/química , Carga Bacteriana/métodos , Colorimetría/métodos , Listeria monocytogenes/aislamiento & purificación , Nanopartículas Magnéticas de Óxido de Hierro/química , Ureasa/química , Animales , Hidrocarburos Aromáticos con Puentes/química , Contaminación de Alimentos/análisis , Oro/química , Imidazoles/química , Límite de Detección , Carne de Cerdo/análisis , Carne de Cerdo/microbiología , Porcinos
14.
J Clin Microbiol ; 58(11)2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32817229

RESUMEN

Legionella longbeachae is the commonest Legionella species identified in patients with community-acquired pneumonia in New Zealand. Isolation of the organism on culture is the gold standard for the diagnosis of Legionnaires disease, but it has poor sensitivity (40%) compared with quantitative PCR (qPCR). We have developed a selective decontamination process using glycine, vancomycin, polymyxin, and cycloheximide (GVPC) with immunomagnetic separation (IMS) for culturing L. longbeachae A polyclonal antibody specific for L. longbeachae was produced from New Zealand White rabbits and coupled to tosyl-activated magnetic beads. Stored L. longbeachae qPCR-positive respiratory samples were retrieved from -80°C storage for testing. One portion of test samples was mixed with GVPC and the antibody bead complex, separated, washed, and cultured on modified Wadowsky and Yee agar (MWY) agar. Another portion was exposed to HCl-KCl acidic buffer (pH 2.2) before incubation on MWY agar. qPCR used probes specific for the ITS (internal transcribed spacer) region of the L. longbeachae genome. Cultures were positive in 10/53 (19%) samples after acid wash and 26/53 (49%) after GVPC-IMS (P = 0.001). Growth of contaminants was rare. The mean qPCR threshold cycle values were lower in culture-positive samples after acid wash than in the culture-negative samples (mean, 29.9 versus 34.8; difference, 4.9; 95% confidence interval [CI], ±2.9; P = 0.001) but not after GVPC-IMS (mean, 33.0 versus 34.7; difference, 1.7; 95% CI, ±2.48; P = 0.16). The sensitivity of culture for L. longbeachae in respiratory specimens may be improved by using GVPC-IMS rather than acid wash for decontamination, but this should be confirmed in a prospective study of fresh specimens.


Asunto(s)
Antiinfecciosos , Legionella longbeachae , Legionella , Animales , Descontaminación , Humanos , Separación Inmunomagnética , Nueva Zelanda , Estudios Prospectivos , Conejos
15.
Appl Environ Microbiol ; 86(13)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32358002

RESUMEN

Food safety is a new area for novel applications of metagenomics analysis, which not only can detect and subtype foodborne pathogens in a single workflow but may also produce additional information with in-depth analysis capabilities. In this study, we applied a quasimetagenomic approach by combining short-term enrichment, immunomagnetic separation (IMS), multiple-displacement amplification (MDA), and nanopore sequencing real-time analysis for simultaneous detection of Salmonella and Escherichia coli in wheat flour. Tryptic soy broth was selected for the 12-h enrichment of samples at 42°C. Enrichments were subjected to IMS using beads capable of capturing both Salmonella and E. coli MDA was performed on harvested beads, and amplified DNA fragments were subjected to DNA library preparation for sequencing. Sequencing was performed on a portable device with real-time basecalling adaptability, and resulting sequences were subjected to two parallel pipelines for further analysis. After 1 h of sequencing, the quasimetagenomic approach could detect all targets inoculated at approximately 1 CFU/g flour to the species level. Discriminatory power was determined by simultaneous detection of dual inoculums of Salmonella and E. coli, absence of detection in control samples, and consistency in microbial flora composition of the same flour samples over several rounds of experiments. The total turnaround time for detection was approximately 20 h. Longer sequencing for up to 15 h enabled serotyping for many of the samples with more than 99% genome coverage, which could be subjected to other appropriate genetic analysis pipelines in less than a total of 36 h.IMPORTANCE Enterohemorrhagic Escherichia coli (EHEC) and Salmonella are of serious concern in low-moisture foods, including wheat flour and its related products, causing illnesses, outbreaks, and recalls. The development of advanced detection methods based on molecular principles of analysis is essential to incorporate into interventions intended to reduce the risk from these pathogens. In this work, a quasimetagenomic method based on real-time sequencing analysis and assisted by magnetic capture and DNA amplification was developed. This protocol is capable of detecting multiple Salmonella and/or E. coli organisms in the sample within less than a day, and it can also generate sufficient whole-genome sequences of the target organisms suitable for subsequent bioinformatics analysis. Multiplex detection and identification were accomplished in less than 20 h and additional whole-genome analyses of different nature were attained within 36 h, in contrast to the several days required in previous sequencing pipelines.


Asunto(s)
Escherichia coli/aislamiento & purificación , Harina/microbiología , Microbiología de Alimentos/métodos , Salmonella enterica/aislamiento & purificación , Serotipificación/métodos , Escherichia coli/clasificación , Separación Inmunomagnética/métodos , Fenómenos Magnéticos , Metagenómica/métodos , Secuenciación de Nanoporos/métodos , Salmonella enterica/clasificación , Triticum
16.
Arch Microbiol ; 202(5): 1025-1033, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31938849

RESUMEN

Nanogold enhanced surface plasmon resonance (SPR), colloidal gold immunochromatographic test strips (ICTS), and polymerase chain reaction (PCR), combined with immunomagnetic separation (IMS) were established in this study for the rapid detection of Vibrio parahaemolyticus (VP). The sensitivities of SPR, ICTS, and PCR was determined to be 101, 103, and 103 CFU/mL for VP, respectively. After separation and enrichment by IMS, the sensitivities of SPR, ICTS, and PCR were 100, 101, and 102 CFU/mL for VP, respectively, which were improved by 10-, 100-, and 10-fold compared to the direct detection by SPR, ICTS, and PCR, respectively. When the VP-polluted water samples were directly assessed by SPR, ICTS, and PCR, the results were negative. By contrast, after separation and enrichment for 45 min by IMS, the results were all positive. The IMS-SPR, IMS-ICTS, and IMS-PCR detection methods were able to yield results in approximately 1.5 h, 55 min, and 3.5 h, respectively. These combined detection methods have advantages in being high-throughput and easy to operate without the need for sophisticated equipment or specialized skills. These methods might aid in the development of SPR, ICTS, and PCR technologies for simultaneously examining multiple food-borne pathogens in food products.


Asunto(s)
Cromatografía de Afinidad/métodos , Separación Inmunomagnética/métodos , Resonancia por Plasmón de Superficie/métodos , Vibrio parahaemolyticus/aislamiento & purificación , Animales , Cromatografía de Afinidad/instrumentación , Enfermedades Transmitidas por los Alimentos/microbiología , Oro Coloide/química , Ensayos Analíticos de Alto Rendimiento/métodos , Reacción en Cadena de la Polimerasa/métodos , Sensibilidad y Especificidad , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/inmunología
17.
Anal Bioanal Chem ; 412(12): 2903-2914, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32128642

RESUMEN

This study was the first attempt to optimize a recombinase polymerase amplification (RPA) and lateral flow (LF) assay combined with immunomagnetic separation (IMS) for the detection of Vibrio parahaemolyticus in raw oysters. The newly developed IMS-RPA-LF assay effectively combines sample preparation, amplification, and detection into a single platform. Under optimal conditions, the average capture efficiency (CE) for 104 colony forming units (CFU)/mL of four V. parahaemolyticus strains with 0.4 mg of immunomagnetic beads within 45 min was 80.3%. After optimization, the RPA-LF assay was able to detect V. parahaemolyticus within 15 min, comprising DNA amplification with RPA for 10 min at 37 °C and visualization of the amplicons through LF strips for 5 min. The RPA-LF assay exhibited good specificity by showing a test line for eight V. parahaemolyticus strains with different serotypes but no cross-reaction with 12 non-V. parahaemolyticus bacteria. RPA-LF assay was found to be sensitive and detected as low as 10 pg genomic DNA of V. parahaemolyticus. For spiked oyster samples, the detection sensitivity of V. parahaemolyticus was improved to 2 CFU/g by IMS-RPA-LF after enrichment for 4 h; in contrast, the IMS-PCR method required 8 h. Hence, even when V. parahaemolyticus was present in very low numbers in samples, the IMS-RPA-LF assay could be completed within half a workday. Because of the high sensitivity, specificity, and speed of the IMS-RPA-LF assay, this newly developed method opens a novel pathway for rapid diagnostic screening of V. parahaemolyticus in seafood, which is an increasingly important health issue worldwide. Graphical abstract.


Asunto(s)
Separación Inmunomagnética/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Ostreidae/microbiología , Reacción en Cadena de la Polimerasa/métodos , Vibriosis/diagnóstico , Vibrio parahaemolyticus/genética , Animales , Microbiología de Alimentos , Vibriosis/microbiología , Vibrio parahaemolyticus/aislamiento & purificación
18.
J Dairy Sci ; 103(8): 6882-6893, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32505404

RESUMEN

Due to the lack of electricity and thermostatic instruments in certain settings for convenient detection of Cronobacter species in powdered infant formula (PIF), a novel investigation was conducted to establish an electricity-free visual detection system for rapid detection of Cronobacter species in PIF. This system included a portable electricity-free heater that could use the exothermic reaction of calcium oxide and water and 3 kinds of phase change materials to supply 3 constant temperatures for immunomagnetic separation, DNA extraction, and loop-mediated isothermal amplification assay. Meanwhile, the amplified reaction combined with hydroxynaphthol blue could achieve rapid visual detection. Primers designed based on the 16S-23S ribosomal RNA internal transcribed spacer were used in loop-mediated isothermal amplification to specifically monitor Cronobacter species, and the detection limit can reach 4.2 × 102 cfu/g in PIF by an electricity-free heater in 2 h 30 min. Moreover, 2 h of pre-enrichment was necessary when the level of the PIF samples with Cronobacter spp. was 100 cfu/g. The stability of the system was evaluated in ambient temperature at 4°C, 25°C, and 37°C. The results suggested that the electricity-free heater can maintain 3 constant temperatures to support different processes. Therefore, this amplification and visual system is applicable for use in many fields for rapid and specific detection of Cronobacter species in PIF.


Asunto(s)
Cronobacter/aislamiento & purificación , Microbiología de Alimentos , Separación Inmunomagnética/métodos , Fórmulas Infantiles/microbiología , Cronobacter/genética , Cartilla de ADN/genética , Humanos , Lactante , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Polvos
19.
Mikrochim Acta ; 187(7): 397, 2020 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-32564257

RESUMEN

Gold nanoparticle (AuNP)-anchored BP nanosheets were synthesized through in situ growth of AuNPs onto BP. Due to the strong chelating ability of P or phosphorus oxides with AuNPs, the stability of BP is improved. As proof-of-concept demonstration of the functionalized BP, electrochemical detection of circulating tumor cells (CTCs) based on BP@AuNPs@aptamer as a probe combined with immunomagnetic separation is reported. The aptamer can specifically bind with CTCs, while the phosphorus oxides including phosphite ion and phosphate ion (PxOy species) on BP and aptamer can react with molybdate to generate an electrochemical current, leading to dual signal amplification. The biosensor is applied to MCF-7 cell detection and displays good analytical performance with a detection limit of 2 cell mL-1. Furthermore, the practicality of this biosensor was validated through sensitive determination of MCF-7 cells in human blood. Therefore, the reported biosensor could be applied to detect other biomarkers, offering an ultrasensitive strategy for clinical diagnostics. Graphical abstract Electrochemical detection of circulating tumor cells based on gold nanoparticle-modified black phosphorus nanosheets is reported.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Separación Inmunomagnética/métodos , Nanopartículas del Metal/química , Células Neoplásicas Circulantes/química , Fósforo/química , Anticuerpos Inmovilizados/inmunología , Aptámeros de Nucleótidos/química , Secuencia de Bases , Línea Celular Tumoral , Molécula de Adhesión Celular Epitelial/inmunología , Oro/química , Humanos , Ácidos Nucleicos Inmovilizados/química , Límite de Detección , Molibdeno/química , Mucina-1/química , Células Neoplásicas Circulantes/inmunología , Prueba de Estudio Conceptual , Reproducibilidad de los Resultados
20.
Mikrochim Acta ; 187(9): 504, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32813037

RESUMEN

A novel colorimetric immunoassay for the detection of Staphylococcus aureus (S. aureus) based on a combination of immunomagnetic separation and signal amplification via etching-enhanced peroxidase-like catalytic activity of gold nanoparticles (AuNPs) was developed. Nanoconjugates composed of gold and iron oxide nanoparticles were synthesized and further modified with antiS. aureus immunoglobulin Y (IgY), which was used for the selective enrichment and rapid separation of target bacteria in complex matrices. AuNPs functionalized with antiS. aureus aptamer were used as an artificial enzyme which has peroxidase-like catalysis activity. Catalytic activity of AuNPs is inhibited by modifying aptamer. However, catalysis of modified AuNPs remarkably enhanced by hydrogen peroxide etching. Based on collecting unbound modified AuNPs in the supernatant and 3,3',5,5'-tetramethylbenzidine-hydrogen peroxide reporting system, the yellow color of solution decreases linearly with increasing the concentration of S. aureus ranging from 10 to 106 cfu/mL. The limit of detection is 10 cfu/mL, and total detection time is 65 min. The recoveries of the S. aureus spiked in food samples are 88.2-119.8%. Schematic illustration of colorimetric method for detection of S. aureus based on the IgY-Fe3O4/Au nanocomposites as capture probes and apt-AuNPs as artificial enzyme with etching-enhanced peroxidase-like catalytic activity.


Asunto(s)
Colorimetría/métodos , Separación Inmunomagnética/métodos , Nanopartículas de Magnetita/química , Staphylococcus aureus/aislamiento & purificación , Animales , Aptámeros de Nucleótidos/química , Secuencia de Bases , Bencidinas/química , Catálisis , Compuestos Cromogénicos/química , Contaminación de Alimentos/análisis , Oro/química , Peróxido de Hidrógeno/química , Ácidos Nucleicos Inmovilizados/química , Inmunoensayo/métodos , Inmunoglobulinas/inmunología , Límite de Detección , Leche/microbiología , Nanocompuestos/química , Oxidación-Reducción , Carne de Cerdo/microbiología , Staphylococcus aureus/química , Staphylococcus aureus/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA