Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.972
Filtrar
Más filtros

Intervalo de año de publicación
1.
Trends Genet ; 39(7): 528-530, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37024335

RESUMEN

Marine larvae have factored heavily in pursuits to understand the origin and evolution of animal life cycles. Recent comparisons of gene expression and chromatin state in different species of sea urchin and annelid show how evolutionary changes in embryonic gene regulation can lead to markedly different larval forms.


Asunto(s)
Estadios del Ciclo de Vida , Erizos de Mar , Animales , Larva/genética , Estadios del Ciclo de Vida/genética , Erizos de Mar/genética
2.
Proc Natl Acad Sci U S A ; 120(51): e2303641120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38096410

RESUMEN

When threatened by dangerous or harmful stimuli, animals engage in diverse forms of rapid escape behaviors. In Drosophila larvae, one type of escape response involves C-shaped bending and lateral rolling followed by rapid forward crawling. The sensory circuitry that promotes larval escape has been extensively characterized; however, the motor programs underlying rolling are unknown. Here, we characterize the neuromuscular basis of rolling escape behavior. We used high-speed, volumetric, Swept Confocally Aligned Planar Excitation (SCAPE) microscopy to image muscle activity during larval rolling. Unlike sequential peristaltic muscle contractions that progress from segment to segment during forward and backward crawling, muscle activity progresses circumferentially during bending and rolling escape behavior. We propose that progression of muscular contraction around the larva's circumference results in a transient misalignment between weight and the ground support forces, which generates a torque that induces stabilizing body rotation. Therefore, successive cycles of slight misalignment followed by reactive aligning rotation lead to continuous rolling motion. Supporting our biomechanical model, we found that disrupting the activity of muscle groups undergoing circumferential contraction progression leads to rolling defects. We use EM connectome data to identify premotor to motor connectivity patterns that could drive rolling behavior and perform neural silencing approaches to demonstrate the crucial role of a group of glutamatergic premotor neurons in rolling. Our data reveal body-wide muscle activity patterns and putative premotor circuit organization for execution of the rolling escape response.


Asunto(s)
Drosophila , Neuronas , Animales , Drosophila/fisiología , Neuronas/fisiología , Larva/fisiología , Reacción de Fuga/fisiología , Contracción Muscular , Drosophila melanogaster/fisiología
3.
Dev Biol ; 512: 35-43, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38710381

RESUMEN

The larval stage of the Drosophila melanogaster life cycle is characterized by rapid growth and nutrient storage that occur over three instar stages separated by molts. In the third instar, the steroid hormone ecdysone drives key developmental processes and behaviors that occur in a temporally-controlled sequence and prepare the animal to undergo metamorphosis. Accurately staging Drosophila larvae within the final third instar is critical due to the rapid developmental progress at this stage, but it is challenging because the rate of development varies widely across a population of animals even if eggs are laid within a short period of time. Moreover, many methods to stage third instar larvae are cumbersome, and inherent variability in the rate of development confounds some of these approaches. Here we demonstrate the usefulness of the Sgs3-GFP transgene, a fusion of the Salivary gland secretion 3 (Sgs3) and GFP proteins, for staging third instar larvae. Sgs3-GFP is expressed in the salivary glands in an ecdysone-dependent manner from the midpoint of the third instar, and its expression pattern changes reproducibly as larvae progress through the third instar. We show that Sgs3-GFP can easily be incorporated into experiments, that it allows collection of developmentally-equivalent individuals from a mixed population of larvae, and that its use enables precise assessment of changing levels of hormones, metabolites, and gene expression during the second half of the third instar.


Asunto(s)
Drosophila melanogaster , Ecdisona , Proteínas Fluorescentes Verdes , Larva , Fenotipo , Glándulas Salivales , Animales , Larva/metabolismo , Larva/genética , Glándulas Salivales/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ecdisona/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Genes Reporteros , Regulación del Desarrollo de la Expresión Génica/genética , Animales Modificados Genéticamente , Metamorfosis Biológica/genética
4.
Physiology (Bethesda) ; 39(4): 0, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38411571

RESUMEN

Bees are the most important insect pollinators of the crops humans grow, and Apis mellifera, the Western honey bee, is the most commonly managed species for this purpose. In addition to providing agricultural services, the complex biology of honey bees has been the subject of scientific study since the 18th century, and the intricate behaviors of honey bees and ants, fellow hymenopterans, inspired much sociobiological inquest. Unfortunately, honey bees are constantly exposed to parasites, pathogens, and xenobiotics, all of which pose threats to their health. Despite our curiosity about and dependence on honey bees, defining the molecular mechanisms underlying their interactions with biotic and abiotic stressors has been challenging. The very aspects of their physiology and behavior that make them so important to agriculture also make them challenging to study, relative to canonical model organisms. However, because we rely on A. mellifera so much for pollination, we must continue our efforts to understand what ails them. Here, we review major advancements in our knowledge of honey bee physiology, focusing on immunity and detoxification, and highlight some challenges that remain.


Asunto(s)
Plaguicidas , Animales , Abejas/fisiología , Interacciones Huésped-Patógeno
5.
Development ; 149(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36278853

RESUMEN

Cell competition, the elimination of cells surrounded by more fit neighbors, is proposed to suppress tumorigenesis. Mahjong (Mahj), a ubiquitin E3 ligase substrate receptor, has been thought to mediate competition of cells mutated for lethal giant larvae (lgl), a neoplastic tumor suppressor that defines apical-basal polarity of epithelial cells. Here, we show that Drosophila cells mutated for mahjong, but not for lgl [l(2)gl], are competed because they express the bZip-domain transcription factor Xrp1, already known to eliminate cells heterozygous for ribosomal protein gene mutations (Rp/+ cells). Xrp1 expression in mahj mutant cells results in activation of JNK signaling, autophagosome accumulation, eIF2α phosphorylation and lower translation, just as in Rp/+ cells. Cells mutated for damage DNA binding-protein 1 (ddb1; pic) or cullin 4 (cul4), which encode E3 ligase partners of Mahj, also display Xrp1-dependent phenotypes, as does knockdown of proteasome subunits. Our data suggest a new model of mahj-mediated cell competition that is independent of apical-basal polarity and couples Xrp1 to protein turnover.


Asunto(s)
Proteínas de Drosophila , Factores de Transcripción , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Competencia Celular , Proteínas de Unión al ADN/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Cullin/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
6.
BMC Genomics ; 25(1): 591, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867206

RESUMEN

BACKGROUND: The Portuguese oyster Crassostrea angulata, a bivalve of significant economic and ecological importance, has faced a decline in both production and natural populations due to pathologies, climate change, and anthropogenic factors. To safeguard its genetic diversity and improve reproductive management, cryopreservation emerges as a valuable strategy. However, the cryopreservation methodologies lead to some damage in structures and functions of the cells and tissues that can affect post-thaw quality. Transcriptomics may help to understand the molecular consequences related to cryopreservation steps and therefore to identify different freezability biomarkers. This study investigates the molecular damage induced by cryopreservation in C. angulata D-larvae, focusing on two critical steps: exposure to cryoprotectant solution and the freezing/thawing process. RESULTS: Expression analysis revealed 3 differentially expressed genes between larvae exposed to cryoprotectant solution and fresh larvae and 611 differentially expressed genes in cryopreserved larvae against fresh larvae. The most significantly enriched gene ontology terms were "carbohydrate metabolic process", "integral component of membrane" and "chitin binding" for biological processes, cellular components and molecular functions, respectively. Kyoto Encyclopedia of Genes and Genomes enrichment analysis identified the "neuroactive ligand receptor interaction", "endocytosis" and "spliceosome" as the most enriched pathways. RNA sequencing results were validate by quantitative RT-PCR, once both techniques presented the same gene expression tendency and a group of 11 genes were considered important molecular biomarkers to be used in further studies for the evaluation of cryodamage. CONCLUSIONS: The current work provided valuable insights into the molecular repercussions of cryopreservation on D-larvae of Crassostrea angulata, revealing that the freezing process had a more pronounced impact on larval quality compared to any potential cryoprotectant-induced toxicity. Additionally, was identify 11 genes serving as biomarkers of freezability for D-larvae quality assessment. This research contributes to the development of more effective cryopreservation protocols and detection methods for cryodamage in this species.


Asunto(s)
Crassostrea , Criopreservación , Crioprotectores , Perfilación de la Expresión Génica , Larva , Animales , Crassostrea/genética , Crassostrea/crecimiento & desarrollo , Crioprotectores/farmacología , Crioprotectores/toxicidad , Larva/genética , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Transcriptoma , Ontología de Genes
7.
Clin Immunol ; 259: 109901, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38218209

RESUMEN

Chronic human norovirus (HuNoV) infections in immunocompromised patients result in severe disease, yet approved antivirals are lacking. RNA-dependent RNA polymerase (RdRp) inhibitors inducing viral mutagenesis display broad-spectrum in vitro antiviral activity, but clinical efficacy in HuNoV infections is anecdotal and the potential emergence of drug-resistant variants is concerning. Upon favipiravir (and nitazoxanide) treatment of four immunocompromised patients with life-threatening HuNoV infections, viral whole-genome sequencing showed accumulation of favipiravir-induced mutations which coincided with clinical improvement although treatment failed to clear HuNoV. Infection of zebrafish larvae demonstrated drug-associated loss of viral infectivity and favipiravir treatment showed efficacy despite occurrence of RdRp variants potentially causing favipiravir resistance. This indicates that within-host resistance evolution did not reverse loss of viral fitness caused by genome-wide accumulation of sequence changes. This off-label approach supports the use of mutagenic antivirals for treating prolonged RNA viral infections and further informs the debate surrounding their impact on virus evolution.


Asunto(s)
Amidas , Norovirus , Pirazinas , Virus , Animales , Humanos , Norovirus/genética , Antivirales/farmacología , Antivirales/uso terapéutico , Pez Cebra , Mutagénesis , ARN Polimerasa Dependiente del ARN/genética , Huésped Inmunocomprometido
8.
Funct Integr Genomics ; 24(2): 62, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38514486

RESUMEN

Long-wave sensitive (LWS) is a G protein-coupled receptor expressed in the retina, and zebrafish is a better model organism for studying vision, but the role of LWS1 in vision-guided behavior of larvae fish has rarely been reported. In this study, we found that zebrafish lws1 and lws2 are tandemly replicated genes, both with six exons, with lws1 being more evolutionarily conserved. The presence of Y277F in the amino acid sequence of lws2 may have contributed to the shift of λmax to green light. We established a lws1 knockout zebrafish model using CRISPR/Cas9 technology. Lws1-/- larvae showed significantly higher levels of feeding and appetite gene (agrp) expression than WT, and significantly lower levels of anorexia gene (pomc, cart) expression. In addition, green light gene compensation was observed in lws1-/- larvae with significantly increased expression levels of rh2-1. The light-dark movement test showed that lws1-/- larvae were more active under light-dark transitions or vibrational stimuli, and the expression of phototransduction-related genes was significantly up-regulated. This study reveals the important role of lws1 gene in the regulation of vision-guided behavior in larvae.


Asunto(s)
Opsinas de los Conos , Pez Cebra , Animales , Secuencia de Aminoácidos , Pez Cebra/genética , Pez Cebra/metabolismo , Opsinas de los Conos/genética , Conducta Alimentaria , Visión Ocular/genética
9.
Am Nat ; 203(2): E63-E77, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38306287

RESUMEN

AbstractDispersal emerges as an outcome of organismal traits and external forcings. However, it remains unclear how the emergent dispersal kernel evolves as a by-product of selection on the underlying traits. This question is particularly compelling in coastal marine systems, where dispersal is tied to development and reproduction and where directional currents bias larval dispersal downstream, causing selection for retention. We modeled the dynamics of a metapopulation along a finite coastline using an integral projection model and adaptive dynamics to understand how asymmetric coastal currents influence the evolution of larval (pelagic larval duration) and adult (spawning frequency) life history traits, which indirectly shape the evolution of marine dispersal kernels. Selection induced by alongshore currents favors the release of larvae over multiple time periods, allowing long pelagic larval durations and long-distance dispersal to be maintained in marine life cycles in situations where they were previously predicted to be selected against. Two evolutionarily stable strategies emerged: one with a long pelagic larval duration and many spawning events, resulting in a dispersal kernel with a larger mean and variance, and another with a short pelagic larval duration and few spawning events, resulting in a dispersal kernel with a smaller mean and variance. Our theory shows how coastal ocean flows are important agents of selection that can generate multiple, often co-occurring evolutionary outcomes for marine life history traits that affect dispersal.


Asunto(s)
Organismos Acuáticos , Larva , Animales , Larva/fisiología , Organismos Acuáticos/fisiología
10.
Appl Environ Microbiol ; : e0033324, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109874

RESUMEN

Parasites can manipulate host behavior to facilitate parasite transmission. One such host-pathogen interaction occurs between the fungus Ophiocordyceps sinensis and the ghost moth Thitarodes xiaojinensis. O. sinensis is involved in the mummification process of infected host larvae. However, the underlying molecular and chemical mechanism for this phenomenon is unknown. We characterized the small molecules regulating host behaviors and the altered metabolites in infected and mummified host larvae. Lipid-related metabolites, such as phosphatidylcholine, were identified in infected and mummified larvae. Decreased levels of the neurotransmitter acetylcholine (ACh) and elevated choline levels were observed in the brains of both the infected and mummified larvae. The aberrant activity of acetylcholinesterase (AChE) and relative mRNA expression of ACE2 (acetylcholinesterase) may mediate the altered transformation between ACh and choline, leading to the brain dysfunction of mummified larvae. Caspofungin treatment inhibited the mummification of infected larvae and the activity of AChE. These findings indicate the importance of ACh in the mummification of host larvae after O. sinensis infection.IMPORTANCEOphiocordyceps sinensis-infected ghost moth larvae are manipulated to move to the soil surface with their heads up in death. A fruiting body then grows from the caterpillar's head, eventually producing conidia for dispersal. However, the underlying molecular and chemical mechanism has not been characterized. In this study, we describe the metabolic profile of Thitarodes xiaojinensis host larvae after O. sinensis infection. Altered metabolites, particularly lipid-related metabolites, were identified in infected and mummified larvae, suggesting that lipids are important in O. sinensis-mediated behavioral manipulation of host larvae. Decreased levels of the neurotransmitter acetylcholine were observed in both infected and mummified larvae brains. This suggests that altered or reduced acetylcholine can mediate brain dysfunction and lead to aberrant behavior. These results reveal the critical role of acetylcholine in the mummification process of infected host larvae.

11.
BMC Microbiol ; 24(1): 167, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755524

RESUMEN

BACKGROUND: The world faces a major infectious disease challenge. Interest in the discovery, design, or development of antimicrobial peptides (AMPs) as an alternative approach for the treatment of bacterial infections has increased. Insects are a good source of AMPs which are the main effector molecules of their innate immune system. Black Soldier Fly Larvae (BSFL) are being developed for large-scale rearing for food sustainability, waste reduction and as sustainable animal and fish feed. Bioinformatic studies have suggested that BSFL have the largest number of AMPs identified in insects. However, most AMPs identified in BSF have not yet undergone antimicrobial evaluation but are promising leads to treat critical infections. RESULTS: Jg7197.t1, Jg7902.t1 and Jg7904.t1 were expressed into the haemolymph of larvae following infection with Salmonella enterica serovar Typhimurium and were predicted to be AMPs using the computational tool ampir. The genes encoding these proteins were within 2 distinct clusters in chromosome 1 of the BSF genome. Following removal of signal peptides, predicted structures of the mature proteins were superimposed, highlighting a high degree of structural conservation. The 3 AMPs share primary sequences with proteins that contain a Kunitz-binding domain; characterised for inhibitory action against proteases, and antimicrobial activities. An in vitro antimicrobial screen indicated that heterologously expressed SUMO-Jg7197.t1 and SUMO-Jg7902.t1 did not show activity against 12 bacterial strains. While recombinant SUMO-Jg7904.t1 had antimicrobial activity against a range of Gram-negative and Gram-positive bacteria, including the serious pathogen Pseudomonas aeruginosa. CONCLUSIONS: We have cloned and purified putative AMPs from BSFL and performed initial in vitro experiments to evaluate their antimicrobial activity. In doing so, we have identified a putative novel defensin-like AMP, Jg7904.t1, encoded in a paralogous gene cluster, with antimicrobial activity against P. aeruginosa.


Asunto(s)
Antibacterianos , Defensinas , Dípteros , Larva , Animales , Defensinas/farmacología , Defensinas/genética , Defensinas/química , Defensinas/aislamiento & purificación , Antibacterianos/farmacología , Antibacterianos/química , Dípteros/genética , Larva/efectos de los fármacos , Larva/genética , Pruebas de Sensibilidad Microbiana , Secuencia de Aminoácidos , Proteínas de Insectos/genética , Proteínas de Insectos/farmacología , Proteínas de Insectos/química , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/química , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Bacterias Gramnegativas/efectos de los fármacos
12.
Electrophoresis ; 45(5-6): 380-391, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38072651

RESUMEN

In contemporary biomedical research, the zebrafish (Danio rerio) is increasingly considered a model system, as zebrafish embryos and larvae can (potentially) fill the gap between cultured cells and mammalian animal models, because they can be obtained in large numbers, are small and can easily be manipulated genetically. Given that capillary electrophoresis-mass spectrometry (CE-MS) is a useful analytical separation technique for the analysis of polar ionogenic metabolites in biomass-limited samples, the aim of this study was to develop and assess a CE-MS-based analytical workflow for the profiling of (endogenous) metabolites in extracts from individual zebrafish larvae and pools of small numbers of larvae. The developed CE-MS workflow was used to profile metabolites in extracts from pools of 1, 2, 4, 8, 12, 16, 20, and 40 zebrafish larvae. For six selected endogenous metabolites, a linear response (R2  > 0.98) for peak areas was obtained in extracts from these pools. The repeatability was satisfactory, with inter-day relative standard deviation values for peak area of 9.4%-17.7% for biological replicates (n = 3 over 3 days). Furthermore, the method allowed the analysis of over 70 endogenous metabolites in a pool of 12 zebrafish larvae, and 29 endogenous metabolites in an extract from only 1 zebrafish larva. Finally, we applied the optimized CE-MS workflow to identify potential novel targets of the mineralocorticoid receptor in mediating the effects of cortisol.


Asunto(s)
Hidrocortisona , Pez Cebra , Animales , Hidrocortisona/farmacología , Larva , Flujo de Trabajo , Espectrometría de Masas/métodos , Metabolómica/métodos , Electroforesis Capilar/métodos , Mamíferos
13.
Insect Mol Biol ; 33(5): 503-515, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38808749

RESUMEN

DNA methylase 1 (Dnmt1) is an important regulatory factor associated with biochemical signals required for insect development. It responds to changes in the environment and triggers phenotypic plasticity. Meanwhile, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae)-a destructive invasive pest-can rapidly invade and adapt to different habitats; however, the role of Dnmt1 in this organism has not been elucidated. Accordingly, this study investigates the mechanism(s) underlying the rapid adaptation of Tuta absoluta to temperature stress. Potential regulatory genes were screened via RNAi (RNA interference), and the DNA methylase in Tuta absoluta was cloned by RACE (Rapid amplification of cDNA ends). TaDnmt1 was identified as a potential regulatory gene via bioinformatics; its expression was evaluated in response to temperature stress and during different development stages using real-time polymerase chain reaction. Results revealed that TaDnmt1 participates in hot/cold tolerance, temperature preference and larval development. The full-length cDNA sequence of TaDnmt1 is 3765 bp and encodes a 1254 kDa protein with typical Dnmt1 node-conserved structural features and six conserved DNA-binding active motifs. Moreover, TaDnmt1 expression is significantly altered by temperature stress treatments and within different development stages. Hence, TaDnmt1 likely contributes to temperature responses and organismal development. Furthermore, after treating with double-stranded RNA and exposing Tuta absoluta to 35°C heat shock or -12°C cold shock for 1 h, the survival rate significantly decreases; the preferred temperature is 2°C lower than that of the control group. In addition, the epidermal segments become enlarged and irregularly folded while the surface dries up. This results in a significant increase in larval mortality (57%) and a decrease in pupation (49.3%) and eclosion (50.9%) rates. Hence, TaDnmt1 contributes to temperature stress responses and temperature perception, as well as organismal growth and development, via DNA methylation regulation. These findings suggest that the rapid geographic expansion of T absoluta has been closely associated with TaDnmt1-mediated temperature tolerance. This study advances the research on 'thermos Dnmt' and provides a potential target for RNAi-driven regulation of Tuta absoluta.


Asunto(s)
Proteínas de Insectos , Larva , Mariposas Nocturnas , Animales , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Larva/crecimiento & desarrollo , Larva/genética , Larva/metabolismo , Temperatura , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , Secuencia de Aminoácidos , Filogenia , Especies Introducidas
14.
J Exp Biol ; 227(3)2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197515

RESUMEN

Vectors of infectious disease include several species of Aedes mosquitoes. The life cycle of Aedes aegypti, the yellow fever mosquito, consists of a terrestrial adult and an aquatic larval life stage. Developing in coastal waters can expose larvae to fluctuating salinity, causing salt and water imbalance, which is addressed by two prime osmoregulatory organs - the Malpighian tubules (MTs) and anal papillae (AP). Voltage-gated ion channels (VGICs) have recently been implicated in the regulation of ion transport in the osmoregulatory epithelia of insects. In the current study, we: (i) generated MT transcriptomes of freshwater-acclimated and brackish water-exposed larvae of Ae. aegypti, (ii) detected expression of several voltage-gated Ca2+, K+, Na+ and non-ion-selective ion channels in the MTs and AP using transcriptomics, PCR and gel electrophoresis, (iii) demonstrated that mRNA abundance of many altered significantly following brackish water exposure, and (iv) immunolocalized CaV1, NALCN, TRP/Painless and KCNH8 in the MTs and AP of larvae using custom-made antibodies. We found CaV1 to be expressed in the apical membrane of MTs of both larvae and adults, and its inhibition to alter membrane potentials of this osmoregulatory epithelium. Our data demonstrate that multiple VGICs are expressed in osmoregulatory epithelia of Ae. aegypti and may play an important role in the autonomous regulation of ion transport.


Asunto(s)
Aedes , Fiebre Amarilla , Animales , Aedes/fisiología , Agua/metabolismo , Túbulos de Malpighi/metabolismo , Fiebre Amarilla/metabolismo , Mosquitos Vectores , Cloruro de Sodio/metabolismo , Transporte Iónico , Canales Iónicos/genética , Larva/fisiología
15.
Vet Res ; 55(1): 25, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414039

RESUMEN

Stem cell-derived organoid cultures have emerged as attractive experimental models for infection biology research regarding various types of gastro-intestinal pathogens and host species. However, the large size of infectious nematode larvae and the closed structure of 3-dimensional organoids often hinder studies of the natural route of infection. To enable easy administration to the apical surface of the epithelium, organoids from the equine small intestine, i.e. enteroids, were used in the present study to establish epithelial monolayer cultures. These monolayers were functionally tested by stimulation with IL-4 and IL-13, and/or exposure to infectious stage larvae of the equine nematodes Parascaris univalens, cyathostominae and/or Strongylus vulgaris. Effects were recorded using transcriptional analysis combined with histochemistry, immunofluorescence-, live-cell- and scanning electron microscopy. These analyses revealed heterogeneous monolayers containing both immature and differentiated cells including tuft cells and mucus-producing goblet cells. Stimulation with IL-4/IL-13 increased tuft- and goblet cell differentiation as demonstrated by the expression of DCLK1 and MUC2. In these cytokine-primed monolayers, the expression of MUC2 was further promoted by co-culture with P. univalens. Moreover, live-cell imaging revealed morphological alterations of the epithelial cells following exposure to larvae even in the absence of cytokine stimulation. Thus, the present work describes the design, characterization and usability of an experimental model representing the equine nematode-infected small intestinal epithelium. The presence of tuft cells and goblet cells whose mucus production is affected by Th2 cytokines and/or the presence of larvae opens up for mechanistic studies of the physical interactions between nematodes and the equine intestinal mucosa.


Asunto(s)
Interleucina-13 , Nematodos , Animales , Caballos , Interleucina-13/metabolismo , Interleucina-4 , Células Caliciformes , Mucosa Intestinal
16.
Biol Lett ; 20(5): 20240050, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38773926

RESUMEN

Larval Lepidoptera gain survival advantages by aggregating, especially when combined with aposematic warning signals, yet reductions in predation risk may not be experienced equally across all group members. Hamilton's selfish herd theory predicts that larvae that surround themselves with their group mates should be at lower risk of predation, and those on the periphery of aggregations experience the greatest risk, yet this has rarely been tested. Here, we expose aggregations of artificial 'caterpillar' targets to predation from free-flying, wild birds to test for marginal predation when all prey are equally accessible and for an interaction between warning coloration and marginal predation. We find that targets nearer the centre of the aggregation survived better than peripheral targets and nearby targets isolated from the group. However, there was no difference in survival between peripheral and isolated targets. We also find that grouped targets survived better than isolated targets when both are aposematic, but not when they are non-signalling. To our knowledge, our data provide the first evidence to suggest that avian predators preferentially target peripheral larvae from aggregations and that prey warning signals enhance predator avoidance of groups.


Asunto(s)
Larva , Conducta Predatoria , Animales , Larva/fisiología
17.
Int J Legal Med ; 138(2): 627-637, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37934208

RESUMEN

Forensic entomological evidence is employed to estimate minimum postmortem interval (PMImin), location, and identification of fly samples or human remains. Traditional forensic DNA analysis (i.e., STR, mitochondrial DNA) has been used for human identification from the larval gut contents. Forensic DNA phenotyping (FDP), predicting human appearance from DNA-based crime scene evidence, has become an established approach in forensic genetics in the past years. In this study, we aimed to recover human DNA from Lucilia sericata (Meigen 1826) (Diptera: Calliphoridae) gut contents and predict the eye and hair color of individuals using the HIrisPlex system. Lucilia sericata larvae and reference blood samples were collected from 30 human volunteers who were under maggot debridement therapy. The human DNA was extracted from the crop contents and quantified. HIrisPlex multiplex analysis was performed using the SNaPshot minisequencing procedure. The HIrisPlex online tool was used to assess the prediction of the eye and hair color of the larval and reference samples. We successfully genotyped 25 out of 30 larval samples, and the most SNP genotypes (87.13%) matched those of reference samples, though some alleles were dropped out, producing partial profiles. The prediction of the eye colors was accurate in 17 out of 25 larval samples, and only one sample was misclassified. Fourteen out of 25 larval samples were correctly predicted for hair color, and eight were misclassified. This study shows that SNP analysis of L. sericata gut contents can be used to predict eye and hair color of a corpse.


Asunto(s)
Dípteros , Color del Cabello , Animales , Humanos , Larva/genética , Dípteros/genética , Genotipo , ADN Mitocondrial/genética , Color del Ojo/genética
18.
Fish Shellfish Immunol ; 144: 109273, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072139

RESUMEN

Vaccination of farmed fish is the most effective prophylactic measure against contagious diseases but requires specific knowledge on when the adaptive immune system is fully developed. The present work describes kidney and spleen morphogenesis as well as B-cell development in the ballan wrasse (Labrus bergylta). The kidney was present at hatching (0 days pot hatching, dph) but was not lymphoid before larvae was 50-60 dph (stage 5), containing abundant Igµ+ cells. The spleen anlage was first observed in larvae at 20-30 dph and was later populated with B-cells. Unexpectedly, we found strong RAG1 signal together with abundant Igµ+ and IgM + cells in the exocrine pancreas of larvae from when the kidney was lymphoid and onwards, suggesting that B-cell lymphopoiesis occurs not only in the head kidney (HK) but also in pancreatic tissue. In this agastric fish, the pancreas is diffused along the intestine and the early presence of IgM+ B-cells in pancreatic tissue might have a role in maintain immune homeostasis in the peritoneal cavity, making a substantial contribution to early protection. IgM-secreting cells in HK indicate the presence of systemic IgM at stage 5, before the first IgM+ cells were identified in mucosal sites. This work together with our previous study on T-cell development in this species indicates that although T- and B-cells start to develop around the same time, B-cells migrate to mucosal tissues ahead of T-cells. This early migration likely involves the production of natural antibodies, contributing significantly to early protection. Moreover, a diet composed of barnacle nauplii did not result in an earlier onset of B-cell lymphopoiesis, as seen in the previous study analysing T-cell development. Nevertheless, components for adaptive immunity indicating putative immunocompetence is likely achieved in early juveniles (>100 dph). Additionally, maternal transfer of IgM to the offspring is also described. These findings provide important insights into the development of the immune system in ballan wrasse and lay the foundation for optimizing prophylactic strategies in the future. Furthermore, this work adds valuable information to broaden the knowledge on the immune system in lower vertebrates.


Asunto(s)
Linfopoyesis , Perciformes , Animales , Peces , Inmunoglobulina M , Páncreas
19.
Fish Shellfish Immunol ; 144: 109285, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38092095

RESUMEN

Poly(I:C) is known as an agonist of the TLR3 receptor which could prime inflammation and elicit the host immune response, which is widely applied as adjuvant or antivirus treatment. However, the negative effects of poly(I:C) on regulating immune response to protect the host from inflammatory diseases remain largely unknown. Here, we establish an in vivo model to pre-treat zebrafish larvae with poly(I:C) at 2 dpf, then challenge them with LPS at 6 dpf, and find that poly(I:C) training could significantly alleviate the LPS challenge-induced septic shock and inflammatory phenotypes. Moreover, the poly(I:C)-trained larvae exhibit decreased number of macrophages, but not neutrophils, after secondary LPS challenge. Furthermore, training the larvae with poly(I:C) could elevate the transcripts of mTOR signaling and heighten the H3K4me3-mediated epigenetic modifications. And interestingly, we find that inhibiting the H3K4me3 modification, rather than mTOR signaling, could recover the number of macrophages in poly(I:C)-trained larvae, which is consistent with the observations of inflammatory phenotypes. Taken together, these results suggest that poly(I:C) training could induce epigenetic rewiring to mediate the anti-inflammatory response against secondary LPS challenge-induced septic shock through decreasing macrophages' number in vivo, which might expand our understanding of poly(I:C) in regulating fish immune response.


Asunto(s)
Lipopolisacáridos , Choque Séptico , Animales , Lipopolisacáridos/efectos adversos , Pez Cebra , Larva , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Antiinflamatorios/efectos adversos , Serina-Treonina Quinasas TOR
20.
Environ Sci Technol ; 58(5): 2224-2235, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38267018

RESUMEN

Estuarine environments are critical to fish species and serve as nurseries for developing embryos and larvae. They also undergo daily fluctuations in salinity and act as filters for pollutants. Additionally, global climate change (GCC) is altering salinity regimes within estuarine systems through changes in precipitation and sea level rise. GCC is also likely to lead to an increased use of insecticides to prevent pests from damaging agricultural crops as their habitats and mating seasons change from increased temperatures. This underscores the importance of understanding how insecticide toxicity to fish changes under different salinity conditions. In this study, larval Inland Silversides (Menidia beryllina) were exposed to bifenthrin (1.1 ng/L), cyfluthrin (0.9 ng/L), or cyhalothrin (0.7 ng/L) at either 6 or 10 practical salinity units (PSU) for 96 h during hatching, with a subset assessed for end points relevant to neurotoxicity and endocrine disruption by testing behavior, gene expression of a select suite of genes, reproduction, and growth. At both salinities, directly exposed F0 larvae were hypoactive relative to the F0 controls; however, the indirectly exposed F1 larvae were hyperactive relative to the F1 control. This could be evidence of a compensatory response to environmentally relevant concentrations of pyrethroids in fish. Effects on development, gene expression, and growth were also observed. Overall, exposure to pyrethroids at 10 PSU resulted in fewer behavioral and endocrine disruptive effects relative to those observed in organisms at 6 PSU.


Asunto(s)
Insecticidas , Piretrinas , Contaminantes Químicos del Agua , Animales , Salinidad , Piretrinas/toxicidad , Insecticidas/toxicidad , Peces/fisiología , Larva , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA