Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Microb Pathog ; 192: 106680, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729380

RESUMEN

Biocontrol of phytopathogens involving the use of bioactive compounds produced by lactic acid bacteria (LAB), is a promising approach to manage many diseases in agriculture. In this study, a lactic acid bacterium designated YB1 was isolated from fermented olives and selected for its antagonistic activity against Verticillium dahliae (V. dahliae) and Agrobacterium tumefaciens (A. tumefaciens). Based on the 16S rRNA gene nucleotide sequence analysis (1565 pb, accession number: OR714267), the new isolate YB1 bacterium was assigned as Leuconostoc mesenteroides YB1 (OR714267) strain. This bacterium produces an active peptide "bacteriocin" called BacYB1, which was purified in four steps. Matrix-assisted lasers desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) based approach was performed to identify and characterize BacYB1. The exact mass was 5470.75 Da, and the analysis of the N-terminal sequence (VTRASGASTPPGTASPFKTL) of BacYB1 revealed no significant similarity to currently available antimicrobial peptides. The BacYB1 displayed a bactericidal mode of action against A. tumefaciens. The potentiel role of BacYB1 to supress the growth of A. tumefaciens was confirmed by live-dead cells viability assay. In pot experiments, the biocontrol efficacy of BacYB1 against V. dahliae wilt on young olive trees was studied. The percentage of dead plants (PDP) and the final mean symptomes severity (FMS) of plants articifialy infected by V. dahliae and treated with the pre-purified peptide BacYB1 (preventive and curative treatments) were significantly inferior to untreated plants. Biochemical analysis of leaves of the plants has shown that polyophenols contents were highly detected in plants infected by V. dahliae and the highest contents of chlorophyl a, b and total chlorophyll were recorded in plants treated with the combination of BacYB1 with the biofertilisant Humivital. BacYB1 presents a promising alternative for the control of Verticillium wilt and crown gall diseases.


Asunto(s)
Agrobacterium tumefaciens , Bacteriocinas , Leuconostoc mesenteroides , Olea , Enfermedades de las Plantas , ARN Ribosómico 16S , Agrobacterium tumefaciens/metabolismo , Bacteriocinas/farmacología , Bacteriocinas/metabolismo , Olea/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , ARN Ribosómico 16S/genética , Leuconostoc mesenteroides/metabolismo , Leuconostoc mesenteroides/genética , Agentes de Control Biológico/metabolismo , Agentes de Control Biológico/farmacología , Verticillium/efectos de los fármacos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Antibiosis , Filogenia , Antibacterianos/farmacología , Antibacterianos/metabolismo
2.
Anal Bioanal Chem ; 416(7): 1745-1757, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38324070

RESUMEN

Mass spectrometry (MS) and MS imaging (MSI) are used extensively for both the spatial and bulk characterization of samples in lipidomics and proteomics workflows. These datasets are typically generated independently due to different requirements for sample preparation. However, modern omics technologies now provide higher sample throughput and deeper molecular coverage, which, in combination with more sophisticated bioinformatic and statistical pipelines, make generating multiomics data from a single sample a reality. In this workflow, we use spatial lipidomics data generated by matrix-assisted laser desorption/ionization MSI (MALDI-MSI) on prostate cancer (PCa) radical prostatectomy cores to guide the definition of tumor and benign tissue regions for laser capture microdissection (LCM) and bottom-up proteomics all on the same sample and using the same mass spectrometer. Accurate region of interest (ROI) mapping was facilitated by the SCiLS region mapper software and dissected regions were analyzed using a dia-PASEF workflow. A total of 5525 unique protein groups were identified from all dissected regions. Lysophosphatidylcholine acyltransferase 1 (LPCAT1), a lipid remodelling enzyme, was significantly enriched in the dissected regions of cancerous epithelium (CE) compared to benign epithelium (BE). The increased abundance of this protein was reflected in the lipidomics data with an increased ion intensity ratio for pairs of phosphatidylcholines (PC) and lysophosphatidylcholines (LPC) in CE compared to BE.


Asunto(s)
Multiómica , Neoplasias de la Próstata , Masculino , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Captura por Microdisección con Láser , Fosfatidilcolinas/metabolismo
3.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891812

RESUMEN

Organophosphoate (OP) chemicals are known to inhibit the enzyme acetylcholinesterase (AChE). Studying OP poisoning is difficult because common small animal research models have serum carboxylesterase, which contributes to animals' resistance to OP poisoning. Historically, guinea pigs have been used for this research; however, a novel genetically modified mouse strain (KIKO) was developed with nonfunctional serum carboxylase (Es1 KO) and an altered acetylcholinesterase (AChE) gene, which expresses the amino acid sequence of the human form of the same protein (AChE KI). KIKO mice were injected with 1xLD50 of an OP nerve agent or vehicle control with or without atropine. After one to three minutes, animals were injected with 35 mg/kg of the currently fielded Reactivator countermeasure for OP poisoning. Postmortem brains were imaged on a Bruker RapifleX ToF/ToF instrument. Data confirmed the presence of increased acetylcholine in OP-exposed animals, regardless of treatment or atropine status. More interestingly, we detected a small amount of Reactivator within the brain of both exposed and unexposed animals; it is currently debated if reactivators can cross the blood-brain barrier. Further, we were able to simultaneously image acetylcholine, the primary affected neurotransmitter, as well as determine the location of both Reactivator and acetylcholine in the brain. This study, which utilized sensitive MALDI-MSI methods, characterized KIKO mice as a functional model for OP countermeasure development.


Asunto(s)
Acetilcolinesterasa , Modelos Animales de Enfermedad , Intoxicación por Organofosfatos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Ratones , Humanos , Acetilcolinesterasa/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Atropina/farmacología , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/efectos de los fármacos , Ratones Noqueados , Inhibidores de la Colinesterasa , Acetilcolina/metabolismo
4.
Proteomics ; 23(12): e2300005, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37043374

RESUMEN

Matrix-assisted laser desorption/ionization (MALDI) imaging of proteolytic peptides from formalin-fixed paraffin embedded (FFPE) tissue sections could be integrated in the portfolio of molecular pathologists for protein localization and tissue classification. However, protein identification can be very tedious using MALDI-time-of-flight (TOF) and post-source decay (PSD)-based fragmentation. Hereby, we implemented an R package and Shiny app to exploit liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic biomarker discovery data for more specific identification of peaks observed in bottom-up MALDI imaging data. The package is made available under the GPL 3 license. The Shiny app can directly be used at the following address: https://biosciences.shinyapps.io/Maldimid.


Asunto(s)
Aplicaciones Móviles , Espectrometría de Masas en Tándem , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Cromatografía Liquida/métodos , Proteómica/métodos , Péptido Hidrolasas , Biomarcadores/metabolismo
5.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36982541

RESUMEN

Multiple evidences suggest that mitochondrial dysfunction is implicated in the pathogenesis of Parkinson's disease via the selective cell death of dopaminergic neurons, such as that which occurs after prolonged exposure to the mitochondrial electron transport chain (ETC) complex I inhibitor, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrine (MPTP). However, the effects of chronic MPTP on the ETC complexes and on enzymes of lipid metabolism have not yet been thoroughly determined. To face these questions, the enzymatic activities of ETC complexes and the lipidomic profile of MPTP-treated non-human primate samples were determined using cell membrane microarrays from different brain areas and tissues. MPTP treatment induced an increase in complex II activity in the olfactory bulb, putamen, caudate, and substantia nigra, where a decrease in complex IV activity was observed. The lipidomic profile was also altered in these areas, with a reduction in the phosphatidylserine (38:1) content being especially relevant. Thus, MPTP treatment not only modulates ETC enzymes, but also seems to alter other mitochondrial enzymes that regulate the lipid metabolism. Moreover, these results show that a combination of cell membrane microarrays, enzymatic assays, and MALDI-MS provides a powerful tool for identifying and validating new therapeutic targets that might accelerate the drug discovery process.


Asunto(s)
Enfermedad de Parkinson , Animales , Ratones , Enfermedad de Parkinson/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Haplorrinos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Transporte de Electrón , Sustancia Negra/metabolismo , Pruebas de Enzimas , Lípidos/farmacología , Ratones Endogámicos C57BL
6.
J Proteome Res ; 21(8): 1930-1938, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35766466

RESUMEN

Alterations to N-glycan expression are relevant to the progression of various diseases, particularly cancer. In many cases, specific N-glycan structural features such as sialylation, fucosylation, and branching are of specific interest. A novel MALDI imaging mass spectrometry workflow has been recently developed to analyze these features of N-glycosylation through the utilization of endoglycosidase enzymes to cleave N-glycans from associated glycoproteins. Enzymes that have previously been utilized to cleave N-glycans include peptide-N-glycosidase F (PNGase F) to target N-glycans indiscriminately and endoglycosidase F3 (Endo F3) to target core fucosylated N-glycans. In addition to these endoglycosidases, additional N-glycan cleaving enzymes could be used to target specific structural features. Sialidases, also termed neuraminidases, are a family of enzymes that remove terminal sialic acids from glycoconjugates. This work aims to utilize sialidase, in conjunction with PNGase F/Endo F3, to enzymatically remove sialic acids from N-glycans in an effort to increase sensitivity for nonsialylated N-glycan MALDI-IMS peaks. Improving detection of nonsialylated N-glycans allows for a more thorough analysis of specific structural features such as fucosylation or branching, particularly of low abundant structures. Sialidase utilization in MALDI-IMS dramatically increases sensitivity and increases on-tissue endoglycosidase efficiency, making it a very useful companion technique to specifically detect nonsialylated N-glycans.


Asunto(s)
Neuraminidasa , Polisacáridos , Glicoproteínas/metabolismo , Glicósido Hidrolasas/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa , Polisacáridos/química , Ácidos Siálicos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
7.
Pflugers Arch ; 474(2): 231-242, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34797426

RESUMEN

The distribution of atherosclerotic lesions in the aorta and its branches of ApoE knockout (ApoE-/-) mice is like that of patients with atherosclerosis. By using high-resolution MALDI mass spectrometry imaging (MSI), we aimed at characterizing universally applicable physiological biomarkers by comparing the murine lipid marker profile with that of human atherosclerotic arteries. Therefore, the aorta or carotid artery of male ApoE-/- mice at different ages, human arteries with documented atherosclerotic changes originated from amputated limbs, and corresponding controls were analysed. Obtained data were subjected to multivariate statistical analysis to identify potential biomarkers. Thirty-one m/z values corresponding to individual lipid species of cholesterol esters, lysophosphatidylcholines, lysophosphatidylethanolamines, and cholesterol derivatives were found to be specific in aortic atherosclerotic plaques of old ApoE-/- mice. The lipid composition at related vessel positions of young ApoE-/- mice was more comparable with wild-type mice. Twenty-six m/z values of the murine lipid markers were found in human atherosclerotic peripheral arteries but also control vessels and showed a more patient-dependent diverse distribution. Extensive data analysis without marker preselection based on mouse data revealed lysophosphatidylcholine and glucosylated cholesterol species, the latter not being detected in the murine atherosclerotic tissue, as specific potential novel human atherosclerotic vessel markers. Despite the heterogeneous lipid profile of atherosclerotic peripheral arteries derived from human patients, we identified lipids specifically colocalized to atherosclerotic human tissue and plaques in ApoE-/- mice. These data highlight species-dependent differences in lipid profiles between peripheral artery disease and aortic atherosclerosis.


Asunto(s)
Lípidos/fisiología , Placa Aterosclerótica/metabolismo , Animales , Aorta/metabolismo , Enfermedades de la Aorta/metabolismo , Apolipoproteínas E/metabolismo , Aterosclerosis/metabolismo , Colesterol/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
8.
Clin Proteomics ; 19(1): 8, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35439943

RESUMEN

BACKGROUND: Mass spectrometry imaging (MSI) derives spatial molecular distribution maps directly from clinical tissue specimens and thus bears great potential for assisting pathologists with diagnostic decisions or personalized treatments. Unfortunately, progress in translational MSI is often hindered by insufficient quality control and lack of reproducible data analysis. Raw data and analysis scripts are rarely publicly shared. Here, we demonstrate the application of the Galaxy MSI tool set for the reproducible analysis of a urothelial carcinoma dataset. METHODS: Tryptic peptides were imaged in a cohort of 39 formalin-fixed, paraffin-embedded human urothelial cancer tissue cores with a MALDI-TOF/TOF device. The complete data analysis was performed in a fully transparent and reproducible manner on the European Galaxy Server. Annotations of tumor and stroma were performed by a pathologist and transferred to the MSI data to allow for supervised classifications of tumor vs. stroma tissue areas as well as for muscle-infiltrating and non-muscle infiltrating urothelial carcinomas. For putative peptide identifications, m/z features were matched to the MSiMass list. RESULTS: Rigorous quality control in combination with careful pre-processing enabled reduction of m/z shifts and intensity batch effects. High classification accuracy was found for both, tumor vs. stroma and muscle-infiltrating vs. non-muscle infiltrating urothelial tumors. Some of the most discriminative m/z features for each condition could be assigned a putative identity: stromal tissue was characterized by collagen peptides and tumor tissue by histone peptides. Immunohistochemistry confirmed an increased histone H2A abundance in the tumor compared to the stroma tissues. The muscle-infiltration status was distinguished via MSI by peptides from intermediate filaments such as cytokeratin 7 in non-muscle infiltrating carcinomas and vimentin in muscle-infiltrating urothelial carcinomas, which was confirmed by immunohistochemistry. To make the study fully reproducible and to advocate the criteria of FAIR (findability, accessibility, interoperability, and reusability) research data, we share the raw data, spectra annotations as well as all Galaxy histories and workflows. Data are available via ProteomeXchange with identifier PXD026459 and Galaxy results via https://github.com/foellmelanie/Bladder_MSI_Manuscript_Galaxy_links . CONCLUSION: Here, we show that translational MSI data analysis in a fully transparent and reproducible manner is possible and we would like to encourage the community to join our efforts.

9.
Alzheimers Dement ; 18(10): 1721-1735, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34908231

RESUMEN

N-linked protein glycosylation in the brain is an understudied facet of glucose utilization that impacts a myriad of cellular processes including resting membrane potential, axon firing, and synaptic vesicle trafficking. Currently, a spatial map of N-linked glycans within the normal and Alzheimer's disease (AD) human brain does not exist. A comprehensive analysis of the spatial N-linked glycome would improve our understanding of brain energy metabolism, linking metabolism to signaling events perturbed during AD progression, and could illuminate new therapeutic strategies. Herein we report an optimized in situ workflow for enzyme-assisted, matrix-assisted laser desorption and ionization (MALDI) mass spectrometry imaging (MSI) of brain N-linked glycans. Using this workflow, we spatially interrogated N-linked glycan heterogeneity in both mouse and human AD brains and their respective age-matched controls. We identified robust regional-specific N-linked glycan changes associated with AD in mice and humans. These data suggest that N-linked glycan dysregulation could be an underpinning of AD pathologies.


Asunto(s)
Enfermedad de Alzheimer , Glicómica , Humanos , Glicómica/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Encéfalo/metabolismo , Polisacáridos/análisis , Polisacáridos/química , Polisacáridos/metabolismo , Glucosa/metabolismo
10.
Molecules ; 27(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36364272

RESUMEN

Data fusion aims to provide a more accurate description of a sample than any one source of data alone. At the same time, data fusion minimizes the uncertainty of the results by combining data from multiple sources. Both aim to improve the characterization of samples and might improve clinical diagnosis and prognosis. In this paper, we present an overview of the advances achieved over the last decades in data fusion approaches in the context of the medical and biomedical fields. We collected approaches for interpreting multiple sources of data in different combinations: image to image, image to biomarker, spectra to image, spectra to spectra, spectra to biomarker, and others. We found that the most prevalent combination is the image-to-image fusion and that most data fusion approaches were applied together with deep learning or machine learning methods.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático , Procesamiento de Imagen Asistido por Computador/métodos
11.
J Mol Cell Cardiol ; 154: 6-20, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33516683

RESUMEN

Congenital aortic valve stenosis (AS) progresses as an obstructive narrowing of the aortic orifice due to deregulated extracellular matrix (ECM) production by aortic valve (AV) leaflets and leads to heart failure with no effective therapies. Changes in glycoprotein and proteoglycan distribution are a hallmark of AS, yet valvular carbohydrate content remains virtually uncharacterized at the molecular level. While almost all glycoproteins clinically linked to stenotic valvular modeling contain multiple sites for N-glycosylation, there are very few reports aimed at understanding how N-glycosylation contributes to the valve structure in disease. Here, we tested for spatial localization of N-glycan structures within pediatric congenital aortic valve stenosis. The study was done on valvular tissues 0-17 years of age with de-identified clinical data reporting pre-operative valve function spanning normal development, aortic valve insufficiency (AVI), and pediatric endstage AS. High mass accuracy imaging mass spectrometry (IMS) was used to localize N-glycan profiles in the AV structure. RNA-Seq was used to identify regulation of N-glycan related enzymes. The N-glycome was found to be spatially localized in the normal aortic valve, aligning with fibrosa, spongiosa or ventricularis. In AVI diagnosed tissue, N-glycans localized to hypertrophic commissures with increases in pauci-mannose structures. In all valve types, sialic acid (N-acetylneuraminic acid) N-glycans were the most abundant N-glycan group. Three sialylated N-glycans showed common elevation in AS independent of age. On-tissue chemical methods optimized for valvular tissue determined that aortic valve tissue sialylation shows both α2,6 and α2,3 linkages. Specialized enzymatic strategies demonstrated that core fucosylation is the primary fucose configuration and localizes to the normal fibrosa with disparate patterning in AS. This study identifies that the human aortic valve structure is spatially defined by N-glycomic signaling and may generate new research directions for the treatment of human aortic valve disease.


Asunto(s)
Estenosis de la Válvula Aórtica/metabolismo , Válvula Aórtica/metabolismo , Glicómica , Glicoproteínas/metabolismo , Estenosis de la Válvula Aórtica/congénito , Estenosis de la Válvula Aórtica/diagnóstico , Estenosis de la Válvula Aórtica/fisiopatología , Biomarcadores , Niño , Matriz Extracelular/metabolismo , Predisposición Genética a la Enfermedad , Glicómica/métodos , Glicosilación , Humanos , Imagen Molecular , Polisacáridos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
12.
Crit Rev Clin Lab Sci ; 58(7): 513-529, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34615421

RESUMEN

Matrix-assisted laser desorption/ionization (MALDI) imaging is an emergent technology that has been increasingly adopted in cancer research. MALDI imaging is capable of providing global molecular mapping of the abundance and spatial information of biomolecules directly in the tissues without labeling. It enables the characterization of a wide spectrum of analytes, including proteins, peptides, glycans, lipids, drugs, and metabolites and is well suited for both discovery and targeted analysis. An advantage of MALDI imaging is that it maintains tissue integrity, which allows correlation with histological features. It has proven to be a valuable tool for probing tumor heterogeneity and has been increasingly applied to interrogate molecular events associated with cancer. It provides unique insights into both the molecular content and spatial details that are not accessible by other techniques, and it has allowed considerable progress in the field of cancer research. In this review, we first provide an overview of the MALDI imaging workflow and approach. We then highlight some useful applications in various niches of cancer research, followed by a discussion of the challenges, recent developments and future prospect of this technique in the field.


Asunto(s)
Neoplasias , Proteínas , Humanos , Neoplasias/diagnóstico , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
J Neurochem ; 158(2): 391-412, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33704768

RESUMEN

Behavioral flexibility is an important cornerstone for the ecological success of animals. Social Cataglyphis nodus ants with their age-related polyethism characterized by age-related behavioral phenotypes represent a prime example for behavioral flexibility. We propose neuropeptides as powerful candidates for the flexible modulation of age-related behavioral transitions in individual ants. As the neuropeptidome of C. nodus was unknown, we collected a comprehensive peptidomic data set obtained by transcriptome analysis of the ants' central nervous system combined with brain extract analysis by Q-Exactive Orbitrap mass spectrometry (MS) and direct tissue profiling of different regions of the brain by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. In total, we identified 71 peptides with likely bioactive function, encoded on 49 neuropeptide-, neuropeptide-like, and protein hormone prepropeptide genes, including a novel neuropeptide-like gene (fliktin). We next characterized the spatial distribution of a subset of peptides encoded on 16 precursor proteins with high resolution by MALDI MS imaging (MALDI MSI) on 14 µm brain sections. The accuracy of our MSI data were confirmed by matching the immunostaining patterns for tachykinins with MSI ion images from consecutive brain sections. Our data provide a solid framework for future research into spatially resolved qualitative and quantitative peptidomic changes associated with stage-specific behavioral transitions and the functional role of neuropeptides in Cataglyphis ants.


Asunto(s)
Hormigas/fisiología , Química Encefálica/genética , Encéfalo/diagnóstico por imagen , Perfilación de la Expresión Génica , Neuropéptidos/genética , Proteómica , Secuencia de Aminoácidos , Animales , Cromatografía Líquida de Alta Presión , Inmunohistoquímica , Espectrometría de Masas , Neuropéptidos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Transcriptoma
14.
Int J Cancer ; 149(12): 2091-2098, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34224582

RESUMEN

Isocitrate dehydrogenase (IDH) gene mutations are important predictive molecular markers to guide surgical strategy in brain cancer therapy. Herein, we presented a method using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) for absolute quantification of 2-hydroxyglutarate (2-HG) on tissues to identify IDH mutations and evaluate tumor residue. This analytical method was tested among 34 glioma patients and validated with gold standard clinical technologies. The cut-off value of 2-HG was set as 0.81 pmol/µg to identify IDH mutant (IDHmt) gliomas with 100% specificity and sensitivity. In addition, 2-HG levels and tumor cell density (TCD) showed positive correlation in IDHmt gliomas by this spatial method. This MALDI MSI-based absolute quantification method has great potentiality for incorporating into surgical workflow in the future.


Asunto(s)
Biomarcadores de Tumor/aislamiento & purificación , Neoplasias Encefálicas/diagnóstico , Glioma/diagnóstico , Glutaratos/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Biomarcadores de Tumor/metabolismo , Encéfalo/patología , Encéfalo/cirugía , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Modelos Animales de Enfermedad , Femenino , Glioma/genética , Glioma/patología , Glioma/cirugía , Glutaratos/metabolismo , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Hígado/patología , Masculino , Ratones , Mutación , Valores de Referencia
15.
Anal Bioanal Chem ; 413(10): 2637-2653, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33532914

RESUMEN

Matrix-assisted laser desorption/ionisation-imaging mass spectrometry (MALDI-IMS) is now an established imaging modality with particular utility in the study of biological, biomedical and pathological processes. In the first instance, the use of stable isotopically labelled (SIL) compounds in MALDI-IMS has addressed technical barriers to increase the accuracy and versatility of this technique. This has undoubtedly enhanced our ability to interpret the two-dimensional ion intensity distributions produced from biological tissue sections. Furthermore, studies using delivery of SIL compounds to live tissues have begun to decipher cell, tissue and inter-tissue metabolism while maintaining spatial resolution. Here, we review both the technical and biological applications of SIL compounds in MALDI-IMS, before using the uptake and metabolism of glucose in bovine ocular lens tissue to illustrate the current limitations of SIL compound use in MALDI-IMS. Finally, we highlight recent instrumentation advances that may further enhance our ability to use SIL compounds in MALDI-IMS to understand biological and pathological processes. Graphical Abstract.


Asunto(s)
Marcaje Isotópico/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Biología Computacional/instrumentación , Biología Computacional/métodos , Diseño de Equipo , Glucosa/análisis , Glucosa/metabolismo , Humanos , Marcaje Isotópico/instrumentación , Imagen Molecular/instrumentación , Imagen Molecular/métodos , Programas Informáticos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/instrumentación
16.
Anal Bioanal Chem ; 413(10): 2695-2708, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33564925

RESUMEN

Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) is a common molecular imaging modality used to characterise the abundance and spatial distribution of lipids in situ. There are several technical challenges predominantly involving sample pre-treatment and preparation which have complicated the analysis of clinical tissues by MALDI-MSI. Firstly, the common embedding of samples in optimal cutting temperature (O.C.T.), which contains high concentrations of polyethylene glycol (PEG) polymers, causes analyte signal suppression during mass spectrometry (MS) by competing for available ions during ionisation. This suppressive effect has constrained the application of MALDI-MSI for the molecular mapping of clinical tissues. Secondly, the complexity of the mass spectra is obtained by the formation of multiple adduct ions. The process of analyte ion formation during MALDI can generate multiple m/z peaks from a single lipid species due to the presence of alkali salts in tissues, resulting in the suppression of protonated adduct formation and the generation of multiple near isobaric ions which produce overlapping spatial distributions. Presented is a method to simultaneously remove O.C.T. and endogenous salts. This approach was applied to lipid imaging in order to prevent analyte suppression, simplify data interpretation, and improve sensitivity by promoting lipid protonation and reducing the formation of alkali adducts.


Asunto(s)
Lípidos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Humanos , Masculino , Ratones , Polietilenglicoles/química , Próstata/química , Próstata/patología , Neoplasias de la Próstata/química , Neoplasias de la Próstata/patología , Temperatura , Adhesión del Tejido/métodos
17.
Anal Bioanal Chem ; 413(10): 2599-2617, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33215311

RESUMEN

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a fast-growing technique for visualization of the spatial distribution of the small molecular and macromolecular biomolecules in tissue sections. Challenges in MALDI-MSI, such as poor sensitivity for some classes of molecules or limited specificity, for instance resulting from the presence of isobaric molecules or limited resolving power of the instrument, have encouraged the MSI scientific community to improve MALDI-MSI sample preparation workflows with innovations in chemistry. Recent developments of novel small organic MALDI matrices play a part in the improvement of image quality and the expansion of the application areas of MALDI-MSI. This includes rationally designed/synthesized as well as commercially available small organic molecules whose superior matrix properties in comparison with common matrices have only recently been discovered. Furthermore, on-tissue chemical derivatization (OTCD) processes get more focused attention, because of their advantages for localization of poorly ionizable metabolites and their' in several cases' more specific imaging of metabolites in tissue sections. This review will provide an overview about the latest developments of novel small organic matrices and on-tissue chemical derivatization reagents for MALDI-MSI. Graphical abstract.


Asunto(s)
Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Técnicas Histológicas/instrumentación , Técnicas Histológicas/métodos , Humanos , Indicadores y Reactivos , Imagen Molecular/instrumentación , Imagen Molecular/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/instrumentación
18.
Mol Cell Proteomics ; 18(1): 151-161, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30293968

RESUMEN

Aberrant protease activity has been implicated in the etiology of various prevalent diseases including neurodegeneration and cancer, in particular metastasis. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has recently been established as a key technology for bioanalysis of multiple biomolecular classes such as proteins, lipids, and glycans. However, it has not yet been systematically explored for investigation of a tissue's endogenous protease activity. In this study, we demonstrate that different tissues, spray-coated with substance P as a tracer, digest this peptide with different time-course profiles. Furthermore, we reveal that distinct cleavage products originating from substance P are generated transiently and that proteolysis can be attenuated by protease inhibitors in a concentration-dependent manner. To show the translational potential of the method, we analyzed protease activity of gastric carcinoma in mice. Our MSI and quantitative proteomics results reveal differential distribution of protease activity - with strongest activity being observed in mouse tumor tissue, suggesting the general applicability of the workflow in animal pharmacology and clinical studies.


Asunto(s)
Péptido Hidrolasas/metabolismo , Proteómica/métodos , Neoplasias Gástricas/metabolismo , Animales , Ratones , Neoplasias Experimentales/metabolismo , Proteolisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
19.
Adv Exp Med Biol ; 1280: 69-82, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33791975

RESUMEN

Multicellular organisms achieve their complex living activities through the highly organized metabolic interplay of individual cells and tissues. This complexity has driven the need to spatially resolve metabolomics down to the cellular and subcellular level. Recent technological advances have enabled mass spectrometry imaging (MSI), especially matrix-assisted laser desorption/ionization (MALDI), to become a powerful tool for the visualization of molecular species down to subcellular spatial resolution. In the present chapter, we summarize recent advances in the field of MALDI-MSI, with respect to single-cell level resolution metabolomics directly on tissue. In more detail, we focus on advancements in instrumentation for MSI at single-cell resolution, and the applications towards metabolomic scale imaging. Finally, we discuss new computational tools to aid in metabolite identification, future perspective, and the overall direction that the field of single-cell metabolomics directly on tissue may take in the years to come.


Asunto(s)
Metabolómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
20.
J Neurochem ; 152(5): 602-616, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31605538

RESUMEN

One of the major hallmarks of Alzheimer's disease (AD) pathology is the formation of extracellular amyloid ß (Aß) plaques. While Aß has been suggested to be critical in inducing and, potentially, driving the disease, the molecular basis of AD pathogenesis is still under debate. Extracellular Aß plaque pathology manifests itself upon aggregation of distinct Aß peptides, resulting in morphologically different plaque morphotypes, including mainly diffuse and cored senile plaques. As plaque pathology precipitates long before any clinical symptoms occur, targeting the Aß aggregation processes provides a promising target for early interventions. However, the chain of events of when, where and what Aß species aggregate and form plaques remains unclear. The aim of this study was to investigate the potential of matrix-assisted laser desorption/ionization imaging mass spectrometry as a tool to study the evolving pathology in transgenic mouse models for AD. To that end, we used an emerging, chemical imaging modality - matrix-assisted laser desorption/ionization imaging mass spectrometry - that allows for delineating Aß aggregation with specificity at the single plaque level. We identified that plaque formation occurs first in cortical regions and that these younger plaques contain higher levels of 42 amino acid-long Aß (Aß1-42). Plaque maturation was found to be characterized by a relative increase in deposition of Aß1-40, which was associated with the appearance of a cored morphology for those plaques. Finally, other C-terminally truncated Aß species (Aß1-38 and Aß1-39) exhibited a similar aggregation pattern as Aß1-40, suggesting that these species have similar aggregation characteristics. These results suggest that initial plaque formation is seeded by Aß1-42; a process that is followed by plaque maturation upon deposition of Aß1-40 as well as deposition of other C-terminally modified Aß species.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Encéfalo/patología , Placa Amiloide/patología , Agregación Patológica de Proteínas/patología , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA