Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.588
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 178(3): 686-698.e14, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31257031

RESUMEN

Immune cells residing in white adipose tissue have been highlighted as important factors contributing to the pathogenesis of metabolic diseases, but the molecular regulators that drive adipose tissue immune cell remodeling during obesity remain largely unknown. Using index and transcriptional single-cell sorting, we comprehensively map all adipose tissue immune populations in both mice and humans during obesity. We describe a novel and conserved Trem2+ lipid-associated macrophage (LAM) subset and identify markers, spatial localization, origin, and functional pathways associated with these cells. Genetic ablation of Trem2 in mice globally inhibits the downstream molecular LAM program, leading to adipocyte hypertrophy as well as systemic hypercholesterolemia, body fat accumulation, and glucose intolerance. These findings identify Trem2 signaling as a major pathway by which macrophages respond to loss of tissue-level lipid homeostasis, highlighting Trem2 as a key sensor of metabolic pathologies across multiple tissues and a potential therapeutic target in metabolic diseases.


Asunto(s)
Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Dieta Alta en Grasa , Intolerancia a la Glucosa , Humanos , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología , Metabolismo de los Lípidos/genética , Lípidos/análisis , Macrófagos/citología , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/citología , Monocitos/metabolismo , Obesidad/metabolismo , Obesidad/patología , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/genética , Transducción de Señal , Análisis de la Célula Individual
2.
Physiol Rev ; 101(3): 739-795, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33270534

RESUMEN

Almost 2 billion adults in the world are overweight, and more than half of them are classified as obese, while nearly one-third of children globally experience poor growth and development. Given the vast amount of knowledge that has been gleaned from decades of research on growth and development, a number of questions remain as to why the world is now in the midst of a global epidemic of obesity accompanied by the "double burden of malnutrition," where overweight coexists with underweight and micronutrient deficiencies. This challenge to the human condition can be attributed to nutritional and environmental exposures during pregnancy that may program a fetus to have a higher risk of chronic diseases in adulthood. To explore this concept, frequently called the developmental origins of health and disease (DOHaD), this review considers a host of factors and physiological mechanisms that drive a fetus or child toward a higher risk of obesity, fatty liver disease, hypertension, and/or type 2 diabetes (T2D). To that end, this review explores the epidemiology of DOHaD with discussions focused on adaptations to human energetics, placental development, dysmetabolism, and key environmental exposures that act to promote chronic diseases in adulthood. These areas are complementary and additive in understanding how providing the best conditions for optimal growth can create the best possible conditions for lifelong health. Moreover, understanding both physiological as well as epigenetic and molecular mechanisms for DOHaD is vital to most fully address the global issues of obesity and other chronic diseases.


Asunto(s)
Enfermedades Metabólicas/etiología , Obesidad/etiología , Placenta/metabolismo , Femenino , Humanos , Enfermedades Metabólicas/metabolismo , Obesidad/metabolismo , Embarazo
3.
Immunity ; 51(5): 794-811, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31747581

RESUMEN

The consumption of Western-type calorically rich diets combined with chronic overnutrition and a sedentary lifestyle in Western societies evokes a state of chronic metabolic inflammation, termed metaflammation. Metaflammation contributes to the development of many prevalent non-communicable diseases (NCDs), and these lifestyle-associated pathologies represent a rising public health problem with global epidemic dimensions. A better understanding of how modern lifestyle and Western diet (WD) activate immune cells is essential for the development of efficient preventive and therapeutic strategies for common NCDs. Here, we review the current mechanistic understanding of how the Western lifestyle can induce metaflammation, and we discuss how this knowledge can be translated to protect the public from the health burden associated with their selected lifestyle.


Asunto(s)
Dieta Occidental , Sistema Inmunológico/fisiología , Animales , Dieta , Susceptibilidad a Enfermedades , Retroalimentación Fisiológica , Microbioma Gastrointestinal , Homeostasis , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Inflamación/etiología , Inflamación/metabolismo , Especificidad de Órganos
4.
Development ; 151(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38912552

RESUMEN

The field of developmental metabolism is experiencing a technological revolution that is opening entirely new fields of inquiry. Advances in metabolomics, small-molecule sensors, single-cell RNA sequencing and computational modeling present new opportunities for exploring cell-specific and tissue-specific metabolic networks, interorgan metabolic communication, and gene-by-metabolite interactions in time and space. Together, these advances not only present a means by which developmental biologists can tackle questions that have challenged the field for centuries, but also present young scientists with opportunities to define new areas of inquiry. These emerging frontiers of developmental metabolism were at the center of a highly interactive 2023 EMBO workshop 'Developmental metabolism: flows of energy, matter, and information'. Here, we summarize key discussions from this forum, emphasizing modern developmental biology's challenges and opportunities.


Asunto(s)
Biología Evolutiva , Biología Evolutiva/tendencias , Humanos , Animales , Metabolómica , Redes y Vías Metabólicas
5.
Semin Immunol ; 70: 101846, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37801907

RESUMEN

Since the 1960 s, our health has been compromised by exposure to over 350,000 newly introduced toxic substances, contributing to the current pandemic in allergic, autoimmune and metabolic diseases. The "Epithelial Barrier Theory" postulates that these diseases are exacerbated by persistent periepithelial inflammation (epithelitis) triggered by exposure to a wide range of epithelial barrier-damaging substances as well as genetic susceptibility. The epithelial barrier serves as the body's primary physical, chemical, and immunological barrier against external stimuli. A leaky epithelial barrier facilitates the translocation of the microbiome from the surface of the afflicted tissues to interepithelial and even deeper subepithelial locations. In turn, opportunistic bacterial colonization, microbiota dysbiosis, local inflammation and impaired tissue regeneration and remodelling follow. Migration of inflammatory cells to susceptible tissues contributes to damage and inflammation, initiating and aggravating many chronic inflammatory diseases. The objective of this review is to highlight and evaluate recent studies on epithelial physiology and its role in the pathogenesis of chronic diseases in light of the epithelial barrier theory.


Asunto(s)
Hipersensibilidad , Enfermedades Metabólicas , Microbiota , Humanos , Inflamación , Enfermedad Crónica , Disbiosis
6.
Circ Res ; 135(1): 222-260, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38900855

RESUMEN

Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.


Asunto(s)
Ácido Araquidónico , Enfermedades Cardiovasculares , Humanos , Ácido Araquidónico/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/terapia , Transducción de Señal , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/terapia , Factores de Riesgo Cardiometabólico , Obesidad/metabolismo , Obesidad/terapia
7.
Trends Genet ; 38(7): 724-751, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35367088

RESUMEN

Cellular trafficking is essential to maintain critical biological functions. Mutations in 346 genes, most of them described in the last 5 years, are associated with disorders of cellular trafficking. Whereas initially restricted to membrane trafficking, the recent detection of many diseases has contributed to the discovery of new biological pathways. Accordingly, we propose to redesign this rapidly growing group of diseases combining biological mechanisms and clinical presentation into the following categories: (i) membrane trafficking (including organelle-related); (ii) membrane contact sites; (iii) autophagy; (iv) cytoskeleton-related. We present the most recently described pathophysiological findings, disorders and phenotypes. Although all tissues and organs are affected, the nervous system is especially vulnerable.


Asunto(s)
Autofagia , Orgánulos , Autofagia/genética , Citoesqueleto/genética
8.
Circ Res ; 132(12): 1648-1662, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37289899

RESUMEN

Epigenetics has transformed our understanding of the molecular basis of complex diseases, including cardiovascular and metabolic disorders. This review offers a comprehensive overview of the current state of knowledge on epigenetic processes implicated in cardiovascular and metabolic diseases, highlighting the potential of DNA methylation as a precision medicine biomarker and examining the impact of social determinants of health, gut bacterial epigenomics, noncoding RNA, and epitranscriptomics on disease development and progression. We discuss challenges and barriers to advancing cardiometabolic epigenetics research, along with the opportunities for novel preventive strategies, targeted therapies, and personalized medicine approaches that may arise from a better understanding of epigenetic processes. Emerging technologies, such as single-cell sequencing and epigenetic editing, hold the potential to further enhance our ability to dissect the complex interplay between genetic, environmental, and lifestyle factors. To translate research findings into clinical practice, interdisciplinary collaborations, technical and ethical considerations, and accessibility of resources and knowledge are crucial. Ultimately, the field of epigenetics has the potential to revolutionize the way we approach cardiovascular and metabolic diseases, paving the way for precision medicine and personalized health care, and improving the lives of millions of individuals worldwide affected by these conditions.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades Metabólicas , Humanos , Medicina de Precisión , Epigenómica , Epigénesis Genética , Metilación de ADN , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/terapia
9.
J Hepatol ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38857788

RESUMEN

BACKGROUND & AIMS: Survodutide is a glucagon/glucagon-like peptide-1 receptor dual agonist in development for treatment of metabolic dysfunction-associated steatohepatitis (MASH). We investigated survodutide in people with cirrhosis. METHODS: This multinational, non-randomized, open-label, phase 1 clinical trial initially evaluated a single subcutaneous (s.c.) dose of survodutide 0.3 mg in people with Child-Pugh class A, B or C cirrhosis and healthy individuals with or without overweight/obesity matched for age, sex, and weight; the primary endpoints were the area under the plasma concentration-time curve from 0 to infinity (AUC0-∞) and maximal plasma concentration (Cmax). Subsequently, people with overweight/obesity with or without cirrhosis and Child-Pugh class A or B received once-weekly s.c. doses escalated from 0.3 mg to 6.0 mg over 24 weeks then maintained for 4 weeks; the primary endpoint was drug-related treatment-emergent adverse events, with MASH/cirrhosis-related endpoints explored. RESULTS: In the single-dose cohorts (n = 41), mean AUC0-∞ and Cmax were similar in those with cirrhosis compared with healthy individuals (90% confidence intervals for adjusted geometric mean ratios spanned 1). Drug-related adverse events occurred in 25.0% of healthy individuals and ≤25.0% of those with cirrhosis after single doses, and 82.4% and 87.5%, respectively, of the multiple-dose cohorts (n = 41) over 28 weeks. Liver fat content, liver stiffness, liver volume, body weight, and other hepatic and metabolic disease markers were generally reduced after 28 weeks of survodutide treatment. CONCLUSIONS: Survodutide is generally tolerable in people with compensated or decompensated cirrhosis, does not require pharmacokinetic-related dose adjustment, and may improve liver-related non-invasive tests, supporting its investigation for MASH-related cirrhosis. Clinical trial number; ClinicalTrials.gov identifier: NCT05296733. IMPACT AND IMPLICATIONS: Survodutide is a glucagon receptor/glucagon-like peptide-1 receptor dual agonist in development for treatment of metabolic dysfunction-associated steatohepatitis (MASH), which causes cirrhosis in ∼20% of cases. This trial delineates the pharmacokinetic and safety profile of survodutide in people with compensated or decompensated cirrhosis, and revealed associated reductions in liver fat content, markers of liver fibrosis and body weight. These findings have potential relevance for people with MASH-including those with decompensated cirrhosis, who are usually excluded from clinical trials of investigational drugs. Based on this study, further investigation of survodutide for MASH-related cirrhosis is warranted.

10.
Clin Gastroenterol Hepatol ; 22(3): 488-498.e14, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37775028

RESUMEN

BACKGROUND & AIMS: The progression of metabolic dysfunction-associated steatotic liver disease (MASLD) has been found to manifest in a series of hepatic and extrahepatic complications. A comprehensive meta-analysis of the longitudinal outcomes associated with MASLD has yet to be conducted. METHODS: To investigate the longitudinal outcomes associated with MASLD, Medline and Embase databases were searched to identify original studies that evaluated the longitudinal risks of incident clinical outcomes among MASLD patients compared with non-MASLD individuals. DerSimonian Laird random-effects meta-analysis was performed. Pooled effect estimates were calculated, and heterogeneity among studies was evaluated. RESULTS: One hundred twenty-nine studies were included in the meta-analysis. Meta-analysis revealed a significant increase in the risk of cardiovascular outcomes (hazard ratio [HR], 1.43; 95% confidence interval [CI], 1.27-1.60; P < .01), various metabolic outcomes such as incident hypertension (HR, 1.75; 95% CI, 1.46-2.08; P < .01), diabetes (HR, 2.56; 95% CI, 2.10-3.13; P < .01), pre-diabetes (HR, 1.69; 95% CI, 1.22-2.35; P < .01), metabolic syndrome (HR, 2.57; 95% CI, 1.13-5.85; P = .02), chronic kidney disease (HR, 1.38; 95% CI, 1.27-1.50; P < .01), as well as all cancers (HR, 1.54; 95% CI, 1.35-1.76; P < .01) among MASLD patients compared with non-MASLD individuals. By subgroup analysis, MASLD patients with advanced liver disease (HR, 3.60; 95% CI, 2.10-6.18; P < .01) were also found to be associated with a significantly greater risk (P = .02) of incident diabetes than those with less severe MASLD (HR, 1.63; 95% CI, 1.0-2.45; P = .02) when compared with non-MASLD. CONCLUSIONS: The present study emphasizes the association between MASLD and its clinical outcomes including cardiovascular, metabolic, oncologic, and other outcomes. The multisystemic nature of MASLD found in this analysis requires treatment targets to reduce systemic events and end organ complications.


Asunto(s)
Diabetes Mellitus , Hígado Graso , Síndrome Metabólico , Humanos , Hígado Graso/complicaciones , Hígado Graso/epidemiología , Síndrome Metabólico/complicaciones , Síndrome Metabólico/epidemiología , Cardiooncología
11.
Annu Rev Nutr ; 43: 25-54, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37207357

RESUMEN

Fatty acid-binding proteins (FABPs) are small lipid-binding proteins abundantly expressed in tissues that are highly active in fatty acid (FA) metabolism. Ten mammalian FABPs have been identified, with tissue-specific expression patterns and highly conserved tertiary structures. FABPs were initially studied as intracellular FA transport proteins. Further investigation has demonstrated their participation in lipid metabolism, both directly and via regulation of gene expression, and in signaling within their cells of expression. There is also evidence that they may be secreted and have functional impact via the circulation. It has also been shown that the FABP ligand binding repertoire extends beyond long-chain FAs and that their functional properties also involve participation in systemic metabolism. This article reviews the present understanding of FABP functions and their apparent roles in disease, particularly metabolic and inflammation-related disorders and cancers.


Asunto(s)
Proteínas de Unión a Ácidos Grasos , Neoplasias , Humanos , Animales , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Hígado/metabolismo , Mamíferos/metabolismo , Transporte Biológico , Neoplasias/genética
12.
Cardiovasc Diabetol ; 23(1): 214, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907271

RESUMEN

BACKGROUND: Various surrogate markers of insulin resistance have been developed, capable of predicting coronary artery disease (CAD) without the need to detect serum insulin. For accurate prediction, they depend only on glucose and lipid profiles, as well as anthropometric features. However, there is still no agreement on the most suitable one for predicting CAD. METHODS: We followed a cohort of 2,000 individuals, ranging in age from 20 to 74, for a duration of 9.9 years. We utilized multivariate Cox proportional hazard models to investigate the association between TyG-index, TyG-BMI, TyG-WC, TG/HDL, plus METS-IR and the occurrence of CAD. The receiver operating curve (ROC) was employed to compare the predictive efficacy of these indices and their corresponding cutoff values for predicting CAD. We also used three distinct embedded feature selection methods: LASSO, Random Forest feature selection, and the Boruta algorithm, to evaluate and compare surrogate markers of insulin resistance in predicting CAD. In addition, we utilized the ceteris paribus profile on the Random Forest model to illustrate how the model's predictive performance is affected by variations in individual surrogate markers, while keeping all other factors consistent in a diagram. RESULTS: The TyG-index was the only surrogate marker of insulin resistance that demonstrated an association with CAD in fully adjusted model (HR: 2.54, CI: 1.34-4.81). The association was more prominent in females. Moreover, it demonstrated the highest area under the ROC curve (0.67 [0.63-0.7]) in comparison to other surrogate indices for insulin resistance. All feature selection approaches concur that the TyG-index is the most reliable surrogate insulin resistance marker for predicting CAD. Based on the Ceteris paribus profile of Random Forest the predictive ability of the TyG-index increased steadily after 9 with a positive slope, without any decline or leveling off. CONCLUSION: Due to the simplicity of assessing the TyG-index with routine biochemical assays and given that the TyG-index was the most effective surrogate insulin resistance index for predicting CAD based on our results, it seems suitable for inclusion in future CAD prevention strategies.


Asunto(s)
Biomarcadores , Enfermedad de la Arteria Coronaria , Resistencia a la Insulina , Aprendizaje Automático , Valor Predictivo de las Pruebas , Humanos , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/diagnóstico , Femenino , Masculino , Persona de Mediana Edad , Biomarcadores/sangre , Anciano , Medición de Riesgo , Adulto , Pronóstico , Adulto Joven , Factores de Riesgo , Factores de Tiempo , Insulina/sangre , Glucemia/metabolismo
13.
Mol Cell Biochem ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430301

RESUMEN

Metabolic diseases, such as obesity, diabetes mellitus, and non-alcoholic fatty liver disease (NAFLD), are abnormal conditions that result from disturbances of metabolism. With the improvement of living conditions, the morbidity and mortality rates of metabolic diseases are steadily rising, posing a significant threat to human health worldwide. Therefore, identifying novel effective targets for metabolic diseases is crucial. Accumulating evidence has indicated that disulfide bond A oxidoreductase-like protein (DsbA-L) delays the development of metabolic diseases. However, the underlying mechanisms of DsbA-L in metabolic diseases remain unclear. In this review, we will discuss the roles of DsbA-L in the pathogenesis of metabolic diseases, including obesity, diabetes mellitus, and NAFLD, and highlight the potential mechanisms. These findings suggest that DsbA-L might provide a novel therapeutic strategy for metabolic diseases.

14.
Liver Int ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456621

RESUMEN

The porphyrias are a heterogeneous group of metabolic disorders that result from defects in heme synthesis. The metabolic defects are present in all cells, but symptoms are mainly cutaneous or related to neuropathy. The porphyrias are highly relevant to hepatologists since patients can present with symptoms and complications that require liver transplantation (LT), and some porphyrias are associated with a high risk for primary liver cancer (PLC). Among the cutaneous porphyrias, erythropoietic protoporphyria (EPP) can lead to cholestatic liver failure where LT cures the liver disease but not the porphyria. In acute porphyria (AP), neurotoxic porphyrin precursors are produced in the liver and LT is a curative treatment option in patients with recurrent severe neuropathic attacks. Patients with AP, mainly acute intermittent porphyria, have a significantly increased risk for PLC that warrants surveillance and adequate follow-up of high-risk groups. LT is well established in both EPP with liver failure and AP with recurrent attacks, but most transplant centres have little porphyria experience and cooperation between transplant hepatologists, and porphyria experts is important in the often-difficult decisions on timing and management of comorbid conditions.

15.
Diabetes Obes Metab ; 26(3): 809-819, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38100156

RESUMEN

Metabolic diseases have become a major threat to human health worldwide as a result of changing lifestyles. The exploration of the underlying molecular mechanisms of metabolic diseases and the development of improved therapeutic methods have been hindered by the lack of appropriate human experimental models. Organoids are three-dimensional in vitro models of self-renewing cells that spontaneously self-organize into structures similar to the corresponding in vivo tissues, recapitulating the original tissue function. Off-body organoid technology has been successfully applied to disease modelling, developmental biology, regenerative medicine, and tumour precision medicine. This new generation of biological models has received widespread attention. This article focuses on the construction process and research progress with regard to organoids related to metabolic diseases in recent years, and looks forward to their prospective applications.


Asunto(s)
Enfermedades Metabólicas , Neoplasias , Humanos , Organoides/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Medicina de Precisión , Enfermedades Metabólicas/terapia , Enfermedades Metabólicas/metabolismo
16.
J Inherit Metab Dis ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38757337

RESUMEN

Genomic newborn screening (gNBS) is on the horizon given the decreasing costs of sequencing and the advanced understanding of the impact of genetic variants on health and diseases. Key to ongoing gNBS pilot studies is the selection of target diseases and associated genes to be included. In this study, we present a comprehensive analysis of seven published gene-disease lists from gNBS studies, evaluating gene-disease count, composition, group proportions, and ClinGen curations of individual disorders. Despite shared selection criteria, we observe substantial variation in total gene count (median 480, range 237-889) and disease group composition. An intersection was identified for 53 genes, primarily inherited metabolic diseases (83%, 44/53). Each study investigated a subset of exclusive gene-disease pairs, and the total number of exclusive gene-disease pairs was positively correlated with the total number of genes included per study. While most pairs receive "Definitive" or "Strong" ClinGen classifications, some are labeled as "Refuted" (n = 5) or "Disputed" (n = 28), particularly in genetic cardiac diseases. Importantly, 17%-48% of genes lack ClinGen curation. This study underscores the current absence of consensus recommendations for selection criteria for target diseases for gNBS resulting in diversity in proposed gene-disease pairs, their coupling with gene variations and the use of ClinGen curation. Our findings provide crucial insights into the selection of target diseases and accompanying gene variations for future gNBS program, emphasizing the necessity for ongoing collaboration and discussion about criteria harmonization for panel selection to ensure the screening's objectivity, integrity, and broad acceptance.

17.
J Inherit Metab Dis ; 47(2): 244-254, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38185897

RESUMEN

Off-label repurposing of empagliflozin allows pathomechanism-based treatment of neutropenia/neutrophil-dysfunction in glycogen storage disease type Ib (GSDIb). From a value-based healthcare (VBHC) perspective, we here retrospectively studied patient-reported, clinical and pharmacoeconomic outcomes in 11 GSDIb individuals before and under empagliflozin at two centers (the Netherlands [NL], Austria [AT]), including a budget impact analysis, sensitivity-analysis, and systematic benefit-risk assessment. Under empagliflozin, all GSDIb individuals reported improved quality-of-life-scores. Neutrophil dysfunction related symptoms allowed either granulocyte colony-stimulating factor cessation or tapering. Calculated cost savings per patient per year ranged between € 6482-14 190 (NL) and € 1281-41 231 (AT). The budget impact analysis estimated annual total cost savings ranging between € 75 062-225 716 (NL) and € 37 697-231 790 (AT), based on conservative assumptions. The systematic benefit-risk assessment was favorable. From a VBHC perspective, empagliflozin treatment in GSDIb improved personal and clinical outcomes while saving costs, thereby creating value at multiple pillars. We emphasize the importance to reimburse empagliflozin for GSDIb individuals, further supported by the favorable systematic benefit-risk assessment. These observations in similar directions in two countries/health care systems strongly suggest that our findings can be extrapolated to other geographical areas and health care systems.


Asunto(s)
Compuestos de Bencidrilo , Glucósidos , Enfermedad del Almacenamiento de Glucógeno Tipo I , Atención Médica Basada en Valor , Humanos , Estudios Retrospectivos , Medición de Riesgo
18.
Arterioscler Thromb Vasc Biol ; 43(7): 1157-1175, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37128912

RESUMEN

BACKGROUND: Obesity and diabetes are associated with elevated free fatty acids like palmitic acid (PA), which promote chronic inflammation and impaired inflammation resolution associated with cardiometabolic disorders. Long noncoding RNAs (lncRNAs) are implicated in inflammatory processes; however, their roles in PA-regulated inflammation and resolution are unclear. METHODS: We performed RNA-sequencing analysis to identify PA-regulated coding genes and novel lncRNAs in CD14+ monocytes from healthy volunteers. We investigated the regulation and function of an uncharacterized PA-induced lncRNA PARAIL (PA-regulated anti-inflammatory lncRNA). We examined its role in inflammation resolution by employing knockdown and overexpression strategies in human and mouse macrophages. We also used RNA pulldown coupled with mass spectrometry to identify PARAIL interacting nuclear proteins and their mechanistic involvement in PARAIL functions in human macrophages. RESULTS: Treatment of human CD14+ monocytes with PA-induced several lncRNAs and genes associated with inflammatory phenotype. PA strongly induced lncRNA PARAIL expressed near RIPK2. PARAIL was also induced by cytokines and infectious agents in human monocytes/macrophages and was regulated by NF-κB (nuclear factor-kappa B). Time course studies showed PARAIL was induced during inflammation resolution phase in PA-treated macrophages. PARAIL knockdown with antisense oligonucleotides upregulated key inflammatory genes and vice versa with PARAIL overexpression. We found that PARAIL interacts with ELAVL1 (ELAV-like RNA-binding protein 1) protein via adenylate/uridylate-rich elements (AU-rich elements; AREs). ELAVL1 knockdown inhibited the anti-inflammatory functions of PARAIL. Moreover, PARAIL knockdown increased cytosolic localization of ELAVL1 and increased the stability of ARE-containing inflammatory genes. Mouse orthologous Parail was downregulated in macrophages from mice with diabetes and atherosclerosis. Parail overexpression attenuated proinflammatory genes in mouse macrophages. CONCLUSIONS: Upregulation of PARAIL under acute inflammatory conditions contributes to proresolution mechanisms via PARAIL-ELAVL1 interactions. Conversely, PARAIL downregulation in cardiometabolic diseases enhances ELAVL1 function and impairs inflammation resolution to further augment inflammation. Thus, inflammation-resolving lncRNAs like PARAIL represent novel targets to combat inflammatory cardiometabolic diseases.


Asunto(s)
Aterosclerosis , ARN Largo no Codificante , Humanos , Ratones , Animales , Monocitos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ácido Palmítico/toxicidad , Ácido Palmítico/metabolismo , Macrófagos/metabolismo , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , FN-kappa B/metabolismo , Aterosclerosis/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteína 1 Similar a ELAV/genética , Proteína 1 Similar a ELAV/metabolismo
19.
Bioorg Med Chem Lett ; 98: 129572, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38043690

RESUMEN

Several series of diverse pyrazole-3-carboxamides functionalized with 4-methylamides, 4-methylcarboxylic acids and 4-methyltetrazoles were prepared from the corresponding 4-cyanomethylpyrazoles and investigated as Cannabinoid receptor 1 (CB1) antagonists and inverse agonists with the aim of making compounds with less CNS (Central Nervous System) mediated side-effects compared to rimonabant. The compounds were evaluated and optimized with respect to lipophilicity, solubility, CB1 potency, metabolism, distribution to brain and liver, effect on weight loss in diet-induced mice models. A few carboxylic acids and tetrazoles were selected as especially promising with the tetrazole TM38837 subsequently demonstrating impressive efficacy in various animal models of obesity, producing considerable weight loss and improvements on plasma markers of inflammation and glucose homeostasis, at doses apparently producing negligible brain exposure. TM38837 became the first peripherally restricted CB1 antagonist or inverse agonist to enter clinical trials supporting its lack of CNS effects and it is now believed that the non-CNS mediated efficacy is linked to high liver exposure. This opens opportunities to be explored in other indications such as nonalcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH). Note that this is a first-time disclosure of the structure of TM38837 and other structures appearing in literature are not connected with this program.


Asunto(s)
Cannabinoides , Agonismo Inverso de Drogas , Ratones , Animales , Agonistas de Receptores de Cannabinoides , Pirazoles/química , Cannabinoides/farmacología , Pérdida de Peso , Receptor Cannabinoide CB1 , Antagonistas de Receptores de Cannabinoides
20.
Mol Biol Rep ; 51(1): 476, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553573

RESUMEN

Glycosylation modification of proteins is a common post-translational modification that exists in various organisms and has rich biological functions. It is usually catalyzed by multiple glycosyltransferases located in the Golgi apparatus. ß-1,3-N-acetylglucosaminyltransferases (B3GNTs) are members of the glycosyltransferases and have been found to be involved in the occurrence and development of a variety of diseases including autoimmunity diseases, cancers, neurodevelopment, musculoskeletal system, and metabolic diseases. The functions of B3GNTs represent the glycosylation of proteins is a crucial and frequently life-threatening step in progression of most diseases. In this review, we give an overview about the roles of B3GNTs in tumor, nervous system, musculoskeletal and metabolic diseases, describing the recent results about B3GNTs, in order to provide a research direction and exploration value for the prevention, diagnosis and treatment of these diseases.


Asunto(s)
Enfermedades Metabólicas , N-Acetilglucosaminiltransferasas , Humanos , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Glicosilación , Glicosiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA