Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Mol Life Sci ; 74(12): 2151-2166, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28168445

RESUMEN

The mitochondrial H+-ATP synthase is a primary hub of cellular homeostasis by providing the energy required to sustain cellular activity and regulating the production of signaling molecules that reprogram nuclear activity needed for adaption to changing cues. Herein, we summarize findings regarding the regulation of the activity of the H+-ATP synthase by its physiological inhibitor, the ATPase inhibitory factor 1 (IF1) and their functional role in cellular homeostasis. First, we outline the structure and the main molecular mechanisms that regulate the activity of the enzyme. Next, we describe the molecular biology of IF1 and summarize the regulation of IF1 expression and activity as an inhibitor of the H+-ATP synthase emphasizing the role of IF1 as a main driver of energy rewiring and cellular signaling in cancer. Findings in transgenic mice in vivo indicate that the overexpression of IF1 is sufficient to reprogram energy metabolism to an enhanced glycolysis and activate reactive oxygen species (ROS)-dependent signaling pathways that promote cell survival. These findings are placed in the context of mitohormesis, a program in which a mild mitochondrial stress triggers adaptive cytoprotective mechanisms that improve lifespan. In this regard, we emphasize the role played by the H+-ATP synthase in modulating signaling pathways that activate the mitohormetic response, namely ATP, ROS and target of rapamycin (TOR). Overall, we aim to highlight the relevant role of the H+-ATP synthase and of IF1 in cellular physiology and the need of additional studies to decipher their contributions to aging and age-related diseases.


Asunto(s)
Hormesis , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas/metabolismo , Animales , Núcleo Celular/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Proteína Inhibidora ATPasa
2.
Diabetologia ; 60(10): 2052-2065, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28770317

RESUMEN

AIMS/HYPOTHESIS: Mitochondria are important regulators of the metabolic phenotype in type 2 diabetes. A key factor in mitochondrial physiology is the H+-ATP synthase. The expression and activity of its physiological inhibitor, ATPase inhibitory factor 1 (IF1), controls tissue homeostasis, metabolic reprogramming and signalling. We aimed to characterise the putative role of IF1 in mediating skeletal muscle metabolism in obesity and diabetes. METHODS: We examined the 'mitochondrial signature' of obesity and type 2 diabetes in a cohort of 100 metabolically characterised human skeletal muscle biopsy samples. The expression and activity of H+-ATP synthase, IF1 and key mitochondrial proteins were characterised, including their association with BMI, fasting plasma insulin, fasting plasma glucose and HOMA-IR. IF1 was also overexpressed in primary cultures of human myotubes derived from the same biopsies to unveil the possible role played by the pathological inhibition of the H+-ATP synthase in skeletal muscle. RESULTS: The results indicate that type 2 diabetes and obesity act via different mechanisms to impair H+-ATP synthase activity in human skeletal muscle (76% reduction in its catalytic subunit vs 280% increase in IF1 expression, respectively) and unveil a new pathway by which IF1 influences lipid metabolism. Mechanistically, IF1 altered cellular levels of α-ketoglutarate and L-carnitine metabolism in the myotubes of obese (84% of control) and diabetic (76% of control) individuals, leading to limited ß-oxidation of fatty acids (60% of control) and their cytosolic accumulation (164% of control). These events led to enhanced release of TNF-α (10 ± 2 pg/ml, 27 ± 5 pg/ml and 35 ± 4 pg/ml in control, obese and type 2 diabetic participants, respectively), which probably contributes to an insulin resistant phenotype. CONCLUSIONS/INTERPRETATION: Overall, our data highlight IF1 as a novel regulator of lipid metabolism and metabolic disorders, and a possible target for therapeutic intervention.


Asunto(s)
Dislipidemias/metabolismo , Resistencia a la Insulina/fisiología , Mitocondrias Musculares/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Humanos , Masculino , Obesidad/metabolismo , Proteómica
3.
BMC Med ; 14(1): 125, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27553421

RESUMEN

BACKGROUND: Epidemiological and observational studies have established that high-density lipoprotein cholesterol (HDL-C) is an independent negative cardiovascular risk factor. However, simple measurement of HDL-C levels is no longer sufficient for cardiovascular risk assessment. Therefore, there is a critical need for novel non-invasive biomarkers that would display prognostic superiority over HDL-C. Cell surface ecto-F1-ATPase contributes to several athero-protective properties of HDL, including reverse cholesterol transport and vascular endothelial protection. Serum inhibitory factor 1 (IF1), an endogenous inhibitor of ecto-F1-ATPase, is an independent determinant of HDL-C associated with low risk of coronary artery disease (CAD). This work aimed to examine the predictive value of serum IF1 for long-term mortality in CAD patients. Its informative value was compared to that of HDL-C. METHOD: Serum IF1 levels were measured in 577 male participants with stable CAD (age 45-74 years) from the GENES (Genetique et ENvironnement en Europe du Sud) study. Vital status was yearly assessed, with a median follow-up of 11 years and a 29.5 % mortality rate. Cardiovascular mortality accounted for the majority (62.4 %) of deaths. RESULTS: IF1 levels were positively correlated with HDL-C (r s = 0.40; P < 0.001) and negatively with triglycerides (r s = -0.21, P < 0.001) and CAD severity documented by the Gensini score (r s = -0.13; P < 0.01). Total and cardiovascular mortality were lower at the highest quartiles of IF1 (HR = 0.55; 95 % CI, 0.38-0.89 and 0.50 (0.28-0.89), respectively) but not according to HDL-C. Inverse associations of IF1 with mortality remained significant, after multivariate adjustments for classical cardiovascular risk factors (age, smoking, physical activity, waist circumference, HDL-C, dyslipidemia, hypertension, and diabetes) and for powerful biological and clinical variables of prognosis, including heart rate, ankle-brachial index and biomarkers of cardiac diseases. The 10-year mortality was 28.5 % in patients with low IF1 (<0.42 mg/L) and 21.4 % in those with high IF1 (≥0.42 mg/L, P < 0.02). CONCLUSIONS: We investigated for the first time the relation between IF1 levels and long-term prognosis in CAD patients, and found an independent negative association. IF1 measurement might be used as a novel HDL-related biomarker to better stratify risk in populations at high risk or in the setting of pharmacotherapy.


Asunto(s)
Enfermedad de la Arteria Coronaria/sangre , Enfermedad Coronaria/sangre , Proteínas/análisis , Anciano , Biomarcadores/sangre , HDL-Colesterol/metabolismo , Europa (Continente) , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Pronóstico , Medición de Riesgo , Factores de Riesgo , Proteína Inhibidora ATPasa
4.
Biochim Biophys Acta ; 1837(7): 1099-112, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24685430

RESUMEN

Cellular oxidative stress results from the increased generation of reactive oxygen species and/or the dysfunction of the antioxidant systems. Most intracellular reactive oxygen species derive from superoxide radical although the majority of the biological effects of reactive oxygen species are mediated by hydrogen peroxide. In this contribution we overview the major cellular sites of reactive oxygen species production, with special emphasis in the mitochondrial pathways. Reactive oxygen species regulate signaling pathways involved in promoting survival and cell death, proliferation, metabolic regulation, the activation of the antioxidant response, the control of iron metabolism and Ca(2+) signaling. The reversible oxidation of cysteines in transducers of reactive oxygen species is the primary mechanism of regulation of the activity of these proteins. Next, we present the mitochondrial H(+)-ATP synthase as a core hub in energy and cell death regulation, defining both the rate of energy metabolism and the reactive oxygen species-mediated cell death in response to chemotherapy. Two main mechanisms that affect the expression and activity of the H(+)-ATP synthase down-regulate oxidative phosphorylation in prevalent human carcinomas. In this context, we emphasize the prominent role played by the ATPase Inhibitory Factor 1 in human carcinogenesis as an inhibitor of the H(+)-ATP synthase activity and a mediator of cell survival. The ATPase Inhibitory Factor 1 promotes metabolic rewiring to an enhanced aerobic glycolysis and the subsequent production of mitochondrial reactive oxygen species. The generated reactive oxygen species are able to reprogram the nucleus to support tumor development by arresting cell death. Overall, we discuss the cross-talk between reactive oxygen species signaling and mitochondrial function that is crucial in determining the cellular fate. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.


Asunto(s)
Apoptosis , Mitocondrias/metabolismo , ATPasas de Translocación de Protón/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Supervivencia Celular , Humanos , Neoplasias/metabolismo
5.
Function (Oxf) ; 3(2): zqac001, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35187492

RESUMEN

We demonstrated that ATP synthase serves the functions of a primary mitochondrial K+ "uniporter," i.e., the primary way for K+ to enter mitochondria. This K+ entry is proportional to ATP synthesis, regulating matrix volume and energy supply-vs-demand matching. We show that ATP synthase can be upregulated by endogenous survival-related proteins via IF1. We identified a conserved BH3-like domain of IF1 which overlaps its "minimal inhibitory domain" that binds to the ß-subunit of F1. Bcl-xL and Mcl-1 possess a BH3-binding-groove that can engage IF1 and exert effects, requiring this interaction, comparable to diazoxide to augment ATP synthase's H+ and K+ flux and ATP synthesis. Bcl-xL and Mcl-1, but not Bcl-2, serve as endogenous regulatory ligands of ATP synthase via interaction with IF1 at this BH3-like domain, to increase its chemo-mechanical efficiency, enabling its function as the recruitable mitochondrial KATP-channel that can limit ischemia-reperfusion injury. Using Bayesian phylogenetic analysis to examine potential bacterial IF1-progenitors, we found that IF1 is likely an ancient (∼2 Gya) Bcl-family member that evolved from primordial bacteria resident in eukaryotes, corresponding to their putative emergence as symbiotic mitochondria, and functioning to prevent their parasitic ATP consumption inside the host cell.


Asunto(s)
Mitocondrias , ATPasas de Translocación de Protón Mitocondriales , Teorema de Bayes , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Filogenia , ATPasas de Translocación de Protón Mitocondriales/genética , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo
6.
J Biochem ; 170(1): 79-87, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-33693769

RESUMEN

ATPase inhibitory factor 1 (IF1) is a mitochondrial regulatory protein that blocks ATP hydrolysis of F1-ATPase, by inserting its N-terminus into the rotor-stator interface of F1-ATPase. Although previous studies have proposed a two-step model for IF1-mediated inhibition, the underlying molecular mechanism remains unclear. Here, we analysed the kinetics of IF1-mediated inhibition under a wide range of [ATP]s and [IF1]s, using bovine mitochondrial IF1 and F1-ATPase. Typical hyperbolic curves of inhibition rates with [IF1]s were observed at all [ATP]s tested, suggesting a two-step mechanism: the initial association of IF1 to F1-ATPase and the locking process, where IF1 blocks rotation by inserting its N-terminus. The initial association was dependent on ATP. Considering two principal rotation dwells, binding dwell and catalytic dwell, in F1-ATPase, this result means that IF1 associates with F1-ATPase in the catalytic-waiting state. In contrast, the isomerization process to the locking state was almost independent of ATP, suggesting that it is also independent of the F1-ATPase state. Further, we investigated the role of Glu30 or Tyr33 of IF1 in the two-step mechanism. Kinetic analysis showed that Glu30 is involved in the isomerization, whereas Tyr33 contributes to the initial association. Based on these findings, we propose an IF1-mediated inhibition scheme.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Bovinos , Cinética , Metabolismo , Modelos Moleculares , Proteína Inhibidora ATPasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA