RESUMEN
The eukaryotic transcriptional Mediator comprises a large core (cMED) and a dissociable CDK8 kinase module (CKM). cMED recruits RNA polymerase II (RNA Pol II) and promotes pre-initiation complex formation in a manner repressed by the CKM through mechanisms presently unknown. Herein, we report cryoelectron microscopy structures of the complete human Mediator and its CKM. The CKM binds to multiple regions on cMED through both MED12 and MED13, including a large intrinsically disordered region (IDR) in the latter. MED12 and MED13 together anchor the CKM to the cMED hook, positioning CDK8 downstream and proximal to the transcription start site. Notably, the MED13 IDR obstructs the recruitment of RNA Pol II/MED26 onto cMED by direct occlusion of their respective binding sites, leading to functional repression of cMED-dependent transcription. Combined with biochemical and functional analyses, these structures provide a conserved mechanistic framework to explain the basis for CKM-mediated repression of cMED function.
Asunto(s)
Microscopía por Crioelectrón , Quinasa 8 Dependiente de Ciclina , Complejo Mediador , ARN Polimerasa II , Humanos , Complejo Mediador/metabolismo , Complejo Mediador/genética , Complejo Mediador/química , Quinasa 8 Dependiente de Ciclina/metabolismo , Quinasa 8 Dependiente de Ciclina/genética , Quinasa 8 Dependiente de Ciclina/química , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/química , Sitios de Unión , Unión Proteica , Transcripción Genética , Modelos Moleculares , Relación Estructura-Actividad , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genéticaRESUMEN
The Mediator complex controls RNA polymerase II (pol II) activity by coordinating the assembly of pol II regulatory factors at transcription start sites and by mediating interactions between enhancer-bound transcription factors (TFs) and the pol II enzyme. Mediator structure and function is completely altered upon binding the Mediator kinase module, a multi-subunit complex that contains CDK8 or its vertebrate-specific paralog CDK19. Here, we review the mechanisms by which the Mediator kinase module controls pol II transcription, emphasizing its impact on TF activity, pol II elongation, enhancer function, and chromatin architecture. We also highlight how the Mediator kinase module integrates signaling pathways with transcription to enable rapid, stimulus-specific responses, as well as its links to human disease.
Asunto(s)
Quinasa 8 Dependiente de Ciclina , Complejo Mediador , Quinasa 8 Dependiente de Ciclina/genética , Quinasa 8 Dependiente de Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Humanos , Complejo Mediador/genética , Complejo Mediador/metabolismo , ARN Polimerasa II/metabolismo , Transducción de Señal , Transcripción GenéticaRESUMEN
Uterine leiomyoma (LM), also known as uterine fibroids, are common gynecological tumors and can reach a prevalence of 70% among women by the age of 50 years. Notably, the LM burden is much higher in Black women with earlier onset, a greater tumor number, size, and severity compared to White women. Published knowledge shows that there are genetic, environmental, and lifestyle-based risk factors associated with racial disparity for LM. Significant strides have been made on genomic, epigenomic, and transcriptomic data levels in Black and White women to elucidate the underlying pathomolecular reasons of racial disparity in LM development. However, racial disparity of LM remains a major area of concern in gynecological research. This review highlights risk factors of LM and their role in different races. Furthermore, we discuss the genetics and uterine myometrial microenvironment in LM development. Comparative findings revealed that a major racial difference in the disease is linked to myometrial oxidative burden and altered ROS pathways which is relevant to the oxidized guanine in genomic DNA and MED12 mutations that drive the LM genesis. Considering the burden and morbidity of LM, we anticipate that this review on genetic risk and myometrial microenvironment will strengthen understanding and propel the growth of research to address the racial disparity of LM burden.
Asunto(s)
Leiomioma , Neoplasias Uterinas , Femenino , Humanos , Persona de Mediana Edad , Negro o Afroamericano , Perfilación de la Expresión Génica , Leiomioma/genética , Leiomioma/metabolismo , Miometrio/metabolismo , Microambiente Tumoral , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo , Útero/metabolismo , BlancoRESUMEN
The differential diagnosis of malignant spindle cell neoplasms in the breast most frequently rests between malignant phyllodes tumor (MPT) and metaplastic carcinoma (MBC). Diagnosis of MPT can be challenging due to diffuse stromal overgrowth, keratin (CK) and/or p63 immunopositivity, and absent CD34 expression, which can mimic MBC, especially in core biopsies. Distinction of MPT from MBC has clinical implications, with differences in surgical approach, chemotherapy, and radiation. In this study, we evaluated MPTs (78 tumors, 64 patients) for stromal CK, p63, and CD34 expression and profiled a subset (n = 31) by targeted next-generation DNA sequencing, with comparison to MBC (n = 44). Most MPTs (71%) were CK+ and/or p63+, including 32% CK+ (25/77 focal) and 65% p63+ (32/66 focal, 10/66 patchy, and 1/66 diffuse). Thirty percent of MPTs expressed both CK and p63 (20/66), compared with 95% of MBCs (40/42, P < .001). CK and/or p63 were positive in CD34+ and CD34- MPTs. Recurrent genetic aberrations in MPTs involved TERT, TP53, MED12, CDKN2A, chromatin modifiers, growth factor receptors/ligands, and phosphoinositide-3 kinase (PI-3K) and MAPK pathway genes. Only MED12 (39%, 12/31) and SETD2 (13%, 4/31) were exclusively mutated in MPTs and not MBCs (P < .001 and P = .044, respectively), whereas PIK3R1 mutations were only found in MBCs (37%, 13/35, P < .001). Comparative literature review additionally identified ARID1B, EGFR, FLNA, NRAS, PDGFRB, RAD50, and RARA alterations enriched or exclusively in MPTs vs MBCs. MED12 was mutated in MPTs with diffuse stromal overgrowth (53%, 9/17), CD34- MPTs (41%, 7/17), and CK+ and/or p63+ MPTs (39%, 9/23), including 36% of CD34- MPTs with CK and/or p63 expression. Overall, MED12 mutation and/or CD34 expression were observed in 68% (21/31) MPTs, including 61% (14/23) of CK+ and/or p63+ tumors. Our results emphasize the prevalence of CK and p63 expression in MPTs and demonstrate the diagnostic utility of next-generation DNA sequencing, especially in MPTs with confounding factors that can mimic MBC.
RESUMEN
PURPOSE: Hardikar syndrome (HS, MIM #301068) is a female-specific multiple congenital anomaly syndrome characterized by retinopathy, orofacial clefting, aortic coarctation, biliary dysgenesis, genitourinary malformations, and intestinal malrotation. We previously showed that heterozygous nonsense and frameshift variants in MED12 cause HS. The phenotypic spectrum of disease and the mechanism by which MED12 variants cause disease is unknown. We aim to expand the phenotypic and molecular landscape of HS and elucidate the mechanism by which MED12 variants cause disease. METHODS: We clinically assembled and molecularly characterized a cohort of 11 previously unreported individuals with HS. Additionally, we studied the effect of MED12 deficiency on ciliary biology, hedgehog, and yes-associated protein (YAP) signaling; pathways implicated in diseases with phenotypic overlap with HS. RESULTS: We report novel phenotypes associated with HS, including cardiomyopathy, arrhythmia, and vascular anomalies, and expand the molecular landscape of HS to include splice site variants. We additionally demonstrate that MED12 deficiency causes decreased cell ciliation, and impairs hedgehog and YAP signaling. CONCLUSION: Our data support updating HS standard-of-care to include regular cardiac imaging, arrhythmia screening, and vascular imaging. We further propose that dysregulation of ciliogenesis and YAP and hedgehog signaling contributes to the pathogenesis of HS.
Asunto(s)
Anomalías Múltiples , Fenotipo , Humanos , Femenino , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Señalizadoras YAP/genética , Complejo Mediador/genética , Preescolar , Niño , Lactante , Transducción de Señal/genética , Coartación Aórtica/genética , Coartación Aórtica/patología , Mutación/genética , Masculino , Adolescente , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Cilios/patología , Cilios/genéticaRESUMEN
A malignant neoplasm with spindle cell and chondroid differentiation in the breast, metastatic to lymph node. In this context, a metaplastic carcinoma is typically favored given the exceptional nature of lymph node metastases in malignant phyllodes tumors (MPT). However, we demonstrate pathognomonic hotspot mutations in MED12 and the promoter of the TERT gene by targeted next-generation DNA sequencing, supporting a diagnosis of MPT.
Asunto(s)
Neoplasias de la Mama , Tumor Filoide , Humanos , Femenino , Metástasis Linfática/diagnóstico , Metástasis Linfática/genética , Tumor Filoide/diagnóstico , Tumor Filoide/genética , Tumor Filoide/patología , Mutación , ADN , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Análisis de Secuencia de ADNRESUMEN
Mediator complex subunit 12 (MED12) is required for the assembly of the kinase module of Mediator, a regulatory complex that controls the formation of the RNA polymerase II-mediated preinitiation complex. MED12-related disorders display unique gender-specific genotype-phenotype associations and include X-linked recessive Opitz-Kaveggia syndrome, Lujan-Fryns syndrome, Ohdo syndrome, and nonspecific intellectual disability in males predominantly carrying missense variants, and X-linked dominant Hardikar syndrome and nonspecific intellectual disability in females known to predominantly carry de novo nonsense/frameshift and nonsense/missense variants, respectively. MED12 was previously identified as a low-penetrance candidate gene for non-isolated congenital diaphragmatic hernia (CDH+). At the time, however, there was insufficient evidence to confirm this association. In a clinical database search, we identified 18 individuals who were molecularly diagnosed with MED12-related disorders by exome or genome sequencing, including eight missense, four frameshift, two nonsense, and one splice variant. Nine of these variants have not been previously reported. Two females with nonspecific intellectual disability were found to carry a de novo frameshift variant, indicating that potentially truncating variants causing nonspecific intellectual disability are not limited to nonsense variants. Notably, CDH was reported in three out of seven females with Hardikar syndrome or nonspecific intellectual disability but was not reported in males with MED12-related disorders. These results suggest that pathogenic MED12 variants are a cause of CDH+ in females with Hardikar syndrome and nonspecific intellectual disability.
RESUMEN
The phenotypes associated with MED12 pathogenic variants are diverse. Male patients usually have missense variants, but the effects of base substitutions on mRNA splicing have not been investigated. Here, we report a Japanese brother with intellectual disability, characteristic facial appearance with blepharophimosis, cleft palate, Fallot tetralogy, vesicoureteral reflux, and deafness. A known missense pathogenic variant was detected in MED12, NM_005120.3:c.887G>A p.(Arg296Gln), and X-linked Ohdo syndrome was diagnosed in combination with their phenotype. mRNA splicing of MED12 was evaluated qualitatively and quantitatively using long-range PCR-based targeted RNA sequencing (reverse transcribed long amplicon sequencing), and it was shown that this missense variant simultaneously causes aberrant splicing of the 42-bp in-frame deletion in exon 7, r.847_888del, which accounts for approximately 30% of the mRNAs in both siblings. The X chromosome inactivation study showed that the X chromosome carrying the mutant allele was 100% inactivated in the carrier mothers. mRNA level analysis is essential for the accurate interpretation of the effects of variants. In this case, the MED12 protein function may be reduced by more than just an amino acid substitution, resulting in the patients with the most severe phenotype of MED12-related syndrome in males.
Asunto(s)
Blefarofimosis , Complejo Mediador , Empalme del ARN , Niño , Femenino , Humanos , Masculino , Anomalías Múltiples , Blefarofimosis/genética , Blefarofimosis/patología , Blefaroptosis , Fisura del Paladar/genética , Fisura del Paladar/patología , Sordera/genética , Sordera/patología , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Cardiopatías Congénitas , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Complejo Mediador/genética , Mutación Missense , Linaje , Fenotipo , Empalme del ARN/genética , Reflujo Vesicoureteral/genética , Reflujo Vesicoureteral/patología , Inactivación del Cromosoma X/genéticaRESUMEN
BACKGROUND: Black women are at an increased risk of developing uterine leiomyomas and experiencing worse disease prognosis than White women. Epidemiologic and molecular factors have been identified as underlying these disparities, but there remains a paucity of deep, multiomic analysis investigating molecular differences in uterine leiomyomas from Black and White patients. OBJECTIVE: To identify molecular alterations within uterine leiomyoma tissues correlating with patient race by multiomic analyses of uterine leiomyomas collected from cohorts of Black and White women. STUDY DESIGN: We performed multiomic analysis of uterine leiomyomas from Black (42) and White (47) women undergoing hysterectomy for symptomatic uterine leiomyomata. In addition, our analysis included the application of orthogonal methods to evaluate fibroid biomechanical properties, such as second harmonic generation microscopy, uniaxial compression testing, and shear-wave ultrasonography analyses. RESULTS: We found a greater proportion of MED12 mutant uterine leiomyomas from Black women (>35% increase; Mann-Whitney U, P<.001). MED12 mutant tumors exhibited an elevated abundance of extracellular matrix proteins, including several collagen isoforms, involved in the regulation of the core matrisome. Histologic analysis of tissue fibrosis using trichrome staining and secondary harmonic generation microscopy confirmed that MED12 mutant tumors are more fibrotic than MED12 wild-type tumors. Using shear-wave ultrasonography in a prospectively collected cohort, Black patients had fibroids that were firmer than White patients, even when similar in size. In addition, these analyses uncovered ancestry-linked expression quantitative trait loci with altered allele frequencies in African and European populations correlating with differential abundance of several proteins in uterine leiomyomas independently of MED12 mutation status, including tetratricopeptide repeat protein 38. CONCLUSION: Our study shows that Black women have a higher prevalence of uterine leiomyomas harboring mutations in MED12 and that this mutational status correlates with increased tissue fibrosis compared with wild-type uterine leiomyomas. Our study provides insights into molecular alterations correlating with racial disparities in uterine leiomyomas and improves our understanding of the molecular etiology underlying uterine leiomyoma development within these populations.
Asunto(s)
Negro o Afroamericano , Leiomioma , Complejo Mediador , Neoplasias Uterinas , Blanco , Adulto , Femenino , Humanos , Persona de Mediana Edad , Negro o Afroamericano/genética , Proteínas de la Matriz Extracelular/genética , Disparidades en el Estado de Salud , Leiomioma/diagnóstico por imagen , Leiomioma/etnología , Leiomioma/genética , Complejo Mediador/genética , Mutación , Neoplasias Uterinas/diagnóstico por imagen , Neoplasias Uterinas/etnología , Neoplasias Uterinas/genética , Blanco/genéticaRESUMEN
BACKGROUND: Repeat leiomyoma occurrence or even reintervention is common after myomectomy. Little is known about the factors related to repeat interventions. OBJECTIVE: This study aimed to determine the frequency of leiomyoma-related reintervention after an initial laparoscopic or abdominal myomectomy and to analyze both clinical and molecular risk factors for reinterventions. Another objective was to define the frequency of clonally related tumors from repeat operations. STUDY DESIGN: This retrospective cohort study included 234 women who had undergone laparoscopic or abdominal myomectomy in 2009 to 2014. Information on repeat leiomyoma-related interventions as well as on other clinical factors was collected from medical records after a median follow-up time of 11.4 years (range 7.9-13.8 years) after the index procedure. The effect of clinical risk factors on the risk of reintervention was analyzed by the Kaplan-Meier estimator and the Cox proportional hazards model. For molecular analyses, we examined the mutation profiles of 133 formalin-fixed paraffin-embedded leiomyoma samples from 33 patients with repeat operations. We screened the tumors for the 3 primary leiomyoma driver alterations-mediator complex subunit 12 mutations, high mobility group AT-hook 2 overexpression, and fumarate hydratase-deficiency-utilizing Sanger sequencing and immunohistochemistry. To further assess the clonal relationship of the tumors, we executed whole-exome sequencing for 52 leiomyomas from 21 patients who exhibited the same driver alteration in tumors obtained from multiple procedures. RESULTS: Reintervention rate at 11.4 years after myomectomy was 20% (46/234). Number of leiomyomas removed at the index myomectomy was a risk factor (hazard ratio 1.21; 95% confidence interval 1.09-1.34). Age at index myomectomy (hazard ratio 0.94; 95% confidence interval 0.89-0.99) and postoperative parity (hazard ratio 0.23; 95% confidence interval 0.09-0.60) were protective factors. Molecular characterization of tumors from index and nonindex operations confirmed a clonal relationship of the tumors in 3/33 (9%) patients. None of the leiomyomas harboring a mediator complex subunit 12 mutation-the most common leiomyoma driver-were confirmed clonally related. Fumarate hydratase-deficiency was detected in repeat leiomyomas from 3/33 (9%) patients. All these patients harbored a germline fumarate hydratase mutation, which is distinctive for the hereditary leiomyomatosis and renal cell cancer syndrome. Finally, we identified 3 (3/33; 9%) patients with 2 tumors each displaying somatic mutations in a recently identified novel leiomyoma driver gene, YEATS domain-containing protein 4. All YEATS domain-containing protein 4 mutations were different and thus the tumors were not clonally related. CONCLUSION: Our study shows that reintervention is common after surgical myomectomy. Uterine leiomyomas typically develop independently, but some share a clonal origin. Repeat leiomyoma occurrence may be due to genetic predisposition, such as a germline fumarate hydratase mutation. Distinct somatic YEATS domain-containing protein 4 mutations identified in multiple leiomyomas from the same patient indicate a possible role for YEATS domain-containing protein 4 in repeat leiomyomas.
RESUMEN
The objective of this study was to elucidate the expression of long non-coding RNA (lncRNA) in leiomyomas (Lyo) and paired myometrium (Myo) and explore the impact of race and MED12 mutation. Fold change analysis (Lyo/paired Myo) indicated the expression of 63 lncRNAs was significantly altered in the mutated group but not in the non-mutated Lyo. Additionally, 65 lncRNAs exhibited an over 1.5-fold change in the Black but not the White group. Fifteen differentially expressed lncRNAs identified with next-generation sequencing underwent qRT-PCR confirmation. Compared with Myo, the expression of TPTEP1, PART1, RPS10P7, MSC-AS1, SNHG12, CA3-AS1, LINC00337, LINC00536, LINC01436, LINC01449, LINC02433, and LINC02624 was significantly higher, while the expression of ZEB2-AS1, LINC00957, and LINC01186 was significantly lower. Comparison of normal Myo with diseased Myo showed significant differences in the expression of several lncRNAs. Analysis based on race and Lyo MED12 mutation status indicated a significantly higher expression of RPS10P7, SNHG12, LINC01449, LINC02433, and LINC02624 in Lyo from Black patients. The expression of TPTEP1, PART1, RPS10P7, MSC-AS1, LINC00337, LINC00536, LINC01436, LINC01449, LINC02433, and LINC02624 was higher, while LINC01186 was significantly lower in the MED12-mutated group. These results indicate that Lyo are characterized by aberrant lncRNA expression, which is further impacted by race and Lyo MED12 mutation status.
Asunto(s)
Leiomioma , Complejo Mediador , ARN Largo no Codificante , Neoplasias Uterinas , Femenino , Humanos , Etnicidad , Leiomioma/genética , Leiomioma/metabolismo , Complejo Mediador/genética , Complejo Mediador/metabolismo , Mutación , Miometrio/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismoRESUMEN
Background and Objectives: Parathyroid adenoma is a distinct cause of primary hyperparathyroidism, with the vast majority being sporadic ones. Proteomic analysis of parathyroid adenomas has proposed a large number of related proteins. The aim of this study is to evaluate the immunohistochemical staining of ANXA2, MED12, MAPK1 and VDR in parathyroid adenoma tissue. Materials and Methods: Fifty-one parathyroid adenomas were analyzed for ANXA2, MED12, MAPK1 and VDR expressions. Tissue was extracted from formalin-fixed paraffin-embedded parathyroid adenoma specimens; an immunohistochemical study was applied, and the percentage of allocation and intensity were evaluated. Results: ANXA2 stained positively in 60.8% of all cell types, while MED12 had positive staining in 66%. MAPK1 expression was found to be negative in total, although a specific pattern for oxyphil cells was observed, as they stained positive in 17.7%. Finally, VDR staining was positive at 22.8%, based on nuclear staining. Conclusions: These immunohistochemical results could be utilized as biomarkers for the diagnosis of sporadic parathyroid adenoma. It is of great importance that a distinct immunophenotype of nodule-forming cells in a positive adenoma could suggest a specific pattern of adenoma development, as in hereditary patterns.
Asunto(s)
Adenoma , Neoplasias de las Paratiroides , Humanos , Neoplasias de las Paratiroides/patología , Femenino , Proyectos Piloto , Persona de Mediana Edad , Adulto , Inmunohistoquímica/métodos , Anciano , Receptores de Calcitriol/análisis , Biomarcadores de Tumor/análisis , Biomarcadores/análisisRESUMEN
Two KCNA2 variants (p.H310Y and p.H310R) were discovered in paediatric patients with epilepsy and developmental delay. KCNA2 encodes KV 1.2-channel subunits, which regulate neuronal excitability. Both gain and loss of KV 1.2 function cause epilepsy, precluding the prediction of variant effects; and while H310 is conserved throughout the KV -channel superfamily, it is largely understudied. We investigated both variants in heterologously expressed, human KV 1.2 channels by immunocytochemistry, electrophysiology and voltage-clamp fluorometry. Despite affecting the same channel, at the same position, and being associated with severe neurological disease, the two variants had diametrically opposite effects on KV 1.2 functional expression. The p.H310Y variant produced 'dual gain of function', increasing both cell-surface trafficking and activity, delaying channel closure. We found that the latter is due to the formation of a hydrogen bond that stabilizes the active state of the voltage-sensor domain. Additionally, H310Y abolished 'ball and chain' inactivation of KV 1.2 by KV ß1 subunits, enhancing gain of function. In contrast, p.H310R caused 'dual loss of function', diminishing surface levels by multiple impediments to trafficking and inhibiting voltage-dependent channel opening. We discuss the implications for KV -channel biogenesis and function, an emergent hotspot for disease-associated variants, and mechanisms of epileptogenesis. KEY POINTS: KCNA2 encodes the subunits of KV 1.2 voltage-activated, K+ -selective ion channels, which regulate electrical signalling in neurons. We characterize two KCNA2 variants from patients with developmental delay and epilepsy. Both variants affect position H310, highly conserved in KV channels. The p.H310Y variant caused 'dual gain of function', increasing both KV 1.2-channel activity and the number of KV 1.2 subunits on the cell surface. H310Y abolished 'ball and chain' (N-type) inactivation of KV 1.2 by KV ß1 subunits, enhancing the gain-of-function phenotype. The p.H310R variant caused 'dual loss of function', diminishing the presence of KV 1.2 subunits on the cell surface and inhibiting voltage-dependent channel opening. As H310Y stabilizes the voltage-sensor active conformation and abolishes N-type inactivation, it can serve as an investigative tool for functional and pharmacological studies.
Asunto(s)
Epilepsia , Humanos , Niño , Epilepsia/genética , Neuronas/fisiología , Transducción de Señal , Membrana Celular , Fenotipo , Canal de Potasio Kv.1.2/genéticaRESUMEN
STUDY QUESTION: Are there differences in Mediator Complex Subunit 12 mutations (MED12) mutation, transcriptomics, and protein expression in uterine myometrium and leiomyomas of Black and White women? SUMMARY ANSWER: RNA sequencing, tissue microarray, and immunohistochemistry data revealed that Black and White women have significant differences in their myometrium and leiomyoma profiles. WHAT IS KNOWN ALREADY: Black women develop uterine leiomyoma earlier than White women, and are more likely to be anemic, have multiple tumors, undergo hysterectomy at an earlier age, have a higher uterine weight, and report very severe pelvic pain. STUDY DESIGN, SIZE, DURATION: Uterine tissues were collected from premenopausal women undergoing hysterectomy or myomectomy at Northwestern University Prentice Women's Hospital (Chicago, IL) from 2010 to 2021. Tissues were collected from a total of 309 women, including from 136 Black women, 135 White women, and 38 women from other racial groups. A total of 529 uterine leiomyomas (290 from Black women, 184 from White women, and 55 from women of other racial groups) were subjected to molecular analysis. Leiomyoma and matched myometrium from a total of 118 cases including 60 Black women and 58 White women, were used for tissue microarrays, along with 34 samples of myometrium without leiomyoma from White women. PARTICIPANTS/MATERIALS, SETTING, METHODS: Tissues from the above patient cohorts were analyzed by tissue microarray, immunohistochemistry, RNA sequencing, and mutation analysis. MAIN RESULTS AND THE ROLE OF CHANCE: The results indicated that leiomyoma from Black women have a higher rate of MED12 mutations (79.0%) than those from White women (68.5%) (*P ≤ 0.05). RNA-sequencing analysis in myometrium revealed differentially expressed genes (270 upregulated, 374 downregulated) dependent on race, wherein reactive oxygen species, hypoxia, and oxidative phosphorylation pathways were positively correlated with samples derived from Black patients. The levels of proteins associated with oxidative DNA damage and repair, 8-hydroxyguanosine (8-OHdG), 8-oxoguanine glycosylase (OGG1), heme oxygenase-1 (HO-1), and kelch-like ECH-associated protein 1 (KEAP1), were higher in leiomyoma and matched myometrium, particularly those from Black patients, compared to the control myometrium (with leiomyoma) (***P ≤ 0.001). LARGE SCALE DATA: The datasets are available in the NCBI (The BioProject number: PRJNA859428). LIMITATIONS, REASONS FOR CAUTION: Myometrium without leiomyoma derived from White patients was used as a control in the tissue microarray analysis, as myometrium without leiomyoma from Black patients was not accessible in large numbers. The RNA sequencing was performed on myometrium tissue with leiomyoma present from 10 White and 10 Black women. However, one sample from a Black woman yielded low-quality RNA-sequencing data and was excluded from further analysis. WIDER IMPLICATIONS OF THE FINDINGS: Women with symptomatic leiomyomas have a considerable loss in their quality of life. This study provides information on underlying genetic and molecular defects that may be necessary for future therapeutics targeted at leiomyomas. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by grants from NCI (R01CA254367) and NICHD (P01HD057877). The authors declare no conflict of interest.
Asunto(s)
Leiomioma , Neoplasias Uterinas , Femenino , Humanos , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología , Especies Reactivas de Oxígeno/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Miometrio/metabolismo , Calidad de Vida , Factores Raciales , Transcriptoma , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Leiomioma/metabolismo , ARN/metabolismoRESUMEN
We describe the phenotype of 22 male patients (20 probands) carrying a hemizygous missense variant in MED12. The phenotypic spectrum is very broad ranging from nonspecific intellectual disability (ID) to the three well-known syndromes: Opitz-Kaveggia syndrome, Lujan-Fryns syndrome, or Ohdo syndrome. The identified variants were randomly distributed throughout the gene (p = 0.993, χ2 test), but mostly outside the functional domains (p = 0.004; χ2 test). Statistical analyses did not show a correlation between the MED12-related phenotypes and the locations of the variants (p = 0.295; Pearson correlation), nor the protein domain involved (p = 0.422; Pearson correlation). In conclusion, establishing a genotype-phenotype correlation in MED12-related diseases remains challenging. Therefore, we think that patients with a causative MED12 variant are currently underdiagnosed due to the broad patients' clinical presentations.
Asunto(s)
Blefarofimosis , Discapacidad Intelectual , Discapacidad Intelectual Ligada al Cromosoma X , Masculino , Humanos , Complejo Mediador/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Blefarofimosis/genética , Mutación Missense/genética , Fenotipo , SíndromeRESUMEN
Glioblastoma is the most life-threatening tumor of the central nervous system. Despite recent therapeutic advancements, maximum survival of glioblastoma patients remains dismal. The mediator complex is a set of proteins, essential for eukaryotic gene expression. Abnormal expression/mutations of specific mediator genes have been associated with progression of various cancers, however, its role and status in glioblastoma remains largely unknown. Our work shows overexpression of a subunit of kinase assembly of mediator complex, MED12, in various glioblastoma patient cohorts including Indian glioblastoma patients and cell lines. Functional characterization of MED12 using both overexpression and knockdown approach revealed that it promotes glioblastoma cell proliferation, migration and inhibits apoptosis. Transcriptome analysis post MED12 knockdown revealed Vitamin D receptor (VDR) pathway to be one of the key pathways affected by MED12 in glioblastoma. We studied direct interaction of MED12 with VDR protein using docking studies and co-immunoprecipitation assay. We identify BCL6, a secondary regulator of VDR signaling, to be directly regulated by MED12 through a combination of chromatin immunoprecipitation, qRT-PCR and western analyses. We further show that MED12 brings about the inhibition of p53 levels and apoptosis partly through induction of BCL6 in glioblastoma. Overall, this stands as the first report of MED12 over-expression and involvement in glioblastoma pathogenesis and identifies MED12 as an important mediator of VDR signaling and an attractive molecule for development of new therapeutic interventions.
Asunto(s)
Neoplasias Encefálicas/genética , Glioblastoma/genética , Complejo Mediador/genética , Oncogenes/genética , Proteínas Proto-Oncogénicas c-bcl-6/genética , Receptores de Calcitriol/genética , Proteína p53 Supresora de Tumor/genética , Apoptosis/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Estimación de Kaplan-Meier , Complejo Mediador/metabolismo , Pronóstico , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Interferencia de ARN , Receptores de Calcitriol/metabolismo , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
The Mediator kinase module regulates eukaryotic transcription by phosphorylating transcription-related targets and by modulating the association of Mediator and RNA polymerase II. The activity of its catalytic core, cyclin-dependent kinase 8 (CDK8), is controlled by Cyclin C and regulatory subunit MED12, with its deregulation contributing to numerous malignancies. Here, we combine in vitro biochemistry, cross-linking coupled to mass spectrometry, and in vivo studies to describe the binding location of the N-terminal segment of MED12 on the CDK8/Cyclin C complex and to gain mechanistic insights into the activation of CDK8 by MED12. Our data demonstrate that the N-terminal portion of MED12 wraps around CDK8, whereby it positions an "activation helix" close to the T-loop of CDK8 for its activation. Intriguingly, mutations in the activation helix that are frequently found in cancers do not diminish the affinity of MED12 for CDK8, yet likely alter the exact positioning of the activation helix. Furthermore, we find the transcriptome-wide gene-expression changes in human cells that result from a mutation in the MED12 activation helix to correlate with deregulated genes in breast and colon cancer. Finally, functional assays in the presence of kinase inhibitors reveal that binding of MED12 remodels the active site of CDK8 and thereby precludes the inhibition of ternary CDK8 complexes by type II kinase inhibitors. Taken together, our results not only allow us to propose a revised model of how CDK8 activity is regulated by MED12, but also offer a path forward in developing small molecules that target CDK8 in its MED12-bound form.
Asunto(s)
Quinasa 8 Dependiente de Ciclina/metabolismo , Complejo Mediador/metabolismo , Dominio Catalítico , Ciclina C/genética , Ciclina C/metabolismo , Quinasa 8 Dependiente de Ciclina/química , Quinasa 8 Dependiente de Ciclina/genética , Activación Enzimática , Humanos , Complejo Mediador/genética , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios ProteicosRESUMEN
Recent studies have demonstrated that somatic MED12 mutations in exon 2 occur at a frequency of up to 80% and have a functional role in leiomyoma pathogenesis. The objective of this study was to elucidate the expression profile of coding RNA transcripts in leiomyomas, with and without these mutations, and their paired myometrium. Next-generation RNA sequencing (NGS) was used to systematically profile the differentially expressed RNA transcripts from paired leiomyomas (n = 19). The differential analysis indicated there are 394 genes differentially and aberrantly expressed only in the mutated tumors. These genes were predominantly involved in the regulation of extracellular constituents. Of the differentially expressed genes that overlapped in the two comparison groups, the magnitude of change in gene expression was greater for many genes in tumors bearing MED12 mutations. Although the myometrium did not express MED12 mutations, there were marked differences in the transcriptome landscape of the myometrium from mutated and non-mutated specimens, with genes regulating the response to oxygen-containing compounds being most altered. In conclusion, MED12 mutations have profound effects on the expression of genes pivotal to leiomyoma pathogenesis in the tumor and the myometrium which could alter tumor characteristics and growth potential.
Asunto(s)
Leiomioma , Complejo Mediador , Neoplasias Uterinas , Femenino , Humanos , Análisis Mutacional de ADN , Leiomioma/genética , Complejo Mediador/genética , Mutación , ARN , Neoplasias Uterinas/genéticaRESUMEN
The objective of this study was to determine if the aberrant expression of select genes could form the basis for the racial disparity in fibroid characteristics. The next-generation RNA sequencing results were analyzed as fold change [leiomyomas/paired myometrium, also known as differential expression (DF)], comparing specimens from White (n = 7) and Black (n = 12) patients. The analysis indicated that 95 genes were minimally changed in tumors from White (DF ≈ 1) but were significantly altered by more than 1.5-fold (up or down) in Black patients. Twenty-one novel genes were selected for confirmation in 69 paired fibroids by qRT-PCR. Among these 21, coding of transcripts for the differential expression of FRAT2, SOX4, TNFRSF19, ACP7, GRIP1, IRS4, PLEKHG4B, PGR, COL24A1, KRT17, MMP17, SLN, CCDC177, FUT2, MYO5B, MYOG, ZNF703, CDC25A, and CDCA7 was significantly higher, while the expression of DAB2 and CAV2 was significantly lower in tumors from Black or Hispanic patients compared with tumors from White patients. Western blot analysis revealed a greater differential expression of PGR-A and total progesterone (PGR-A and PGR-B) in tumors from Black compared with tumors from White patients. Collectively, we identified a set of genes uniquely expressed in a race/ethnicity-dependent manner, which could form the underlying mechanisms for the racial disparity in fibroids and their associated symptoms.
Asunto(s)
Leiomioma , Transcriptoma , Femenino , Humanos , Etnicidad , Perfilación de la Expresión Génica , Genes cdc , Leiomioma/genética , Factores de Transcripción SOXC , Proteínas Nucleares , Receptores del Factor de Necrosis Tumoral , Proteínas PortadorasRESUMEN
Uterine leiomyomas (ULs), frequent benign tumours of the female reproductive tract, are associated with a range of symptoms and significant morbidity. Despite extensive research, there is no consensus on essential points of UL initiation and development. The main reason for this is a pronounced inter- and intratumoral heterogeneity resulting from diverse and complicated mechanisms underlying UL pathobiology. In this review, we comprehensively analyse risk and protective factors for UL development, UL cellular composition, hormonal and paracrine signalling, epigenetic regulation and genetic abnormalities. We conclude the need to carefully update the concept of UL genesis in light of the current data. Staying within the framework of the existing hypotheses, we introduce a possible timeline for UL development and the associated key events-from potential prerequisites to the beginning of UL formation and the onset of driver and passenger changes.