Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmacology ; 103(5-6): 263-272, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30783055

RESUMEN

BACKGROUND: Crocetin is a carotenoid extracted from the traditional Chinese medical herb saffron. Previous studies have demonstrated that crocetin possesses anticancer properties that are effective against various cancers. As an extension of our earlier study, the present study explored the underlying mechanisms in crocetin's anticancer effect on KYSE-150 cells. The phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT), Mitogen-activated protein kinases (MAPK), and p53/p21 signal pathways play an important role in carcinogenesis, progression, and metastasis of carcinoma cells. Thus, we investigated crocetin's effects on the PI3K/AKT, MAPK, and p53/p21 pathways in esophageal squamous carcinoma cell line KYSE-150 cells. METHODS: KYSE-150 cells were treated with various concentrations of crocetin. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltertrazolium bromide assay, Annexin V/PI stain as well as Rh123 stain were used to evaluate the cell viability, apoptosis, and MMP. Western blot was used to detect the expression of PI3K, AKT, ERK1/2, p38, c-Jun NH-terminal kinase (JNK), P53, P21, Bcl-2, Bax, and cleaved caspase-3, which were associated with cell proliferation and apoptosis. RESULTS: Our results showed that crocetin significantly inhibited the proliferation of KYSE-150 cells in a dose- and time-dependent manner. Crocetin also markedly induced cell apoptosis. Furthermore, we have found that crocetin not only inhibited the activation of PI3K/AKT, extracellular signal-regulated kinase-1/2 (ERK1/2), and p38 but also upregulated the p53/p21 level. These regulations ultimately triggered the mitochondrial-mediated apoptosis pathway with an eventual disruption of MMP, increased levels of Bax and cleaved caspase-3, and decreased levels of Bcl-2. CONCLUSIONS: These findings suggested that crocetin interfered with multiple signal pathways in KYSE-150 cells. Therefore, this study suggested that crocetin could potentially be used as a therapeutic candidate for the treatment of esophageal cancer.


Asunto(s)
Anticarcinógenos/farmacología , Carotenoides/farmacología , Neoplasias Esofágicas/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Anticarcinógenos/administración & dosificación , Apoptosis/efectos de los fármacos , Carotenoides/administración & dosificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Vitamina A/análogos & derivados
2.
Cancer Cell Int ; 17: 98, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29093644

RESUMEN

BACKGROUND: More than 400,000 patients die from esophageal cancer annually. Considerable efforts have been made to develop new and effective treatments, one of which is directed toward herbal medication. Crocetin is a natural carotenoid dicarboxylic acid isolated from the Chinese herb saffron. We recently reported on the anticancer effects of saffron. This study aimed to determine whether crocetin combined cisplatin has synergistic effect in KYSE-150 cells and explore the underlying mechanism. METHODS: KYSE-150 cells were treated with crocetin and/or cisplatin. The effects on cell viability, cell apoptosis, mitochondrial membrane potential (MMP), as well as the expression levels of PI3K/AKT, MAPKs, p53/p21, and apoptosis-related protein were evaluated. MTT assay, Annexin V-FITC/PI staining, Rh123 staining, and Western blot analysis were used. RESULTS: The cell proliferation significantly decreased and cell apoptosis was induced with combined crocetin and cisplatin, compared with either crocetin only or cisplatin only. The outcome suggested that crocetin combined cisplatin has synergistic effects on inhibition of cell proliferation and pro-apoptotic effect of cisplatin on KYSE-150 cells. Disruption of MMP, upregulation of cleaved caspase-3 expression, and downregulation of Bcl-2 occurred in the group treated with combined treatment. No significant differences in p-PI3K, p-AKT, and MAPKs activity were indicated between combined treatment group and the individual treatment group. However, the expression levels of p53 and p21 were markedly higher in the combined treatment group than in the individual treatment group. The wild-type p53 inhibitor, PFT-α suppressed the overexpression of p53/p21 and the synergistic effect induced by the combination of crocetin and cisplatin. CONCLUSIONS: We concluded that crocetin combined with cisplatin exerts a synergistic anticancer effect by up-regulating the p53/p21 pathway.

3.
J Pharm Anal ; 13(11): 1365-1373, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38174115

RESUMEN

In this work, a new pyrylium derivatization-assisted liquid chromatography-mass spectrometry (LC-MS) method was developed for metabolite profiling of the glutathione anabolic pathway (GAP) in cancer tissues and cells. The pyrylium salt of 6,7-dimethoxy-3-methyl isochromenylium tetrafluoroborate (DMMIC) was used to label the amino group of metabolites, and a reductant of dithiothreitol (DTT) was employed to stabilize the thiol group. By combining DMMIC derivatization with LC-MS, it was feasible to quantify the 13 main metabolites on the GAP in complex biological samples, which had good linearity (R2 = 0.9981-0.9999), precision (interday precision of 1.6%-19.0% and intraday precision of 1.4%-19.8%) and accuracy (83.4%-115.7%). Moreover, the recovery assessments in tissues (82.5%-107.3%) and in cells (98.1%-118.9%) with GSH-13C2, 15N, and Cys-15N demonstrated the reliability of the method in detecting tissues and cells. Following a methodological evaluation, the method was applied successfully to investigate difference in the GAP between the carcinoma and para-carcinoma tissues of esophageal squamous cell carcinoma (ESCC) and the effect of p-hydroxycinnamaldehyde (CMSP) on the GAP in KYSE-150 esophageal cancer cells. The results demonstrate that the developed method provides a promising new tool to elucidate the roles of GAP in physiological and pathological processes, which can contribute to research on drugs and diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA