RESUMEN
Carbyne free radicals RCΜ (RC) are usually associated with high-energy processes, thus research on their preparation, chemical reactivity, and prevalence under mild conditions is scarce. Recently, it was reported that metallo-complexes containing CR ligands may undergo spontaneous degradation in aqueous solutions to produce free RC radicals. These highly reactive species may react with each other to form the corresponding alkyne and other products. The reaction of 1,1,1 halo-carbo-hydrates with Cr(II) ions also forms RC radicals under mild conditions. Herein, we report two additional synthetic routes that produce free RC radicals under mild conditions. First, the reaction between metallic zinc and acetic anhydride produces 2-butyne and several other C2, C3, and C4 compounds. Isotopic-labeling experiments indicate that the formation of 2-butyne results from an inter-molecular reaction in which two RC moieties from two acetic anhydride molecules combine in solution. In addition, the degradation of the tri-molybdenum complex [Mo3(H3CC=CCH3)(OAc)(H2O)2Br7], in which a 2-butyne ligand is coordinated to the Mo3 framework in a µ3-η2 (â¥) binding mode in aqueous solution produces several C2, C3, C4 and C5 molecules. This indicates the formation of free CH3C radicals by a homolytic cleavage of the carbon-carbon triple bond.
RESUMEN
The germylone dimNHCGe (5, dimNHC=diimino N-heterocyclic carbene) undergoes a [2+2] cycloaddition with isocyanates RNCO (R=4-tolyl or 3,5-xylyl) to furnish novel alkyl carboxamido germylenes 7 (R=4-tolyl) and 8 (R=3,5-xylyl), featuring a C-C bond between the former carbene carbon and the isocyanate moiety. Heating a mixture of 8 with 4-tolyl isocyanate to 100 °C results in isocyanate metathesis, demonstrating reversible C-C bond formation on the reduced germanium compound. DFT calculations suggest that this process occurs via the reductive dissociation of isocyanate from 8 that regenerates the parent Ge(0) compound 5.
RESUMEN
2,5-Dimethyl-2,4-hexadiene is a readily available and easily managable compound, whose symmetric and polymethylated dienic structure should be prone to engage in cross-metathesis reactions with other alkenes, but this has not been apparently exploited so far. Here we show that this reactant enables the easy synthesis of tri- and tetra-susbtituted alkenes (i. e. isobutylenyl and prenyl groups) from simple alkenes under mild reaction conditions, not only with the conventional 2nd generation Grubbs catalyst but also with other Grela-type catalyts such as StickyCat,TM AquaMetTM and GreenCatTM. The use of liquid and low volatile 2,5-dimethyl-2,4-hexadiene avoids the use of gaseous alkene reactants and, besides, showcases the reactivity of polyisoprene (rubber), thus allowing to optimize the reaction conditions for rubber upcycling, after metathesis reaction of the pristine or used polymer with simple alkenes. These results bring low volatile isoprene-type compounds as privileged poly-substituted reactants for alkene cross-metathesis reactions.
RESUMEN
The field of bioorthogonal chemistry is rapidly growing, presenting successful applications of organic and transition metal-catalysed reactions in cells and living systems (in vivo). The development of such reactions typically proceeds through many iterative steps focused on biocompatibility and fast reaction kinetics to ensure product formation. However, obtaining kinetic data, even under simulated biological (biomimetic) conditions, remains a challenge due to substantial concentrations of salts and biomolecules hampering the use of typically employed solution-phase analytical techniques. In this study, we explored the suitability of gas evolution as a probe to study kinetics under biomimetic conditions. As proof of concept, we show that the progress of two transition metal-catalysed bioorthogonal chemical reactions can be accurately monitored, regardless of the complexity of the medium. As such, we introduce a protocol to gain more insight into the performance of a catalytic system under biomimetic conditions to further progress iterative catalyst development for in vivo applications.
Asunto(s)
Biomimética , Catálisis , Cinética , Biomimética/métodos , Gases/química , Elementos de Transición/química , Materiales Biomiméticos/químicaRESUMEN
A series of a novel CAAC ligands featuring a spiro-fluorene group have been synthesized and complexed with ruthenium alkylidenes, yielding the corresponding Hoveyda-type derivatives as a new family of olefin metathesis catalysts. The novel complexes have been characterized by XRD, HRMS and NMR measurements. The synthetised complexes were tested in catalysis and showed good activity in olefin metathesis, as demonstrated on diethyl diallylmalonate and allyl acetate substrates. The unique backbone in the ligand with the large, yet inflexible condensed system renders interesting properties to the catalyst, exemplified by the good catalytic performance and improved Z-selectivity. In addition, the complex can also serve as a hydrogenation catalyst in a consecutive (one-pot) reaction. The latter reaction can convert allyl acetate to butane-1,4-diol, a valuable chemical intermediate for biodegradable polybutylene succinate (PBS).
RESUMEN
The precise synthesis of chiral polymers remains a significant challenge in polymer chemistry, particularly for applications in advanced biomedical and electronic materials. The development of degradable polymers is important for eco-friendly and advanced materials. Here, we introduce a stereo-controlled degradable polymer via cascade enyne metathesis polymerization and enantioselective acetal synthesis through Pd-catalyzed asymmetric hydroamination. This approach allows for the creation of chiral acetal-based polymers with controlled stereochemistry and degradability, highlighting their potential for use in drug delivery and electronic applications. This concept article reviews the background, development, and potential applications of these stereo-controlled degradable polymers.
RESUMEN
The cooperative Lewis and Brønsted acid catalysis makes convergent synthesis of 3(2H)-furanones through a three-component coupling of 1,3-diynes, alkyl glyoxylates and water. Control experiments support that Lewis acid-catalyzed highly chemo-, regio- and stereoselective alkyne-carbonyl metathesis of 1,3-diynes and alkyl glyoxylates might be the initial step of this multicomponent annulation. Further chemo- and regioselective hydration of the alkyne-carbonyl metathesis product and subsequent oxa-Michael addition promoted by Brønsted acid results in the formation of two C-O bonds of the five-membered oxygen heterocycle.
RESUMEN
Cyclohepta[b]indoles, prevalent in natural products and pharmaceuticals, are conventionally accessed via metal or Lewis acid-mediated cycloadditions with prefunctionalized substrates. Our study introduces an innovative sequential catalytic assembly for synthesizing cyclohepta[b]indoles from readily available isatin derivatives. The process involves three catalytic sequences: ring-closing metathesis, catalytic hydrogenation, and acid-catalyzed ring expansion. The RCM of 2,2-dialkene-3-oxindoles, formed by butenyl Grignard addition to 3-allyl-3-hydroxy-2-oxindoles, yields versatile spirocyclohexene-3-oxindole derivatives. These derivatives undergo further transformations, including dibromination, dihydroxylation, epoxidation, Wacker oxidation at the double bond. Hydrogenation of spirocyclohexene-3-oxindole yields spirocyclohexane-3-oxindoles. Their subsequent acid-catalyzed ring expansion/aromatization, dependent on the acid catalyst, results in either cyclohepta[b]indoles or cyclohepta[b]indole-indoline conjugates, adding a unique synthetic dimension. The utility of this methodology is exemplified through the synthesis of an A-FABP inhibitor, showcasing its potential in pharmaceutical applications.
RESUMEN
This study comprehensively explored the helix-stabilizing effects of amine-bearing hydrocarbon cross-links (ABXs), revealing their context-dependent nature influenced by various structural parameters. Notably, we identified a 9-atom ABX as a robust helix stabilizer, showcasing versatile synthetic adaptability while preserving peptide water solubility. Future investigations are imperative to fully exploit this system's potential and enrich our chemical toolkit for designing innovative peptide-based biomolecules.
Asunto(s)
Aminas , Hidrocarburos , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos , Péptidos/química , Péptidos/síntesis química , Aminas/química , Aminas/síntesis química , Hidrocarburos/química , Hidrocarburos/síntesis química , Estructura Molecular , Solubilidad , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/síntesis químicaRESUMEN
A series of poly(ethylene glycol)-block-poly(propylene glycol) (PEG/PPG)- and 5,6-di(9H-carbazol-9-yl)isoindoline-1,3-dione (2CZPImide)-based crosslinked rubbery polymer membranes, denoted as PEG/PPG-2CZPImide (x:y), are prepared from the norbornene-functionalized PEG/PPG oligomer (NB-PEG/PPG-NB) and 2-(bicyclo[2.2.1]hept-5-en-2-ylmethyl)-5,6-di(9H-carbazol-9-yl)isoindoline-1,3-dione (2CZPImide-NB) via ring-opening metathesis polymerization (ROMP). The molar ratio (x:y) of the NB-PEG/PPG-NB (x) to 2CZPImide-NB (y) monomers is varied from 10:1 to 6:1. X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), and pure gas permeability studies reveal that the comonomer 2CZPImide-NB successfully increases the d-spacing among the crystalline PEG/PPG segments, hence enhancing the diffusivity of gases through the membranes. The synthesized membranes exhibit good CO2 separation performance, with CO2 permeabilities ranging from 311.1 to 418.1 Barrer and CO2/N2 and CO2/CH4 selectivities of 39.4-52.0 and 13.4-16.0, respectively, approaching the 2008 Robeson upper bound. Moreover, PEG/PPG-2CZPImide (6:1), displaying optimal CO2 permeability and CO2/N2 and CO2/CH4 selectivities, shows long-term stability against physical aging and plasticization resistance up to 20 days and 10 atm, respectively.
Asunto(s)
Carbazoles , Dióxido de Carbono , Polietilenglicoles , Dióxido de Carbono/química , Polietilenglicoles/química , Carbazoles/química , Polimerizacion , Polímeros/química , Polímeros/síntesis química , Membranas Artificiales , Estructura MolecularRESUMEN
A rare asymmetric bicyclic polymer containing different length of conjugated polyacetylene segments is synthesized by metathesis cyclopolymerization-mediated blocking-cyclization technique. The size of each single ring differs from each other, and the unique cyclic polymer topology is controlled by adjusting the feed ratio of monofunctional monomer to catalyst. The topological difference between linear and bicyclic polymers is confirmed by several techniques, and the visualized morphology of asymmetric bicyclic polymer is directly observed without tedious post-modification process. The photoelectric and thermal properties of polymers are investigated. This work expands the pathway for the derivation of cyclic polymers, and such unique topological structure enriches the diversity of cyclic polymer classes.
Asunto(s)
Polímeros , Poliinos , Polímero Poliacetilénico , Ciclización , Polímeros/química , CatálisisRESUMEN
Polymers with well-defined structures, synthesized through metal-catalyzed processes, and having end groups exhibiting different polarity and reactivity than the backbone, are gaining considerable attention in both scientific and industrial communities. These polymers show potential applications as fundamental building blocks and additives in the creation of innovative functional materials. Investigations are directed toward identifying the most optimal and uncomplicated synthetic approach by employing a combination of living coordination polymerization mediated by rare-earth metal complexes and C-H bond activation reaction by σ-bond metathesis. This combination directly yields catalysts with diverse functional groups from a single precursor, enabling the production of terminal-functionalized polymers without the need for sequential reactions, such as termination reactions. The utilization of this innovative methodology allows for precise control over end-group functionalities, providing a versatile approach to tailor the properties and applications of the resulting polymers. This perspective discusses the principles, challenges, and potential advancements associated with this synthetic strategy, highlighting its significance in advancing the interface of metalorganic chemistry, polymer chemistry, and materials science.
Asunto(s)
Complejos de Coordinación , Metales de Tierras Raras , Polimerizacion , Polímeros , Catálisis , Metales de Tierras Raras/química , Polímeros/química , Polímeros/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Estructura MolecularRESUMEN
A novel aptamer-based sensor was developed using the signal amplification strategy of ring-opening metathesis polymerization (ROMP) and polyethyleneimine modified graphene oxide to achieve trace detection of carbendazim (CBZ). The dual identification of aptamer and antibody was used to avoid false positive results and improve the selectivity. Polyethyleneimine modified graphene oxide (GO-PEI), as a substrate material with excellent conductivity, was modified on the surface of a glassy carbon electrode (GCE) to increase the grafting amount of aptamer on the electrode surface. Moreover, a large number of cyclopentenyl ferrocene (CFc) was aggregated to form long polymer chains through ring-opening metathesis polymerization (ROMP), so as to significantly improve the detection sensitivity of the biosensor. The linear range of this sensor was 1 pg/mL-100 ng/mL with a detection limit as low as 7.80 fg/mL. The sensor exhibited excellent reproducibility and stability, and also achieved satisfactory results in actual sample detection. The design principle of such a sensor could provide innovative ideas for sensors in the detection of other types of targets.
Asunto(s)
Aptámeros de Nucleótidos , Bencimidazoles , Técnicas Biosensibles , Carbamatos , Técnicas Electroquímicas , Grafito , Límite de Detección , Polietileneimina , Polimerizacion , Grafito/química , Carbamatos/química , Carbamatos/análisis , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Polietileneimina/química , Técnicas Biosensibles/métodos , Bencimidazoles/química , Aptámeros de Nucleótidos/química , Electrodos , Reproducibilidad de los ResultadosRESUMEN
Tetraallylsilane can undergo either a mono or double rearrangement when treated with iodine (I2). The extent of rearrangement depends on the equivalents of I2 used, where 1 equivalent gives high yields of mono-rearranged products and excess (e.g., 3 equivalents) causes double rearrangement to occur. This transformation can be applied to the synthesis of potentially valuable silicon-stereogenic organosilanes.
Asunto(s)
Yodo , Silanos , Silicio , Silanos/química , Yodo/química , Silicio/química , Compuestos de Organosilicio/química , Estereoisomerismo , Estructura MolecularRESUMEN
To convert Na2SO4 into other high-value products (NaOH, H2SO4, and (NH4)2SO4), three types of cell configurations of electrodialysis (ED) were applied (three-compartment bipolar membrane ED (BMED), four-compartment ED metathesis (EDM) and five-compartment bipolar membrane ED multifunction (BMEDM)) and parameters such as average voltage variation, removal ratio of salt, product concentration, conversion rate, ion flux, and energy consumption were calculated and compared. The experimental results and calculations indicated that the overall performance of BMEDM was inferior to that of BMED and EDM. An industrial model was established, which indicated that the net profit from converting Na2SO4 using BMEDM was always higher than that from BMED and EDM. Based on the advantages of low investment (132 $) and energy cost (152 $/t Na2SO4), EDM was applicable to factories with a low output of Na2SO4 (production capacity <45%), whereas BMED (157.3 $/t Na2SO4) and BMED-5 (227.6 $/t Na2SO4) were applicable to factories with a high output of Na2SO4 (production capacity >45%) based on high net profits.
RESUMEN
The metathesis reaction between carbonyl compounds and olefins has emerged as a potent strategy for facilitating swift functional group interconversion and the construction of intricate organic structures through the creation of novel carbon-carbon double bonds. To date, significant progress has been made in carbonyl-olefin metathesis reactions, where oxetane, pyrazolidine, 1,3-diol, and metal alkylidene have been proved to be key intermediates. Recently, several reviews have been disclosed, focusing on distinct catalytic approaches for achieving carbonyl-olefin metathesis. However, the summarization of cyclization strategies for constructing aromatic heterocyclic frameworks through carbonyl-olefin metathesis reactions has rarely been reported. Consequently, we present an up-to-date review of the cyclization strategies in carbonyl-olefin metathesis, categorizing them into three main groups: the formation of monocyclic compounds, bicyclic compounds, and polycyclic compounds. This review delves into the underlying mechanism, scope, and applications, offering a comprehensive perspective on the current strength and the limitation of this field.
RESUMEN
In 2021, global plastics production was 390.7 Mt; in 2022, it was 400.3 Mt, showing an increase of 2.4%, and this rising tendency will increase yearly. Of this data, less than 2% correspond to bio-based plastics. Currently, polymers, including elastomers, are non-recyclable and come from non-renewable sources. Additionally, most elastomers are thermosets, making them complex to recycle and reuse. It takes hundreds to thousands of years to decompose or biodegrade, contributing to plastic waste accumulation, nano and microplastic formation, and environmental pollution. Due to this, the synthesis of elastomers from natural and renewable resources has attracted the attention of researchers and industries. In this review paper, new methods and strategies are proposed for the preparation of bio-based elastomers. The main goals are the advances and improvements in the synthesis, properties, and applications of bio-based elastomers from natural and industrial rubbers, polyurethanes, polyesters, and polyethers, and an approach to their circular economy and sustainability. Olefin metathesis is proposed as a novel and sustainable method for the synthesis of bio-based elastomers, which allows for the depolymerization or degradation of rubbers with the use of essential oils, terpenes, fatty acids, and fatty alcohols from natural resources such as chain transfer agents (CTA) or donors of the terminal groups in the main chain, which allow for control of the molecular weights and functional groups, obtaining new compounds, oligomers, and bio-based elastomers with an added value for the application of new polymers and materials. This tendency contributes to the development of bio-based elastomers that can reduce carbon emissions, avoid cross-contamination from fossil fuels, and obtain a greener material with biodegradable and/or compostable behavior.
Asunto(s)
Elastómeros , Plásticos , Polímeros , Goma , PoliuretanosRESUMEN
Ullazines and their π-expanded derivatives have gained much attention as active components in various applications, such as in organic photovoltaic cells or as photosensitizers for CO2 photoreduction. Here, we report the divergent synthesis of functionalized diazaullazines by means of two different domino-reactions consisting of either a Povarov/cycloisomerization or alkyne-carbonyl metathesis/cycloisomerization protocol. The corresponding quinolino-diazaullazine and benzoyl-diazaullazine derivatives were obtained in moderate to good yields. Their optical and electronic properties were studied and compared to related, literature-known compounds to obtain insights into the impact of nitrogen doping and π-expansion.
RESUMEN
Kappa opioid receptor (KOR) antagonists have potential therapeutic applications in the treatment of stress-induced relapse to substance abuse and mood disorders. The dynorphin A analog arodyn (Ac[Phe1,2,3,Arg4,D-Ala8]dynorphin A-(1-11)-NH2) exhibits potent and selective kappa opioid receptor antagonism. Multiple cyclizations in longer peptides, such as dynorphin and its analogs, can extend the conformational constraint to additional regions of the peptide beyond what is typically constrained by a single cyclization. Here, we report the design, synthesis, and pharmacological evaluation of a bicyclic arodyn analog with two constraints in the opioid peptide sequence. The peptide, designed based on structure-activity relationships of monocyclic arodyn analogs, was synthesized by solid-phase peptide synthesis and cyclized by sequential ring-closing metathesis (RCM) in the C- and N-terminal sequences. Molecular modeling studies suggest similar interactions of key aromatic and basic residues in the bicyclic peptide with KOR as found in the cryoEM structure of KOR-bound dynorphin, despite substantial differences in the backbone conformations of the two peptides. The bicyclic peptide's affinities at KOR and mu opioid receptors (MOR) were determined in radioligand binding assays, and its KOR antagonism was determined in the [35S]GTPγS assay in KOR-expressing cells. The bicyclic analog retains KOR affinity and selectivity (Ki = 26 nM, 97-fold selectivity over MOR) similar to arodyn and exhibits potent KOR antagonism in the dynorphin-stimulated [35S]GTPγS assay. This bicyclic peptide represents a promising advance in preparing cyclic opioid peptide ligands and opens avenues for the rational design of additional bicyclic opioid peptide analogs.
Asunto(s)
Dinorfinas , Receptores Opioides kappa , Receptores Opioides kappa/antagonistas & inhibidores , Receptores Opioides kappa/metabolismo , Dinorfinas/química , Dinorfinas/farmacología , Humanos , Animales , Relación Estructura-Actividad , Modelos Moleculares , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/síntesis química , Secuencia de AminoácidosRESUMEN
The beauty of one-pot cascade reaction lies in the efficient disconnection and construction of several bonds in a single reaction flask, without the isolation of any intermediates. Herein, we report the first photoinduced thermally promoted cascade reactions of readily available aromatic ketones and aromatic gem-difluoroalkenes for the synthesis of phenanthrenes which possess potential utility in drug design and materials science. The reaction combines carbonyl-olefin metathesis (cascade photoinduced [2+2] cyclization and thermally controlled retro [2+2] cyclization) and dehydrogenative cyclization (cascade photoinduced conrotatory 6π electrocyclization and collidine-promoted dehydrogenative aromatization) together in one pot. The oxidant-free, acid-free and metal-free reaction shows broad substrate scope and wide functional group tolerance.