Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(4): 881-895.e17, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31051106

RESUMEN

Non-alcoholic fatty liver is the most common liver disease worldwide. Here, we show that the mitochondrial protein mitofusin 2 (Mfn2) protects against liver disease. Reduced Mfn2 expression was detected in liver biopsies from patients with non-alcoholic steatohepatitis (NASH). Moreover, reduced Mfn2 levels were detected in mouse models of steatosis or NASH, and its re-expression in a NASH mouse model ameliorated the disease. Liver-specific ablation of Mfn2 in mice provoked inflammation, triglyceride accumulation, fibrosis, and liver cancer. We demonstrate that Mfn2 binds phosphatidylserine (PS) and can specifically extract PS into membrane domains, favoring PS transfer to mitochondria and mitochondrial phosphatidylethanolamine (PE) synthesis. Consequently, hepatic Mfn2 deficiency reduces PS transfer and phospholipid synthesis, leading to endoplasmic reticulum (ER) stress and the development of a NASH-like phenotype and liver cancer. Ablation of Mfn2 in liver reveals that disruption of ER-mitochondrial PS transfer is a new mechanism involved in the development of liver disease.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Proteínas Mitocondriales/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosfatidilserinas/metabolismo , Animales , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Inflamación/metabolismo , Hígado/patología , Hepatopatías/etiología , Hepatopatías/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Cultivo Primario de Células , Transporte de Proteínas/fisiología , Transducción de Señal , Triglicéridos/metabolismo
2.
Rev Physiol Biochem Pharmacol ; 185: 153-193, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-32789789

RESUMEN

Endoplasmic reticulum (ER)-mitochondria regions are specialized subdomains called also mitochondria-associated membranes (MAMs). MAMs allow regulation of lipid synthesis and represent hubs for ion and metabolite signaling. As these two organelles can module both the amplitude and the spatiotemporal patterns of calcium (Ca2+) signals, this particular interaction controls several Ca2+-dependent pathways well known for their contribution to tumorigenesis, such as metabolism, survival, sensitivity to cell death, and metastasis. Mitochondria-mediated apoptosis arises from mitochondrial Ca2+ overload, permeabilization of the mitochondrial outer membrane, and the release of mitochondrial apoptotic factors into the cytosol. Decreases in Ca2+ signaling at the ER-mitochondria interface are being studied in depth as failure of apoptotic-dependent cell death is one of the predominant characteristics of cancer cells. However, some recent papers that linked MAMs Ca2+ crosstalk-related upregulation to tumor onset and progression have aroused the interest of the scientific community.In this review, we will describe how different MAMs-localized proteins modulate the effectiveness of Ca2+-dependent apoptotic stimuli by causing both increases and decreases in the ER-mitochondria interplay and, specifically, by modulating Ca2+ signaling.


Asunto(s)
Señalización del Calcio , Neoplasias , Humanos , Señalización del Calcio/fisiología , Mitocondrias , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/patología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Muerte Celular , Proteínas de la Membrana/metabolismo , Calcio/metabolismo , Neoplasias/metabolismo
3.
J Cell Sci ; 135(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35129196

RESUMEN

Recent advances have revealed common pathological changes in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis with related frontotemporal dementia (ALS/FTD). Many of these changes can be linked to alterations in endoplasmic reticulum (ER)-mitochondria signaling, including dysregulation of Ca2+ signaling, autophagy, lipid metabolism, ATP production, axonal transport, ER stress responses and synaptic dysfunction. ER-mitochondria signaling involves specialized regions of ER, called mitochondria-associated membranes (MAMs). Owing to their role in neurodegenerative processes, MAMs have gained attention as they appear to be associated with all the major neurodegenerative diseases. Furthermore, their specific role within neuronal maintenance is being revealed as mutant genes linked to major neurodegenerative diseases have been associated with damage to these specialized contacts. Several studies have now demonstrated that these specialized contacts regulate neuronal health and synaptic transmission, and that MAMs are damaged in patients with neurodegenerative diseases. This Review will focus on the role of MAMs and ER-mitochondria signaling within neurons and how damage of the ER-mitochondria axis leads to a disruption of vital processes causing eventual neurodegeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Demencia Frontotemporal/metabolismo , Humanos , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo
4.
J Cell Sci ; 135(23)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36448461

RESUMEN

The appreciation of the importance of interorganelle contacts has steadily increased over the past decades. Advances in imaging, molecular biology and bioinformatic techniques allowed the discovery of new mechanisms involved in the interaction and communication between organelles, providing novel insights into the inner works of a cell. In this Review, with the mitochondria under the spotlight, we discuss the most recent findings on the mechanisms mediating the communication between organelles, focusing on Ca2+ signaling, lipid exchange, cell death and stress responses. Notably, we introduce a new integrative perspective to signaling networks that is regulated by interorganelle interactions - the mitochondria-associated niches - focusing on the link between the molecular determinants of contact sites and their functional outputs, rather than simply physical and structural communication. In addition, we highlight the neuropathological and metabolic implications of alterations in mitochondria-associated niches and outline how this concept might improve our understanding of multi-organelle interactions.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Muerte Celular , Transducción de Señal , Biología Computacional
5.
Neurochem Res ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39002091

RESUMEN

Alzheimer's disease (AD) represents the most widespread neurodegenerative disorder, distinguished by a gradual onset and slow progression, presenting a substantial challenge to global public health. The mitochondrial-associated membrane (MAMs) functions as a crucial center for signal transduction and material transport between mitochondria and the endoplasmic reticulum, playing a pivotal role in various pathological mechanisms of AD. The dysregulation of mitochondrial quality control systems is considered a fundamental factor in the development of AD, leading to mitochondrial dysfunction and subsequent neurodegenerative events. Recent studies have emphasized the role of MAMs in regulating mitochondrial quality control. This review will delve into the molecular mechanisms underlying the imbalance in mitochondrial quality control in AD and provide a comprehensive overview of the role of MAMs in regulating mitochondrial quality control.

6.
Stat Med ; 43(19): 3613-3632, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38880949

RESUMEN

There is growing interest in platform trials that allow for adding of new treatment arms as the trial progresses as well as being able to stop treatments part way through the trial for either lack of benefit/futility or for superiority. In some situations, platform trials need to guarantee that error rates are controlled. This paper presents a multi-stage design, that allows additional arms to be added in a platform trial in a preplanned fashion, while still controlling the family-wise error rate, under the assumption of known number and timing of treatments to be added, and no time trends. A method is given to compute the sample size required to achieve a desired level of power and we show how the distribution of the sample size and the expected sample size can be found. We focus on power under the least favorable configuration which is the power of finding the treatment with a clinically relevant effect out of a set of treatments while the rest have an uninteresting treatment effect. A motivating trial is presented which focuses on two settings, with the first being a set number of stages per active treatment arm and the second being a set total number of stages, with treatments that are added later getting fewer stages. Compared to Bonferroni, the savings in the total maximum sample size are modest in a trial with three arms, <1% of the total sample size. However, the savings are more substantial in trials with more arms.


Asunto(s)
Proyectos de Investigación , Humanos , Tamaño de la Muestra , Simulación por Computador , Modelos Estadísticos , Ensayos Clínicos como Asunto/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto/estadística & datos numéricos
7.
Cell Biol Int ; 48(3): 253-279, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38178581

RESUMEN

Ischemia-reperfusion injury is an event concerning any organ under a procedure of transplantation. The early result of ischemia is hypoxia, which causes malfunction of mitochondria and decrease in cellular ATP. This leads to disruption of cellular metabolism. Reperfusion also results in cell damage due to reoxygenation and increased production of reactive oxygen species, and later by induced inflammation. In damaged and hypoxic cells, the endoplasmic reticulum (ER) stress pathway is activated by increased amount of damaged or misfolded proteins, accumulation of free fatty acids and other lipids due to inability of their oxidation (lipotoxicity). ER stress is an adaptive response and a survival pathway, however, its prolonged activity eventually lead to induction of apoptosis. Sustaining cell functionality in stress conditions is a great challenge for transplant surgeons as it is crucial for maintaining a desired level of graft vitality. Pathways counteracting negative consequences of ischemia-reperfusion are autophagy and lipid droplets (LD) metabolism. Autophagy remove damaged organelles and molecules driving them to lysosomes, digested simpler compounds are energy source for the cell. Mitophagy and ER-phagy results in improvement of cell energetic balance and alleviation of ER stress. This is important in sustaining metabolic homeostasis and thus cell survival. LD metabolism is connected with autophagy as LD are degraded by lipophagy, a source of free fatty acids and glycerol-thus autophagy and LD can readily remove lipotoxic compounds in the cell. In conclusion, monitoring and pharmaceutic regulation of those pathways during transplantation procedure might result in increased/improved vitality of transplanted organ.


Asunto(s)
Ácidos Grasos no Esterificados , Gotas Lipídicas , Humanos , Gotas Lipídicas/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Estrés del Retículo Endoplásmico , Autofagia , Isquemia/metabolismo , Hipoxia/metabolismo , Reperfusión
8.
BMC Med Res Methodol ; 24(1): 124, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831421

RESUMEN

BACKGROUND: Multi-arm multi-stage (MAMS) randomised trial designs have been proposed to evaluate multiple research questions in the confirmatory setting. In designs with several interventions, such as the 8-arm 3-stage ROSSINI-2 trial for preventing surgical wound infection, there are likely to be strict limits on the number of individuals that can be recruited or the funds available to support the protocol. These limitations may mean that not all research treatments can continue to accrue the required sample size for the definitive analysis of the primary outcome measure at the final stage. In these cases, an additional treatment selection rule can be applied at the early stages of the trial to restrict the maximum number of research arms that can progress to the subsequent stage(s). This article provides guidelines on how to implement treatment selection within the MAMS framework. It explores the impact of treatment selection rules, interim lack-of-benefit stopping boundaries and the timing of treatment selection on the operating characteristics of the MAMS selection design. METHODS: We outline the steps to design a MAMS selection trial. Extensive simulation studies are used to explore the maximum/expected sample sizes, familywise type I error rate (FWER), and overall power of the design under both binding and non-binding interim stopping boundaries for lack-of-benefit. RESULTS: Pre-specification of a treatment selection rule reduces the maximum sample size by approximately 25% in our simulations. The familywise type I error rate of a MAMS selection design is smaller than that of the standard MAMS design with similar design specifications without the additional treatment selection rule. In designs with strict selection rules - for example, when only one research arm is selected from 7 arms - the final stage significance levels can be relaxed for the primary analyses to ensure that the overall type I error for the trial is not underspent. When conducting treatment selection from several treatment arms, it is important to select a large enough subset of research arms (that is, more than one research arm) at early stages to maintain the overall power at the pre-specified level. CONCLUSIONS: Multi-arm multi-stage selection designs gain efficiency over the standard MAMS design by reducing the overall sample size. Diligent pre-specification of the treatment selection rule, final stage significance level and interim stopping boundaries for lack-of-benefit are key to controlling the operating characteristics of a MAMS selection design. We provide guidance on these design features to ensure control of the operating characteristics.


Asunto(s)
Ensayos Clínicos Controlados Aleatorios como Asunto , Proyectos de Investigación , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Tamaño de la Muestra , Selección de Paciente
9.
Cell Mol Biol Lett ; 29(1): 22, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308199

RESUMEN

INTRODUCTION: There is a high morbidity and mortality rate in mechanical trauma (MT)-induced hepatic injury. Currently, the molecular mechanisms underlying liver MT are largely unclear. Exploring the underlying mechanisms and developing safe and effective medicines to alleviate MT-induced hepatic injury is an urgent requirement. The aim of this study was to reveal the role of mitochondria-associated ER membranes (MAMs) in post-traumatic liver injury, and ascertain whether melatonin protects against MT-induced hepatic injury by regulating MAMs. METHODS: Hepatic mechanical injury was established in Sprague-Dawley rats and primary hepatocytes. A variety of experimental methods were employed to assess the effects of melatonin on hepatic injury, apoptosis, MAMs formation, mitochondrial function and signaling pathways. RESULTS: Significant increase of IP3R1 expression and MAMs formation were observed in MT-induced hepatic injury. Melatonin treatment at the dose of 30 mg/kg inhibited IP3R1-mediated MAMs and attenuated MT-induced liver injury in vivo. In vitro, primary hepatocytes cultured in 20% trauma serum (TS) for 12 h showed upregulated IP3R1 expression, increased MAMs formation and cell injury, which were suppressed by melatonin (100 µmol/L) treatment. Consequently, melatonin suppressed mitochondrial calcium overload, increased mitochondrial membrane potential and improved mitochondrial function under traumatic condition. Melatonin's inhibitory effects on MAMs formation and mitochondrial calcium overload were blunted when IP3R1 was overexpressed. Mechanistically, melatonin bound to its receptor (MR) and increased the expression of phosphorylated ERK1/2, which interacted with FoxO1 and inhibited the activation of FoxO1 that bound to the IP3R1 promoter to inhibit MAMs formation. CONCLUSION: Melatonin prevents the formation of MAMs via the MR-ERK1/2-FoxO1-IP3R1 pathway, thereby alleviating the development of MT-induced liver injury. Melatonin-modulated MAMs may be a promising therapeutic therapy for traumatic hepatic injury.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Melatonina , Animales , Ratas , Calcio/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/tratamiento farmacológico , Melatonina/farmacología , Melatonina/uso terapéutico , Ratas Sprague-Dawley
10.
Ecotoxicol Environ Saf ; 282: 116679, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38981393

RESUMEN

Di(2-ethylhexyl) phthalate (DEHP) is a widely recognized environmental endocrine disruptor that potentially impacts female reproductive function, although the specific mechanisms leading to such impairment remain unclear. A growing body of research has revealed that the endoplasmic reticulum and mitochondrial function significantly influence oocyte quality. The structure of mitochondria-associated endoplasmic reticulum membranes (MAMs) is crucial for facilitating the exchange of Ca2+, lipids, and metabolites. This study aimed to investigate the alterations in the composition and function of MAMs after DEHP exposure and to elucidate the underlying mechanisms of ovarian toxicity. The female mice were exposed to DEHP at doses of 5 and 500 mg/kg/day for one month. The results revealed that DEHP exposure led to reduced serum anti-Müllerian hormone levels and increased atretic follicles in mice. DEHP induced endoplasmic reticulum stress and disrupted calcium homeostasis in oocytes. Furthermore, DEHP impaired the mitochondrial function of oocytes and reduced their membrane potential, and promoting apoptosis. Similar results were observed in human granulosa cells after exposure to mono-(2-ethylhexyl) phthalate (MEHP, metabolites of DEHP) in vitro. Proteomic analysis and transmission electron microscopy revealed modifications in the functional proteins and structure of the MAMs, and the suppression of oxidative phosphorylation pathways. The findings of this investigation provide a new perspective on the mechanism underlying the reproductive toxicity of DEHP in females.

11.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38928232

RESUMEN

Parkinson's disease (PD) is a disease of an unknown origin. Despite that, decades of research have provided considerable evidence that alpha-synuclein (αSyn) is central to the pathogenesis of disease. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are functional domains formed at contact sites between the ER and mitochondria, with a well-established function of MAMs being the control of lipid homeostasis within the cell. Additionally, there are numerous proteins localized or enriched at MAMs that have regulatory roles in several different molecular signaling pathways required for cellular homeostasis, such as autophagy and neuroinflammation. Alterations in several of these signaling pathways that are functionally associated with MAMs are found in PD. Taken together with studies that find αSyn localized at MAMs, this has implicated MAM (dys)function as a converging domain relevant to PD. This review will highlight the many functions of MAMs and provide an overview of the literature that finds αSyn, in addition to several other PD-related proteins, localized there. This review will also detail the direct interaction of αSyn and αSyn-interacting partners with specific MAM-resident proteins. In addition, recent studies exploring new methods to investigate MAMs will be discussed, along with some of the controversies regarding αSyn, including its several conformations and subcellular localizations. The goal of this review is to highlight and provide insight on a domain that is incompletely understood and, from a PD perspective, highlight those complex interactions that may hold the key to understanding the pathomechanisms underlying PD, which may lead to the targeted development of new therapeutic strategies.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Enfermedad de Parkinson , alfa-Sinucleína , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Humanos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Animales , Transducción de Señal , Autofagia
12.
Clin Sci (Lond) ; 137(12): 931-945, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37226722

RESUMEN

Mitochondria-associated endoplasmic reticulum membranes (MAMs) regulate ATG14- and Beclin1-mediated mitophagy and play key roles in the development of diabetic nephropathy (DN). DsbA-L is mainly located in MAMs and plays a role in renoprotection, but whether it activates mitophagy by maintaining MAM integrity remains unclear. In the present study, we found that renal tubular damage was further aggravated in diabetic DsbA-L-/- mice compared with diabetic mice and that this damage was accompanied by disrupted MAM integrity and decreased mitophagy. Furthermore, notably decreased expression of ATG14 and Beclin1 in MAMs extracted from the kidneys of diabetic DsbA-L-/- mice was observed. In vitro, overexpression of DsbA-L reversed the disruption of MAM integrity and enhanced mitophagy in HK-2 cells, a human proximal tubular cell line, after exposure to high-glucose (HG) conditions. Additionally, compared with control mice, DsbA-L-/- mice were exhibited down-regulated expression of helicase with zinc finger 2 (HELZ2) in their kidneys according to transcriptome analysis; HELZ2 serves as a cotranscription factor that synergistically functions with PPARα to promote the expression of mitofusin 2 (MFN-2). Treatment of HK-2 cells with MFN-2 siRNA resulted in MAM uncoupling and decreased mitophagy. Moreover, HG notably reduced the expression of HELZ2 and MFN-2 and inhibited mitophagy, and these effects were partially blocked by overexpression of DsbA-L and altered upon cotreatment with HELZ2 siRNA, HELZ2 overexpression or MK886 (PPARα inhibitor) treatment. These data indicate that DsbA-L alleviates diabetic tubular damage by activating mitophagy through maintenance of MAM integrity via the HELZ2/MFN-2 pathway.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ratones , Humanos , Animales , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Mitocondrias/metabolismo , Beclina-1/metabolismo , Beclina-1/farmacología , Mitofagia/genética , PPAR alfa/metabolismo , ARN Interferente Pequeño/metabolismo
13.
J Child Psychol Psychiatry ; 64(12): 1765-1775, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37793673

RESUMEN

BACKROUND: The evidence base for interventions for child mental health and neurodevelopment is weak and the current capacity for rigorous evaluation limited. We describe some of the challenges that make this field particularly difficult and expensive for evaluation studies. METHODS: We describe and review the use of novel study designs and analysis methodology for their potential to improve this situation. RESULTS: While several novel designs appeared ill-suited to our field, systematic review found others that offered potential but had yet to be widely adopted, some not at all. CONCLUSIONS: While funding is inevitably a constraint, we argue that improvements in the evidence base of both current and new treatments will only be achieved by the adoption of a number of these new technologies and study designs, the consistent application of rigorous constructive but demanding standards, and the engagement of the public, patients, clinical and research services to build a design, recruitment, and analysis infrastructure.


Asunto(s)
Salud Mental , Proyectos de Investigación , Humanos , Niño , Adolescente
14.
Clin Trials ; 20(1): 71-80, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36647713

RESUMEN

BACKGROUND: Multi-arm multi-stage trials are an efficient, adaptive approach for testing many treatments simultaneously within one protocol. In settings where numbers of patients available to be entered into trials and resources might be limited, such as primary postpartum haemorrhage, it may be necessary to select a pre-specified subset of arms at interim stages even if they are all showing some promise against the control arm. This will put a limit on the maximum number of patients required and reduce the associated costs. Motivated by the World Health Organization Refractory HaEmorrhage Devices trial in postpartum haemorrhage, we explored the properties of such a selection design in a randomised phase III setting and compared it with other alternatives. The objectives are: (1) to investigate how the timing of treatment selection affects the operating characteristics; (2) to explore the use of an information-rich (continuous) intermediate outcome to select the best-performing arm, out of four treatment arms, compared with using the primary (binary) outcome for selection at the interim stage; and (3) to identify factors that can affect the efficiency of the design. METHODS: We conducted simulations based on the refractory haemorrhage devices multi-arm multi-stage selection trial to investigate the impact of the timing of treatment selection and applying an adaptive allocation ratio on the probability of correct selection, overall power and familywise type I error rate. Simulations were also conducted to explore how other design parameters will affect both the maximum sample size and trial timelines. RESULTS: The results indicate that the overall power of the trial is bounded by the probability of 'correct' selection at the selection stage. The results showed that good operating characteristics are achieved if the treatment selection is conducted at around 17% of information time. Our results also showed that although randomising more patients to research arms before selection will increase the probability of selecting correctly, this will not increase the overall efficiency of the (selection) design compared with the fixed allocation ratio of 1:1 to all arms throughout. CONCLUSIONS: Multi-arm multi-stage selection designs are efficient and flexible with desirable operating characteristics. We give guidance on many aspects of these designs including selecting the intermediate outcome measure, the timing of treatment selection, and choosing the operating characteristics.


Asunto(s)
Hemorragia Posparto , Proyectos de Investigación , Femenino , Humanos , Hemorragia Posparto/terapia , Tamaño de la Muestra , Selección de Paciente , Evaluación de Resultado en la Atención de Salud
15.
Int J Mol Sci ; 24(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298100

RESUMEN

Heart diseases (HDs) are the leading cause of mortality worldwide, with mitochondrial dysfunction being a significant factor in their development. The recently discovered mitophagy receptor, FUNDC1, plays a critical role in regulating the homeostasis of the Mitochondrial Quality Control (MQC) system and contributing to HDs. The phosphorylation of specific regions of FUNDC1 and varying levels of its expression have been shown to have diverse effects on cardiac injury. This review presents a comprehensive consolidation and summary of the latest evidence regarding the role of FUNDC1 in the MQC system. The review elucidates the association of FUNDC1 with prevalent HDs, such as metabolic cardiomyopathy (MCM), cardiac remodeling/heart failure, and myocardial ischemia-reperfusion (IR) injury. The results indicate that the expression of FUNDC1 is elevated in MCM but reduced in instances of cardiac remodeling, heart failure, and myocardial IR injury, with divergent impacts on mitochondrial function among distinct HDs. Exercise has been identified as a powerful preventive and therapeutic approach for managing HDs. Additionally, it has been suggested that exercise-induced enhancement of cardiac function may be attributed to the AMPK/FUNDC1 pathway.


Asunto(s)
Insuficiencia Cardíaca , Daño por Reperfusión Miocárdica , Humanos , Remodelación Ventricular , Proteínas Mitocondriales/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Insuficiencia Cardíaca/metabolismo
16.
Cell Biol Toxicol ; 38(5): 889-911, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34060004

RESUMEN

Autophagy is a mechanism responsible for the degradation of cellular components to maintain their homeostasis. However, autophagy is commonly altered and compromised in several diseases, including neurodegenerative disorders. Parkinson's disease (PD) can be considered a multifactorial disease because environmental factors, genetic factors, and aging are involved. Several genes are involved in PD pathology, among which the LRRK2 gene and its mutations, inherited in an autosomal dominant manner, are responsible for most genetic PD cases. The R1441G LRRK2 mutation is, after G2019S, the most important in PD pathogenesis. Our results demonstrate a relationship between the R1441G LRRK2 mutation and a mechanistic dysregulation of autophagy that compromises cell viability. This altered autophagy mechanism is associated with organellar stress including mitochondrial (which induces mitophagy) and endoplasmic reticulum (ER) stress, consistent with the fact that patients with this mutation are more vulnerable to toxins related to PD, such as MPP+.


Asunto(s)
Mitofagia , Enfermedad de Parkinson , Estrés del Retículo Endoplásmico/genética , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Macroautofagia , Mitofagia/genética , Mutación/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Proteínas Serina-Treonina Quinasas/genética
17.
Cell Biol Toxicol ; 38(3): 469-485, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34308505

RESUMEN

Mitochondrial-associated endoplasmic reticulum (ER) membranes (MAMs) play a key role in several physiological functions, including calcium ion (Ca2+) transfer and autophagy; however, the molecular mechanism controlling this interaction in cadmium (Cd)-induced neurotoxicity is unknown. This study shows that Cd induces alterations in MAMs and mitochondrial Ca2+ levels in PC12 cells and primary neurons. Ablation or silencing of mitofusin 2 (Mfn2) in PC12 cells or primary neurons blocks the colocalization of ER and mitochondria while reducing the efficiency of mitochondrial Ca2+ uptake. Moreover, Mfn2 defects reduce interactions or colocalization between GRP75 and VDAC1. Interestingly, the enhancement of autophagic protein levels, colocalization of LC3 and Lamp2, and GFP-LC3 puncta induced by Cd decreased in Mfn2-/- or Grp75-/- PC12 cells and Mfn2- or Grp75-silenced primary neurons. Notably, the specific Ca2+ uniporter inhibitor RuR blocked both mitochondrial Ca2+ uptake and autophagy induced by Cd. Finally, this study proves that the mechanism by which IP3R-Grp75-VDAC1 tethers in MAMs is associated with the regulation of autophagy by Mfn2 and involves their role in mediating mitochondrial Ca2+ uptake from ER stores. These results give new evidence into the organelle metabolic process by demonstrating that Ca2+ transport between ER-mitochondria is important in autophagosome formation in Cd-induced neurodegeneration.


Asunto(s)
Cadmio , Calcio , Retículo Endoplásmico , Animales , Autofagia , Cadmio/metabolismo , Cadmio/toxicidad , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Ratas
18.
J Neurosci Res ; 99(11): 2932-2947, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34510532

RESUMEN

Mitochondria-associated ER membranes (MAMs) are formed by close and specific components in the contact sites between the endoplasmic reticulum (ER) and mitochondria, which participate in several cell functions, including lipid metabolism, autophagy, and Ca2+ signaling. Particularly, the presence of α-synuclein (α-syn) in MAMs was previously demonstrated, indicating a physical interaction among some proteins in this region and a potential involvement in cell dysfunctions. MAMs alterations are associated with neurodegenerative diseases such as Parkinson's disease (PD) and contribute to the pathogenesis features. Here, we investigated the effects of α-syn on MAMs and Ca2+ transfer from the ER to mitochondria in WT- and A30P α-syn-overexpressing SH-SY5Y or HEK293 cells. We observed that α-syn potentiates the mitochondrial membrane potential (Δψm ) loss induced by rotenone, increases mitophagy and mitochondrial Ca2+ overload. Additionally, in α-syn-overexpressing cells, we found a reduction in ER-mitochondria contact sites through the impairment of the GRP75-IP3R interaction, however, with no alteration in VDAC1-GRP75 interaction. Consequently, after Ca2+ release from the ER, α-syn-overexpressing cells demonstrated a reduction in Ca2+ buffering by mitochondria, suggesting a deregulation in MAM activity. Taken together, our data highlight the importance of the α-syn/MAMs/Ca2+ axis that potentially affects cell functions in PD.


Asunto(s)
Calcio , alfa-Sinucleína , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Células HEK293 , Proteínas HSP70 de Choque Térmico , Humanos , Proteínas de la Membrana , Mitocondrias/metabolismo , alfa-Sinucleína/metabolismo
19.
Clin Sci (Lond) ; 135(1): 109-126, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33404051

RESUMEN

Alzheimer's disease (AD), a progressive neurodegenerative disorder, is a leading global health concern for individuals and society. However, the potential mechanisms underlying the pathogenesis of AD have not yet been elucidated. Currently, the most widely acknowledged hypothesis is amyloid cascade owing to the brain characteristics of AD patients, including great quantities of extracellular ß-amyloid (Aß) plaques and intracellular neurofibrillary tangles (NFTs). Nevertheless, the amyloid cascade hypothesis cannot address certain pathologies that precede Aß deposition and NFTs formation in AD, such as aberrant calcium homeostasis, abnormal lipid metabolism, mitochondrial dysfunction and autophagy. Notably, these earlier pathologies are closely associated with mitochondria-associated membranes (MAMs), the physical structures connecting the endoplasmic reticulum (ER) and mitochondria, which mediate the communication between these two organelles. It is plausible that MAMs might be involved in a critical step in the cascade of earlier events, ultimately inducing neurodegeneration in AD. In this review, we focus on the role of MAMs in the regulation of AD pathologies and the potential molecular mechanisms related to MAM-mediated pathological changes in AD. An enhanced recognition of the preclinical pathogenesis in AD could provide new therapeutic strategies, shifting the modality from treatment to prevention.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Membranas Mitocondriales/metabolismo , Terapia Molecular Dirigida , Péptidos beta-Amiloides/metabolismo , Calcio/metabolismo , Humanos , Metabolismo de los Lípidos
20.
Neurochem Res ; 46(9): 2485-2494, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34212292

RESUMEN

Mitochondrial-associated endoplasmic reticulum (ER) membranes (MAMs) regulate calcium (Ca2+) homeostasis via Ca2+ transport-related proteins such as inositol-1,4,5-triphosphate receptor (IP3R). FAM134B-mediated ER-phagy plays an important role in ER homeostasis. However, it remains unknown whether FAM134B-mediated ER-phagy affects mitochondrial Ca2+ homeostasis and cell death through MAMs. In this study, we demonstrated that colocalization degree of FAM134B with LC3 and the LC3-II/LC3-I ratio were elevated in the hippocampal neuronal culture (HNC) model of acquired epilepsy (AE), which indicate an increased level of autophagy. In this model, FAM134B overexpression enhanced ER-phagy, while FAM134B downregulation had the opposite effect. Additionally, FAM134B overexpression significantly reversed the increases in IP3R expression and mitochondrial Ca2+ concentration and the decrease in the ER Ca2+ concentration in this model. FAM134B overexpression also ameliorated the AE-induced ultrastructural damage in neuronal mitochondria, decrease in mitochondrial membrane potential (mMP), cytochrome c (CytC) release and caspase-3 activation, while FAM134B downregulation induced the opposite effects. Altogether, our data indicate that FAM134B-mediated ER-phagy can attenuate AE-induced neuronal apoptosis, possibly by modulating the IP3R in MAMs to alter Ca2+ exchange between ER and mitochondria and thus inhibit mitochondrial structural damage, a decrease in mMP, release of CytC and mitochondrial apoptosis.


Asunto(s)
Apoptosis/fisiología , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Animales , Animales Recién Nacidos , Autofagia/fisiología , Caspasa 3/metabolismo , Citocromos c/metabolismo , Epilepsia/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Homeostasis/fisiología , Potencial de la Membrana Mitocondrial/fisiología , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA