Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56.700
Filtrar
Más filtros

Intervalo de año de publicación
1.
CA Cancer J Clin ; 72(4): 333-352, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34902160

RESUMEN

The authors define molecular imaging, according to the Society of Nuclear Medicine and Molecular Imaging, as the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in humans and other living systems. Although practiced for many years clinically in nuclear medicine, expansion to other imaging modalities began roughly 25 years ago and has accelerated since. That acceleration derives from the continual appearance of new and highly relevant animal models of human disease, increasingly sensitive imaging devices, high-throughput methods to discover and optimize affinity agents to key cellular targets, new ways to manipulate genetic material, and expanded use of cloud computing. Greater interest by scientists in allied fields, such as chemistry, biomedical engineering, and immunology, as well as increased attention by the pharmaceutical industry, have likewise contributed to the boom in activity in recent years. Whereas researchers and clinicians have applied molecular imaging to a variety of physiologic processes and disease states, here, the authors focus on oncology, arguably where it has made its greatest impact. The main purpose of imaging in oncology is early detection to enable interception if not prevention of full-blown disease, such as the appearance of metastases. Because biochemical changes occur before changes in anatomy, molecular imaging-particularly when combined with liquid biopsy for screening purposes-promises especially early localization of disease for optimum management. Here, the authors introduce the ways and indications in which molecular imaging can be undertaken, the tools used and under development, and near-term challenges and opportunities in oncology.


Asunto(s)
Oncología Médica , Imagen Molecular , Animales , Humanos , Imagen por Resonancia Magnética , Imagen Molecular/métodos , Tomografía de Emisión de Positrones
2.
Proc Natl Acad Sci U S A ; 121(22): e2322617121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38771873

RESUMEN

Optimal decision-making balances exploration for new information against exploitation of known rewards, a process mediated by the locus coeruleus and its norepinephrine projections. We predicted that an exploitation-bias that emerges in older adulthood would be associated with lower microstructural integrity of the locus coeruleus. Leveraging in vivo histological methods from quantitative MRI-magnetic transfer saturation-we provide evidence that older age is associated with lower locus coeruleus integrity. Critically, we demonstrate that an exploitation bias in older adulthood, assessed with a foraging task, is sensitive and specific to lower locus coeruleus integrity. Because the locus coeruleus is uniquely vulnerable to Alzheimer's disease pathology, our findings suggest that aging, and a presymptomatic trajectory of Alzheimer's related decline, may fundamentally alter decision-making abilities in later life.


Asunto(s)
Envejecimiento , Toma de Decisiones , Locus Coeruleus , Imagen por Resonancia Magnética , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/fisiología , Humanos , Toma de Decisiones/fisiología , Anciano , Masculino , Femenino , Envejecimiento/fisiología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Persona de Mediana Edad , Anciano de 80 o más Años , Recompensa
3.
Proc Natl Acad Sci U S A ; 121(31): e2403212121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39042688

RESUMEN

Some mental health problems such as depression and anxiety are more common in females, while others such as autism and attention deficit/hyperactivity (AD/H) are more common in males. However, the neurobiological origins of these sex differences are poorly understood. Animal studies have shown substantial sex differences in neuronal and glial cell structure, while human brain imaging studies have shown only small differences, which largely reflect overall body and brain size. Advanced diffusion MRI techniques can be used to examine intracellular, extracellular, and free water signal contributions and provide unique insights into microscopic cellular structure. However, the extent to which sex differences exist in these metrics of subcortical gray matter structures implicated in psychiatric disorders is not known. Here, we show large sex-related differences in microstructure in subcortical regions, including the hippocampus, thalamus, and nucleus accumbens in a large sample of young adults. Unlike conventional T1-weighted structural imaging, large sex differences remained after adjustment for age and brain volume. Further, diffusion metrics in the thalamus and amygdala were associated with depression, anxiety, AD/H, and antisocial personality problems. Diffusion MRI may provide mechanistic insights into the origin of sex differences in behavior and mental health over the life course and help to bridge the gap between findings from experimental, epidemiological, and clinical mental health research.


Asunto(s)
Encéfalo , Caracteres Sexuales , Humanos , Femenino , Masculino , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Salud Mental , Adulto Joven , Imagen de Difusión por Resonancia Magnética , Adolescente , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Tálamo/diagnóstico por imagen , Núcleo Accumbens/diagnóstico por imagen , Depresión/diagnóstico por imagen , Depresión/patología , Ansiedad/diagnóstico por imagen
4.
Proc Natl Acad Sci U S A ; 121(16): e2318444121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38598340

RESUMEN

Fluid efflux from the brain plays an important role in solute waste clearance. Current experimental approaches provide little spatial information, and data collection is limited due to short duration or low frequency of sampling. One approach shows tracer efflux to be independent of molecular size, indicating bulk flow, yet also decelerating like simple membrane diffusion. In an apparent contradiction to this report, other studies point to tracer efflux acceleration. We here develop a one-dimensional advection-diffusion model to gain insight into brain efflux principles. The model is characterized by nine physiological constants and three efflux parameters for which we quantify prior uncertainty. Using Bayes' rule and the two efflux studies, we validate the model and calculate data-informed parameter distributions. The apparent contradictions in the efflux studies are resolved by brain surface boundaries being bottlenecks for efflux. To critically test the model, a custom MRI efflux assay measuring solute dispersion in tissue and release to cerebrospinal fluid was employed. The model passed the test with tissue bulk flow velocities in the range 60 to 190 [Formula: see text]m/h. Dimensional analysis identified three principal determinants of efflux, highlighting brain surfaces as a restricting factor for metabolite solute clearance.


Asunto(s)
Encéfalo , Teorema de Bayes , Encéfalo/metabolismo , Transporte Biológico , Difusión , Cinética
5.
Proc Natl Acad Sci U S A ; 121(8): e2306936121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38349873

RESUMEN

Accumulating evidence suggests that the brain renin angiotensin system (RAS) plays a pivotal role in the regulation of cognition and behavior as well as in the neuropathology of neurological and mental disorders. The angiotensin II type 1 receptor (AT1R) mediates most functional and neuropathology-relevant actions associated with the central RAS. However, an overarching comprehension to guide translation and utilize the therapeutic potential of the central RAS in humans is currently lacking. We conducted a comprehensive characterization of the RAS using an innovative combination of transcriptomic gene expression mapping, image-based behavioral decoding, and pre-registered randomized controlled discovery-replication pharmacological resting-state functional magnetic resonance imaging (fMRI) trials (N = 132) with a selective AT1R antagonist. The AT1R exhibited a particular dense expression in a subcortical network encompassing the thalamus, striatum, and amygdalo-hippocampal formation. Behavioral decoding of the AT1R gene expression brain map showed an association with memory, stress, reward, and motivational processes. Transient pharmacological blockade of the AT1R further decreased neural activity in subcortical systems characterized by a high AT1R expression, while increasing functional connectivity in the cortico-basal ganglia-thalamo-cortical circuitry. Effects of AT1R blockade on the network level were specifically associated with the transcriptomic signatures of the dopaminergic, opioid, acetylcholine, and corticotropin-releasing hormone signaling systems. The robustness of the results was supported in an independent pharmacological fMRI trial. These findings present a biologically informed comprehensive characterization of the central AT1R pathways and their functional relevance on the neural and behavioral level in humans.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/genética , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Transducción de Señal , Presión Sanguínea , Perfilación de la Expresión Génica , Receptor de Angiotensina Tipo 1/genética , Angiotensina II/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(25): e2310433121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857402

RESUMEN

Pleasure and pain are two fundamental, intertwined aspects of human emotions. Pleasurable sensations can reduce subjective feelings of pain and vice versa, and we often perceive the termination of pain as pleasant and the absence of pleasure as unpleasant. This implies the existence of brain systems that integrate them into modality-general representations of affective experiences. Here, we examined representations of affective valence and intensity in an functional MRI (fMRI) study (n = 58) of sustained pleasure and pain. We found that the distinct subpopulations of voxels within the ventromedial and lateral prefrontal cortices, the orbitofrontal cortex, the anterior insula, and the amygdala were involved in decoding affective valence versus intensity. Affective valence and intensity predictive models showed significant decoding performance in an independent test dataset (n = 62). These models were differentially connected to distinct large-scale brain networks-the intensity model to the ventral attention network and the valence model to the limbic and default mode networks. Overall, this study identified the brain representations of affective valence and intensity across pleasure and pain, promoting a systems-level understanding of human affective experiences.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Dolor , Placer , Humanos , Placer/fisiología , Masculino , Femenino , Dolor/fisiopatología , Dolor/psicología , Adulto , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Adulto Joven , Amígdala del Cerebelo/fisiología , Amígdala del Cerebelo/diagnóstico por imagen , Emociones/fisiología , Corteza Prefrontal/fisiología , Corteza Prefrontal/diagnóstico por imagen , Afecto/fisiología
7.
Proc Natl Acad Sci U S A ; 121(25): e2322403121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38865273

RESUMEN

Fluorine magnetic resonance imaging (19F-MRI) is particularly promising for biomedical applications owing to the absence of fluorine in most biological systems. However, its use has been limited by the lack of safe and water-soluble imaging agents with high fluorine contents and suitable relaxation properties. We report innovative 19F-MRI agents based on supramolecular dendrimers self-assembled by an amphiphilic dendrimer composed of a hydrophobic alkyl chain and a hydrophilic dendron. Specifically, this amphiphilic dendrimer bears multiple negatively charged terminals with high fluorine content, which effectively prevented intra- and intermolecular aggregation of fluorinated entities via electrostatic repulsion. This permitted high fluorine nuclei mobility alongside good water solubility with favorable relaxation properties for use in 19F-MRI. Importantly, the self-assembling 19F-MRI agent was able to encapsulate the near-infrared fluorescence (NIRF) agent DiR and the anticancer drug paclitaxel for multimodal 19F-MRI and NIRF imaging of and theranostics for pancreatic cancer, a deadly disease for which there remains no adequate early detection method or efficacious treatment. The 19F-MRI and multimodal 19F-MRI and NIRF imaging studies on human pancreatic cancer xenografts in mice confirmed the capability of both imaging modalities to specifically image the tumors and demonstrated the efficacy of the theranostic agent in cancer treatment, largely outperforming the clinical anticancer drug paclitaxel. Consequently, these dendrimer nanosystems constitute promising 19F-MRI agents for effective cancer management. This study offers a broad avenue to the construction of 19F-MRI agents and theranostics, exploiting self-assembling supramolecular dendrimer chemistry.


Asunto(s)
Dendrímeros , Flúor , Nanomedicina Teranóstica , Dendrímeros/química , Animales , Nanomedicina Teranóstica/métodos , Humanos , Ratones , Flúor/química , Paclitaxel/química , Paclitaxel/uso terapéutico , Imagen por Resonancia Magnética/métodos , Línea Celular Tumoral , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/terapia , Imagen por Resonancia Magnética con Fluor-19/métodos , Ratones Desnudos , Medios de Contraste/química
8.
Proc Natl Acad Sci U S A ; 121(11): e2310044121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38446857

RESUMEN

We present a comprehensive study on the non-invasive measurement of hippocampal perfusion. Using high-resolution 7 tesla arterial spin labeling (ASL) data, we generated robust perfusion maps and observed significant variations in perfusion among hippocampal subfields, with CA1 exhibiting the lowest perfusion levels. Notably, these perfusion differences were robust and already detectable with 50 perfusion-weighted images per subject, acquired in 5 min. To understand the underlying factors, we examined the influence of image quality metrics, various tissue microstructure and morphometric properties, macrovasculature, and cytoarchitecture. We observed higher perfusion in regions located closer to arteries, demonstrating the influence of vascular proximity on hippocampal perfusion. Moreover, ex vivo cytoarchitectonic features based on neuronal density differences appeared to correlate stronger with hippocampal perfusion than morphometric measures like gray matter thickness. These findings emphasize the interplay between microvasculature, macrovasculature, and metabolic demand in shaping hippocampal perfusion. Our study expands the current understanding of hippocampal physiology and its relevance to neurological disorders. By providing in vivo evidence of perfusion differences between hippocampal subfields, our findings have implications for diagnosis and potential therapeutic interventions. In conclusion, our study provides a valuable resource for extensively characterizing hippocampal perfusion.


Asunto(s)
Arterias , Benchmarking , Perfusión , Hipocampo/diagnóstico por imagen , Imagen por Resonancia Magnética
9.
Proc Natl Acad Sci U S A ; 121(16): e2304704121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38593073

RESUMEN

Childhood maltreatment (CM) leads to a lifelong susceptibility to mental ill-health which might be reflected by its effects on adult brain structure, perhaps indirectly mediated by its effects on adult metabolic, immune, and psychosocial systems. Indexing these systemic factors via body mass index (BMI), C-reactive protein (CRP), and rates of adult trauma (AT), respectively, we tested three hypotheses: (H1) CM has direct or indirect effects on adult trauma, BMI, and CRP; (H2) adult trauma, BMI, and CRP are all independently related to adult brain structure; and (H3) childhood maltreatment has indirect effects on adult brain structure mediated in parallel by BMI, CRP, and AT. Using path analysis and data from N = 116,887 participants in UK Biobank, we find that CM is related to greater BMI and AT levels, and that these two variables mediate CM's effects on CRP [H1]. Regression analyses on the UKB MRI subsample (N = 21,738) revealed that greater CRP and BMI were both independently related to a spatially convergent pattern of cortical effects (Spearman's ρ = 0.87) characterized by fronto-occipital increases and temporo-parietal reductions in thickness. Subcortically, BMI was associated with greater volume, AT with lower volume and CPR with effects in both directions [H2]. Finally, path models indicated that CM has indirect effects in a subset of brain regions mediated through its direct effects on BMI and AT and indirect effects on CRP [H3]. Results provide evidence that childhood maltreatment can influence brain structure decades after exposure by increasing individual risk toward adult trauma, obesity, and inflammation.


Asunto(s)
Encéfalo , Maltrato a los Niños , Adulto , Humanos , Niño , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Proteína C-Reactiva/metabolismo , Inflamación/metabolismo , Obesidad/complicaciones , Maltrato a los Niños/psicología
10.
Proc Natl Acad Sci U S A ; 121(9): e2313831121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377216

RESUMEN

Auditory dorsal and ventral pathways in the human brain play important roles in supporting speech and language processing. However, the evolutionary root of the dual auditory pathways in the primate brain is unclear. By parcellating the auditory cortex of marmosets (a New World monkey species), macaques (an Old World monkey species), and humans using the same individual-based analysis method and tracking the pathways from the auditory cortex based on multi-shell diffusion-weighted MRI (dMRI), homologous auditory dorsal and ventral fiber tracks were identified in these primate species. The ventral pathway was found to be well conserved in all three primate species analyzed but extend to more anterior temporal regions in humans. In contrast, the dorsal pathway showed a divergence between monkey and human brains. First, frontal regions in the human brain have stronger connections to the higher-level auditory regions than to the lower-level auditory regions along the dorsal pathway, while frontal regions in the monkey brain show opposite connection patterns along the dorsal pathway. Second, the left lateralization of the dorsal pathway is only found in humans. Moreover, the connectivity strength of the dorsal pathway in marmosets is more similar to that of humans than macaques. These results demonstrate the continuity and divergence of the dual auditory pathways in the primate brains along the evolutionary path, suggesting that the putative neural networks supporting human speech and language processing might have emerged early in primate evolution.


Asunto(s)
Corteza Auditiva , Callithrix , Animales , Humanos , Imagen de Difusión por Resonancia Magnética , Lenguaje , Corteza Auditiva/diagnóstico por imagen , Vías Auditivas , Macaca , Vías Nerviosas , Mapeo Encefálico
11.
Hum Mol Genet ; 33(8): 698-708, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38268317

RESUMEN

Identifying the aberrant expression of DUX4 in skeletal muscle as the cause of facioscapulohumeral dystrophy (FSHD) has led to rational therapeutic development and clinical trials. Several studies support the use of MRI characteristics and the expression of DUX4-regulated genes in muscle biopsies as biomarkers of FSHD disease activity and progression. We performed lower-extremity MRI and muscle biopsies in the mid-portion of the tibialis anterior (TA) muscles bilaterally in FSHD subjects and validated our prior reports of the strong association between MRI characteristics and expression of genes regulated by DUX4 and other gene categories associated with FSHD disease activity. We further show that measurements of normalized fat content in the entire TA muscle strongly predict molecular signatures in the mid-portion of the TA, indicating that regional biopsies can accurately measure progression in the whole muscle and providing a strong basis for inclusion of MRI and molecular biomarkers in clinical trial design. An unanticipated finding was the strong correlations of molecular signatures in the bilateral comparisons, including markers of B-cells and other immune cell populations, suggesting that a systemic immune cell infiltration of skeletal muscle might have a role in disease progression.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Humanos , Distrofia Muscular Facioescapulohumeral/diagnóstico por imagen , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Proteínas de Homeodominio/genética , Ensayos Clínicos como Asunto , Músculo Esquelético/metabolismo , Imagen por Resonancia Magnética , Biomarcadores/metabolismo , Progresión de la Enfermedad
12.
Annu Rev Neurosci ; 41: 25-40, 2018 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-29490196

RESUMEN

The development of advanced noninvasive techniques to image the human brain has enabled the demonstration of structural plasticity during adulthood in response to motor learning. Understanding the basic mechanisms of structural plasticity in the context of motor learning is essential to improve motor rehabilitation in stroke patients. Here, we review and discuss the emerging evidence for motor-learning-related structural plasticity and the implications for stroke rehabilitation. In the clinical context, a few studies have started to assess the effects of rehabilitation on structural measures to understand recovery poststroke and additionally to predict intervention outcomes. Structural imaging will likely have a role in the future in providing measures that inform patient stratification for optimal outcomes.


Asunto(s)
Encéfalo/patología , Aprendizaje/fisiología , Actividad Motora/fisiología , Plasticidad Neuronal/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología
13.
Mol Cell ; 71(2): 332-342.e8, 2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-30017584

RESUMEN

The modulator of retrovirus infection (MRI or CYREN) is a 30-kDa protein with a conserved N-terminal Ku-binding motif (KBM) and a C-terminal XLF-like motif (XLM). We show that MRI is intrinsically disordered and interacts with many DNA damage response (DDR) proteins, including the kinases ataxia telangiectasia mutated (ATM) and DNA-PKcs and the classical non-homologous end joining (cNHEJ) factors Ku70, Ku80, XRCC4, XLF, PAXX, and XRCC4. MRI forms large multimeric complexes that depend on its N and C termini and localizes to DNA double-strand breaks (DSBs), where it promotes the retention of DDR factors. Mice deficient in MRI and XLF exhibit embryonic lethality at a stage similar to those deficient in the core cNHEJ factors XRCC4 or DNA ligase IV. Moreover, MRI is required for cNHEJ-mediated DSB repair in XLF-deficient lymphocytes. We propose that MRI is an adaptor that, through multivalent interactions, increases the avidity of DDR factors to DSB-associated chromatin to promote cNHEJ.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Animales , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , ADN Ligasa (ATP)/genética , Reparación del ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Autoantígeno Ku/genética , Ratones
14.
Proc Natl Acad Sci U S A ; 120(22): e2217232120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37220275

RESUMEN

As severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infections have been shown to affect the central nervous system, the investigation of associated alterations of brain structure and neuropsychological sequelae is crucial to help address future health care needs. Therefore, we performed a comprehensive neuroimaging and neuropsychological assessment of 223 nonvaccinated individuals recovered from a mild to moderate SARS-CoV-2 infection (100 female/123 male, age [years], mean ± SD, 55.54 ± 7.07; median 9.7 mo after infection) in comparison with 223 matched controls (93 female/130 male, 55.74 ± 6.60) within the framework of the Hamburg City Health Study. Primary study outcomes were advanced diffusion MRI measures of white matter microstructure, cortical thickness, white matter hyperintensity load, and neuropsychological test scores. Among all 11 MRI markers tested, significant differences were found in global measures of mean diffusivity (MD) and extracellular free water which were elevated in the white matter of post-SARS-CoV-2 individuals compared to matched controls (free water: 0.148 ± 0.018 vs. 0.142 ± 0.017, P < 0.001; MD [10-3 mm2/s]: 0.747 ± 0.021 vs. 0.740 ± 0.020, P < 0.001). Group classification accuracy based on diffusion imaging markers was up to 80%. Neuropsychological test scores did not significantly differ between groups. Collectively, our findings suggest that subtle changes in white matter extracellular water content last beyond the acute infection with SARS-CoV-2. However, in our sample, a mild to moderate SARS-CoV-2 infection was not associated with neuropsychological deficits, significant changes in cortical structure, or vascular lesions several months after recovery. External validation of our findings and longitudinal follow-up investigations are needed.


Asunto(s)
COVID-19 , Sustancia Blanca , Femenino , Masculino , Humanos , SARS-CoV-2 , Encéfalo , Neuroimagen , Pruebas Neuropsicológicas , Agua
15.
Proc Natl Acad Sci U S A ; 120(21): e2218958120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186863

RESUMEN

Major depressive disorder (MDD) is widely hypothesized to result from disordered communication across brain-wide networks. Yet, prior resting-state-functional MRI (rs-fMRI) studies of MDD have studied zero-lag temporal synchrony (functional connectivity) in brain activity absent directional information. We utilize the recent discovery of stereotyped brain-wide directed signaling patterns in humans to investigate the relationship between directed rs-fMRI activity, MDD, and treatment response to FDA-approved neurostimulation paradigm termed Stanford neuromodulation therapy (SNT). We find that SNT over the left dorsolateral prefrontal cortex (DLPFC) induces directed signaling shifts in the left DLPFC and bilateral anterior cingulate cortex (ACC). Directional signaling shifts in the ACC, but not the DLPFC, predict improvement in depression symptoms, and moreover, pretreatment ACC signaling predicts both depression severity and the likelihood of SNT treatment response. Taken together, our findings suggest that ACC-based directed signaling patterns in rs-fMRI are a potential biomarker of MDD.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/terapia , Depresión , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Giro del Cíngulo/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen
16.
Proc Natl Acad Sci U S A ; 120(15): e2220891120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37018203

RESUMEN

Hypoxia is a prognostic biomarker of rapidly growing cancers, where the extent of hypoxia is an indication of tumor progression and prognosis; therefore, hypoxia is also used for staging while performing chemo- and radiotherapeutics for cancer. Contrast-enhanced MRI using EuII-based contrast agents is a noninvasive method that can be used to map hypoxic tumors, but quantification of hypoxia using these agents is challenging due to the dependence of signal on the concentration of both oxygen and EuII. Here, we report a ratiometric method to eliminate concentration dependence of contrast enhancement of hypoxia using fluorinated EuII/III-containing probes. We studied three different EuII/III couples of complexes containing 4, 12, or 24 fluorine atoms to balance fluorine signal-to-noise ratio with aqueous solubility. The ratio between the longitudinal relaxation time (T1) and 19F signal of solutions containing different ratios of EuII- and EuIII-containing complexes was plotted against the percentage of EuII-containing complexes in solution. We denote the slope of the resulting curves as hypoxia indices because they can be used to quantify signal enhancement from Eu, that is related to oxygen concentration, without knowledge of the absolute concentration of Eu. This mapping of hypoxia was demonstrated in vivo in an orthotopic syngeneic tumor model. Our studies significantly contribute toward improving the ability to radiographically map and quantify hypoxia in real time, which is critical to the study of cancer and a wide range of diseases.


Asunto(s)
Flúor , Neoplasias , Humanos , Imagen por Resonancia Magnética/métodos , Hipoxia , Oxígeno
17.
Proc Natl Acad Sci U S A ; 120(49): e2312261120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38011568

RESUMEN

While radical prostatectomy remains the mainstay of prostate cancer (PCa) treatment, 20 to 40% of patients develop postsurgical biochemical recurrence (BCR). A particularly challenging clinical cohort includes patients with intermediate-risk disease whose risk stratification would benefit from advanced approaches that complement standard-of-care diagnostic tools. Here, we show that imaging tumor lactate using hyperpolarized 13C MRI and spatial metabolomics identifies BCR-positive patients in two prospective intermediate-risk surgical cohorts. Supported by spatially resolved tissue analysis of established glycolytic biomarkers, this study provides the rationale for multicenter trials of tumor metabolic imaging as an auxiliary tool to support PCa treatment decision-making.


Asunto(s)
Antígeno Prostático Específico , Neoplasias de la Próstata , Masculino , Humanos , Antígeno Prostático Específico/análisis , Ácido Láctico , Estudios Prospectivos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/cirugía , Próstata/patología , Prostatectomía/métodos , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/patología , Estudios Retrospectivos
18.
Proc Natl Acad Sci U S A ; 120(22): e2218565120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216540

RESUMEN

A long-standing topic of interest in human neurosciences is the understanding of the neurobiology underlying human cognition. Less commonly considered is to what extent such systems may be shared with other species. We examined individual variation in brain connectivity in the context of cognitive abilities in chimpanzees (n = 45) and humans in search of a conserved link between cognition and brain connectivity across the two species. Cognitive scores were assessed on a variety of behavioral tasks using chimpanzee- and human-specific cognitive test batteries, measuring aspects of cognition related to relational reasoning, processing speed, and problem solving in both species. We show that chimpanzees scoring higher on such cognitive skills display relatively strong connectivity among brain networks also associated with comparable cognitive abilities in the human group. We also identified divergence in brain networks that serve specialized functions across humans and chimpanzees, such as stronger language connectivity in humans and relatively more prominent connectivity between regions related to spatial working memory in chimpanzees. Our findings suggest that core neural systems of cognition may have evolved before the divergence of chimpanzees and humans, along with potential differential investments in other brain networks relating to specific functional specializations between the two species.


Asunto(s)
Conectoma , Pan troglodytes , Animales , Humanos , Neurobiología , Encéfalo , Cognición , Imagen por Resonancia Magnética
19.
Proc Natl Acad Sci U S A ; 120(9): e2216399120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36802420

RESUMEN

Every year, millions of brain MRI scans are acquired in hospitals, which is a figure considerably larger than the size of any research dataset. Therefore, the ability to analyze such scans could transform neuroimaging research. Yet, their potential remains untapped since no automated algorithm is robust enough to cope with the high variability in clinical acquisitions (MR contrasts, resolutions, orientations, artifacts, and subject populations). Here, we present SynthSeg+, an AI segmentation suite that enables robust analysis of heterogeneous clinical datasets. In addition to whole-brain segmentation, SynthSeg+ also performs cortical parcellation, intracranial volume estimation, and automated detection of faulty segmentations (mainly caused by scans of very low quality). We demonstrate SynthSeg+ in seven experiments, including an aging study on 14,000 scans, where it accurately replicates atrophy patterns observed on data of much higher quality. SynthSeg+ is publicly released as a ready-to-use tool to unlock the potential of quantitative morphometry.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Aprendizaje Automático , Encéfalo/diagnóstico por imagen , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
20.
Proc Natl Acad Sci U S A ; 120(6): e2213430120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36730198

RESUMEN

Many teaching websites, such as the Khan Academy, propose vivid videos illustrating a mathematical concept. Using functional magnetic resonance imaging, we asked whether watching such a video suffices to rapidly change the brain networks for mathematical knowledge. We capitalized on the finding that, when judging the truth of short spoken statements, distinct semantic regions activate depending on whether the statements bear on mathematical knowledge or on other domains of semantic knowledge. Here, participants answered such questions before and after watching a lively 5-min video, which taught them the rudiments of a new domain. During the video, a distinct math-responsive network, comprising anterior intraparietal and inferior temporal nodes, showed intersubject synchrony when viewing mathematics course rather than control courses in biology or law. However, this experience led to minimal subsequent changes in the activity of those domain-specific areas when answering questions on the same topics a few minutes later. All taught facts, whether mathematical or not, led to domain-general repetition enhancement, particularly prominent in the cuneus, posterior cingulate, and posterior parietal cortices. We conclude that short videos do not suffice to induce a meaningful lasting change in the brain's math-responsive network, but merely engage domain-general regions possibly involved in episodic short-term memory.


Asunto(s)
Encéfalo , Semántica , Humanos , Encéfalo/fisiología , Mapeo Encefálico/métodos , Lóbulo Parietal/fisiología , Imagen por Resonancia Magnética , Matemática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA