Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.338
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(22): 5635-5652.e29, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34653350

RESUMEN

While prime editing enables precise sequence changes in DNA, cellular determinants of prime editing remain poorly understood. Using pooled CRISPRi screens, we discovered that DNA mismatch repair (MMR) impedes prime editing and promotes undesired indel byproducts. We developed PE4 and PE5 prime editing systems in which transient expression of an engineered MMR-inhibiting protein enhances the efficiency of substitution, small insertion, and small deletion prime edits by an average 7.7-fold and 2.0-fold compared to PE2 and PE3 systems, respectively, while improving edit/indel ratios by 3.4-fold in MMR-proficient cell types. Strategic installation of silent mutations near the intended edit can enhance prime editing outcomes by evading MMR. Prime editor protein optimization resulted in a PEmax architecture that enhances editing efficacy by 2.8-fold on average in HeLa cells. These findings enrich our understanding of prime editing and establish prime editing systems that show substantial improvement across 191 edits in seven mammalian cell types.


Asunto(s)
Edición Génica , Sistemas CRISPR-Cas/genética , Línea Celular , ADN/metabolismo , Reparación de la Incompatibilidad de ADN/genética , Femenino , Genes Dominantes , Genoma Humano , Humanos , Masculino , Modelos Biológicos , Homólogo 1 de la Proteína MutL/genética , Mutación/genética , ARN/metabolismo , Reproducibilidad de los Resultados
2.
Cell ; 184(18): 4734-4752.e20, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34450029

RESUMEN

Immune responses to cancer are highly variable, with mismatch repair-deficient (MMRd) tumors exhibiting more anti-tumor immunity than mismatch repair-proficient (MMRp) tumors. To understand the rules governing these varied responses, we transcriptionally profiled 371,223 cells from colorectal tumors and adjacent normal tissues of 28 MMRp and 34 MMRd individuals. Analysis of 88 cell subsets and their 204 associated gene expression programs revealed extensive transcriptional and spatial remodeling across tumors. To discover hubs of interacting malignant and immune cells, we identified expression programs in different cell types that co-varied across tumors from affected individuals and used spatial profiling to localize coordinated programs. We discovered a myeloid cell-attracting hub at the tumor-luminal interface associated with tissue damage and an MMRd-enriched immune hub within the tumor, with activated T cells together with malignant and myeloid cells expressing T cell-attracting chemokines. By identifying interacting cellular programs, we reveal the logic underlying spatially organized immune-malignant cell networks.


Asunto(s)
Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Proteínas Morfogenéticas Óseas/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Compartimento Celular , Línea Celular Tumoral , Quimiocinas/metabolismo , Estudios de Cohortes , Neoplasias Colorrectales/genética , Reparación de la Incompatibilidad de ADN/genética , Células Endoteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunidad , Inflamación/patología , Monocitos/patología , Células Mieloides/patología , Neutrófilos/patología , Células del Estroma/metabolismo , Linfocitos T/metabolismo , Transcripción Genética
3.
Cell ; 174(6): 1586-1598.e12, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30100188

RESUMEN

Cancer immunotherapies have shown substantial clinical activity for a subset of patients with epithelial cancers. Still, technological platforms to study cancer T-cell interactions for individual patients and understand determinants of responsiveness are presently lacking. Here, we establish and validate a platform to induce and analyze tumor-specific T cell responses to epithelial cancers in a personalized manner. We demonstrate that co-cultures of autologous tumor organoids and peripheral blood lymphocytes can be used to enrich tumor-reactive T cells from peripheral blood of patients with mismatch repair-deficient colorectal cancer and non-small-cell lung cancer. Furthermore, we demonstrate that these T cells can be used to assess the efficiency of killing of matched tumor organoids. This platform provides an unbiased strategy for the isolation of tumor-reactive T cells and provides a means by which to assess the sensitivity of tumor cells to T cell-mediated attack at the level of the individual patient.


Asunto(s)
Leucocitos Mononucleares/citología , Linfocitos T/inmunología , Anciano , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Técnicas de Cultivo de Célula , Técnicas de Cocultivo , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Femenino , Humanos , Técnicas In Vitro , Interferón gamma/farmacología , Leucocitos Mononucleares/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Activación de Linfocitos/efectos de los fármacos , Masculino , Persona de Mediana Edad , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Células Tumorales Cultivadas
4.
Cell ; 170(3): 534-547.e23, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28753428

RESUMEN

Many processes can cause the same nucleotide change in a genome, making the identification of the mechanisms causing mutations a difficult challenge. Here, we show that clustered mutations provide a more precise fingerprint of mutagenic processes. Of nine clustered mutation signatures identified from >1,000 tumor genomes, three relate to variable APOBEC activity and three are associated with tobacco smoking. An additional signature matches the spectrum of translesion DNA polymerase eta (POLH). In lymphoid cells, these mutations target promoters, consistent with AID-initiated somatic hypermutation. In solid tumors, however, they are associated with UV exposure and alcohol consumption and target the H3K36me3 chromatin of active genes in a mismatch repair (MMR)-dependent manner. These regions normally have a low mutation rate because error-free MMR also targets H3K36me3 chromatin. Carcinogens and error-prone repair therefore redistribute mutations to the more important regions of the genome, contributing a substantial mutation load in many tumors, including driver mutations.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Mutación , Neoplasias/genética , Desaminasas APOBEC , Citidina Desaminasa , Citosina Desaminasa/genética , ADN Polimerasa Dirigida por ADN/genética , Humanos , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Melanoma/genética , Mutagénesis , Fumar/efectos adversos , Rayos Ultravioleta/efectos adversos
5.
Cell ; 171(5): 1042-1056.e10, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29056344

RESUMEN

We present an extensive assessment of mutation burden through sequencing analysis of >81,000 tumors from pediatric and adult patients, including tumors with hypermutation caused by chemotherapy, carcinogens, or germline alterations. Hypermutation was detected in tumor types not previously associated with high mutation burden. Replication repair deficiency was a major contributing factor. We uncovered new driver mutations in the replication-repair-associated DNA polymerases and a distinct impact of microsatellite instability and replication repair deficiency on the scale of mutation load. Unbiased clustering, based on mutational context, revealed clinically relevant subgroups regardless of the tumors' tissue of origin, highlighting similarities in evolutionary dynamics leading to hypermutation. Mutagens, such as UV light, were implicated in unexpected cancers, including sarcomas and lung tumors. The order of mutational signatures identified previous treatment and germline replication repair deficiency, which improved management of patients and families. These data will inform tumor classification, genetic testing, and clinical trial design.


Asunto(s)
Neoplasias/genética , Adulto , Niño , Análisis por Conglomerados , ADN Polimerasa II/genética , ADN Polimerasa III/genética , Replicación del ADN , Humanos , Mutación , Neoplasias/clasificación , Neoplasias/patología , Neoplasias/terapia , Proteínas de Unión a Poli-ADP-Ribosa/genética
6.
Mol Cell ; 84(7): 1224-1242.e13, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38458201

RESUMEN

Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.


Asunto(s)
Ciclinas , Reparación de la Incompatibilidad de ADN , Animales , Ciclinas/genética , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Interfase , Mamíferos/metabolismo
7.
Mol Cell ; 83(5): 660-680, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36669489

RESUMEN

Targeted therapy and immunotherapy have revolutionized cancer treatment. However, the ability of cancer to evade the immune system remains a major barrier for effective treatment. Related to this, several targeted DNA-damage response inhibitors (DDRis) are being tested in the clinic and have been shown to potentiate anti-tumor immune responses. Seminal studies have shown that these agents are highly effective in a pan-cancer class of tumors with genetic defects in key DNA repair genes such as BRCA1/2, BRCA-related genes, ataxia telangiectasia mutated (ATM), and others. Here, we review the molecular consequences of targeted DDR inhibition, from tumor cell death to increased engagement of the anti-tumor immune response. Additionally, we discuss mechanistic and clinical rationale for pairing targeted DDRis with immunotherapy for enhanced tumor control. We also review biomarkers for patient selection and promising new immunotherapy approaches poised to form the foundation of next-generation DDRi and immunotherapy combinations.


Asunto(s)
Daño del ADN , Neoplasias , Humanos , Neoplasias/genética , Reparación del ADN , Proteínas de la Ataxia Telangiectasia Mutada/genética
8.
Annu Rev Biochem ; 84: 199-226, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25580529

RESUMEN

DNA mismatch repair is a conserved antimutagenic pathway that maintains genomic stability through rectification of DNA replication errors and attenuation of chromosomal rearrangements. Paradoxically, mutagenic action of mismatch repair has been implicated as a cause of triplet repeat expansions that cause neurological diseases such as Huntington disease and myotonic dystrophy. This mutagenic process requires the mismatch recognition factor MutSß and the MutLα (and/or possibly MutLγ) endonuclease, and is thought to be triggered by the transient formation of unusual DNA structures within the expanded triplet repeat element. This review summarizes the current knowledge of DNA mismatch repair involvement in triplet repeat expansion, which encompasses in vitro biochemical findings, cellular studies, and various in vivo transgenic animal model experiments. We present current mechanistic hypotheses regarding mismatch repair protein function in mediating triplet repeat expansions and discuss potential therapeutic approaches targeting the mismatch repair pathway.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Expansión de Repetición de Trinucleótido , Animales , Cromatina/metabolismo , Escherichia coli , Inestabilidad Genómica , Histonas/metabolismo , Humanos , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Conformación de Ácido Nucleico
9.
Genes Dev ; 36(7-8): 433-450, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35450882

RESUMEN

Somatic hypermutation (SHM) produces point mutations in immunoglobulin (Ig) genes in B cells when uracils created by the activation-induced deaminase are processed in a mutagenic manner by enzymes of the base excision repair (BER) and mismatch repair (MMR) pathways. Such uracil processing creates DNA strand breaks and is susceptible to the generation of deleterious deletions. Here, we demonstrate that the DNA repair factor HMCES strongly suppresses deletions without significantly affecting other parameters of SHM in mouse and human B cells, thereby facilitating the production of antigen-specific antibodies. The deletion-prone repair pathway suppressed by HMCES operates downstream from the uracil glycosylase UNG and is mediated by the combined action of BER factor APE2 and MMR factors MSH2, MSH6, and EXO1. HMCES's ability to shield against deletions during SHM requires its capacity to form covalent cross-links with abasic sites, in sharp contrast to its DNA end-joining role in class switch recombination but analogous to its genome-stabilizing role during DNA replication. Our findings lead to a novel model for the protection of Ig gene integrity during SHM in which abasic site cross-linking by HMCES intercedes at a critical juncture during processing of vulnerable gapped DNA intermediates by BER and MMR enzymes.


Asunto(s)
Genes de Inmunoglobulinas , Hipermutación Somática de Inmunoglobulina , Animales , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ADN/genética , Proteínas de Unión al ADN , Genes de Inmunoglobulinas/genética , Cambio de Clase de Inmunoglobulina/genética , Ratones , Hipermutación Somática de Inmunoglobulina/genética , Uracilo
10.
Mol Cell ; 78(6): 1166-1177.e6, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32497495

RESUMEN

Human tumors with exonuclease domain mutations in the gene encoding DNA polymerase ε (POLE) have incredibly high mutation burdens. These errors arise in four unique mutation signatures occurring in different relative amounts, the etiologies of which remain poorly understood. We used CRISPR-Cas9 to engineer human cell lines expressing POLE tumor variants, with and without mismatch repair (MMR). Whole-exome sequencing of these cells after defined numbers of population doublings permitted analysis of nascent mutation accumulation. Unlike an exonuclease active site mutant that we previously characterized, POLE cancer mutants readily drive signature mutagenesis in the presence of functional MMR. Comparison of cell line and human patient data suggests that the relative abundance of mutation signatures partitions POLE tumors into distinct subgroups dependent on the nature of the POLE allele, its expression level, and MMR status. These results suggest that different POLE mutants have previously unappreciated differences in replication fidelity and mutagenesis.


Asunto(s)
Reparación de la Incompatibilidad de ADN/genética , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Alelos , Línea Celular Tumoral , Reparación de la Incompatibilidad de ADN/fisiología , Humanos , Mutagénesis/genética , Mutación/genética , Neoplasias/genética , Neoplasias/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo
11.
Mol Cell ; 78(6): 1252-1263.e3, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32362315

RESUMEN

Crossover recombination is critical for meiotic chromosome segregation, but how mammalian crossing over is accomplished is poorly understood. Here, we illuminate how strands exchange during meiotic recombination in male mice by analyzing patterns of heteroduplex DNA in recombinant molecules preserved by the mismatch correction deficiency of Msh2-/- mutants. Surprisingly, MSH2-dependent recombination suppression was not evident. However, a substantial fraction of crossover products retained heteroduplex DNA, and some provided evidence of MSH2-independent correction. Biased crossover resolution was observed, consistent with asymmetry between DNA ends in earlier intermediates. Many crossover products yielded no heteroduplex DNA, suggesting dismantling by D-loop migration. Unlike the complexity of crossovers in yeast, these simple modifications of the original double-strand break repair model-asymmetry in recombination intermediates and D-loop migration-may be sufficient to explain most meiotic crossing over in mice while also addressing long-standing questions related to Holliday junction resolution.


Asunto(s)
Intercambio Genético/fisiología , Recombinación Homóloga/fisiología , Meiosis/fisiología , Animales , Segregación Cromosómica/genética , Intercambio Genético/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , ADN Cruciforme/genética , ADN Cruciforme/metabolismo , Recombinación Homóloga/genética , Masculino , Meiosis/genética , Ratones , Ratones Endogámicos DBA , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Ácidos Nucleicos Heterodúplex/genética
12.
EMBO J ; 42(3): e111998, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36541070

RESUMEN

The Werner Syndrome helicase, WRN, is a promising therapeutic target in cancers with microsatellite instability (MSI). Long-term MSI leads to the expansion of TA nucleotide repeats proposed to form cruciform DNA structures, which in turn cause DNA breaks and cell lethality upon WRN downregulation. Here we employed biochemical assays to show that WRN helicase can efficiently and directly unfold cruciform structures, thereby preventing their cleavage by the SLX1-SLX4 structure-specific endonuclease. TA repeats are particularly prone to form cruciform structures, explaining why these DNA sequences are preferentially broken in MSI cells upon WRN downregulation. We further demonstrate that the activity of the DNA mismatch repair (MMR) complexes MutSα (MSH2-MSH6), MutSß (MSH2-MSH3), and MutLα (MLH1-PMS2) similarly decreases the level of DNA cruciforms, although the mechanism is different from that employed by WRN. When combined, WRN and MutLα exhibited higher than additive effects in in vitro cruciform processing, suggesting that WRN and the MMR proteins may cooperate. Our data explain how WRN and MMR defects cause genome instability in MSI cells with expanded TA repeats, and provide a mechanistic basis for their recently discovered synthetic-lethal interaction with promising applications in precision cancer therapy.


Asunto(s)
Reparación de la Incompatibilidad de ADN , ADN Cruciforme , Humanos , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Inestabilidad de Microsatélites , Helicasa del Síndrome de Werner/genética , Helicasa del Síndrome de Werner/metabolismo , Homólogo 1 de la Proteína MutL/genética
13.
Am J Hum Genet ; 111(6): 1165-1183, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38749429

RESUMEN

The pathological huntingtin (HTT) trinucleotide repeat underlying Huntington disease (HD) continues to expand throughout life. Repeat length correlates both with earlier age at onset (AaO) and faster progression, making slowing its expansion an attractive therapeutic approach. Genome-wide association studies have identified candidate variants associated with altered AaO and progression, with many found in DNA mismatch repair (MMR)-associated genes. We examine whether lowering expression of these genes affects the rate of repeat expansion in human ex vivo models using HD iPSCs and HD iPSC-derived striatal medium spiny neuron-enriched cultures. We have generated a stable CRISPR interference HD iPSC line in which we can specifically and efficiently lower gene expression from a donor carrying over 125 CAG repeats. Lowering expression of each member of the MMR complexes MutS (MSH2, MSH3, and MSH6), MutL (MLH1, PMS1, PMS2, and MLH3), and LIG1 resulted in characteristic MMR deficiencies. Reduced MSH2, MSH3, and MLH1 slowed repeat expansion to the largest degree, while lowering either PMS1, PMS2, or MLH3 slowed it to a lesser degree. These effects were recapitulated in iPSC-derived striatal cultures where MutL factor expression was lowered. CRISPRi-mediated lowering of key MMR factor expression to levels feasibly achievable by current therapeutic approaches was able to effectively slow the expansion of the HTT CAG tract. We highlight members of the MutL family as potential targets to slow pathogenic repeat expansion with the aim to delay onset and progression of HD and potentially other repeat expansion disorders exhibiting somatic instability.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Proteína Huntingtina , Enfermedad de Huntington , Células Madre Pluripotentes Inducidas , Expansión de Repetición de Trinucleótido , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Reparación de la Incompatibilidad de ADN/genética , Células Madre Pluripotentes Inducidas/metabolismo , Expansión de Repetición de Trinucleótido/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Genes Modificadores , Proteína 3 Homóloga de MutS/genética , Proteína 3 Homóloga de MutS/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas MutL/genética , Proteínas MutL/metabolismo , Sistemas CRISPR-Cas , Estudio de Asociación del Genoma Completo
14.
Mol Cell ; 74(5): 866-876, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31173722

RESUMEN

The replisome quickly and accurately copies billions of DNA bases each cell division cycle. However, it can make errors, especially when the template DNA is damaged. In these cases, replication-coupled repair mechanisms remove the mistake or repair the template lesions to ensure high fidelity and complete copying of the genome. Failures in these genome maintenance activities generate mutations, rearrangements, and chromosome segregation problems that cause many human diseases. In this review, I provide a broad overview of replication-coupled repair pathways, explaining how they fix polymerase mistakes, respond to template damage that acts as obstacles to the replisome, deal with broken forks, and impact human health and disease.


Asunto(s)
Reparación del ADN/genética , Replicación del ADN/genética , Enfermedades Genéticas Congénitas/genética , Genoma Humano/genética , Ciclo Celular/genética , Segregación Cromosómica/genética , Daño del ADN/genética , Inestabilidad Genómica/genética , Humanos , Mutación/genética
15.
Mol Cell ; 70(1): 9-20.e6, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625041

RESUMEN

Meiotic recombination is essential for fertility and allelic shuffling. Canonical recombination models fail to capture the observed complexity of meiotic recombinants. Here, by combining genome-wide meiotic heteroduplex DNA patterns with meiotic DNA double-strand break (DSB) sites, we show that part of this complexity results from frequent template switching during synthesis-dependent strand annealing that yields noncrossovers and from branch migration of double Holliday junction (dHJ)-containing intermediates that mainly yield crossovers. This complexity also results from asymmetric positioning of crossover intermediates relative to the initiating DSB and Msh2-independent conversions promoted by the suspected dHJ resolvase Mlh1-3 as well as Exo1 and Sgs1. Finally, we show that dHJ resolution is biased toward cleavage of the pair of strands containing newly synthesized DNA near the junctions and that this bias can be decoupled from the crossover-biased dHJ resolution. These properties are likely conserved in eukaryotes containing ZMM proteins, which includes mammals.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Cruciforme , ADN de Hongos/genética , Meiosis , Ácidos Nucleicos Heterodúplex/genética , Recombinación Genética , Saccharomyces cerevisiae/genética , ADN de Hongos/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Proteínas MutL/genética , Proteínas MutL/metabolismo , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex/metabolismo , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Proc Natl Acad Sci U S A ; 120(33): e2302103120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549289

RESUMEN

Human genome-wide association studies have identified FAN1 and several DNA mismatch repair (MMR) genes as modifiers of Huntington's disease age of onset. In animal models, FAN1 prevents somatic expansion of CAG triplet repeats, whereas MMR proteins promote this process. To understand the molecular basis of these opposing effects, we evaluated FAN1 nuclease function on DNA extrahelical extrusions that represent key intermediates in triplet repeat expansion. Here, we describe a strand-directed, extrusion-provoked nuclease function of FAN1 that is activated by RFC, PCNA, and ATP at physiological ionic strength. Activation of FAN1 in this manner results in DNA cleavage in the vicinity of triplet repeat extrahelical extrusions thereby leading to their removal in human cell extracts. The role of PCNA and RFC is to confer strand directionality to the FAN1 nuclease, and this reaction requires a physical interaction between PCNA and FAN1. Using cell extracts, we show that FAN1-dependent CAG extrusion removal relies on a very short patch excision-repair mechanism that competes with MutSß-dependent MMR which is characterized by longer excision tracts. These results provide a mechanistic basis for the role of FAN1 in preventing repeat expansion and could explain the antagonistic effects of MMR and FAN1 in disease onset/progression.


Asunto(s)
Estudio de Asociación del Genoma Completo , Repeticiones de Trinucleótidos , Humanos , Extractos Celulares , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Enzimas Multifuncionales/genética , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Expansión de Repetición de Trinucleótido
17.
Genes Dev ; 32(11-12): 806-821, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29899141

RESUMEN

Post-replicative correction of replication errors by the mismatch repair (MMR) system is critical for suppression of mutations. Although the MMR system may need to handle nucleosomes at the site of chromatin replication, how MMR occurs in the chromatin environment remains unclear. Here, we show that nucleosomes are excluded from a >1-kb region surrounding a mismatched base pair in Xenopus egg extracts. The exclusion was dependent on the Msh2-Msh6 mismatch recognition complex but not the Mlh1-containing MutL homologs and counteracts both the HIRA- and CAF-1 (chromatin assembly factor 1)-mediated chromatin assembly pathways. We further found that the Smarcad1 chromatin remodeling ATPase is recruited to mismatch-carrying DNA in an Msh2-dependent but Mlh1-independent manner to assist nucleosome exclusion and that Smarcad1 facilitates the repair of mismatches when nucleosomes are preassembled on DNA. In budding yeast, deletion of FUN30, the homolog of Smarcad1, showed a synergistic increase of spontaneous mutations in combination with MSH6 or MSH3 deletion but no significant increase with MSH2 deletion. Genetic analyses also suggested that the function of Fun30 in MMR is to counteract CAF-1. Our study uncovers that the eukaryotic MMR system has an ability to exclude local nucleosomes and identifies Smarcad1/Fun30 as an accessory factor for the MMR reaction.


Asunto(s)
Disparidad de Par Base/fisiología , ADN Helicasas/metabolismo , Reparación de la Incompatibilidad de ADN/genética , Proteína 2 Homóloga a MutS/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Disparidad de Par Base/genética , Ensamble y Desensamble de Cromatina/genética , ADN/genética , ADN/metabolismo , ADN Helicasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Xenopus laevis
18.
J Biol Chem ; 300(8): 107492, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925328

RESUMEN

The human alkylation B (AlkB) homologs, ALKBH2 and ALKBH3, respond to methylation damage to maintain genomic integrity and cellular viability. Both ALKBH2 and ALKBH3 are direct reversal repair enzymes that remove 1-methyladenine (1meA) and 3-methylcytosine (3meC) lesions commonly generated by alkylating chemotherapeutic agents. Thus, the existence of deficiencies in ALKBH proteins can be exploited in synergy with chemotherapy. In this study, we investigated possible interactions between ALKBH2 and ALKBH3 with other proteins that could alter damage response and discovered an interaction with the mismatch repair (MMR) system. To test whether the lack of active MMR impacts ALKBH2 and/or ALKBH3 response to methylating agents, we generated cells deficient in ALKBH2, ALKBH3, or both in addition to Mlh homolog 1 (MLH1), another MMR protein. We found that MLH1koALKBH3ko cells showed enhanced resistance toward SN1- and SN2-type methylating agents, whereas MLH1koALKBH2ko cells were only resistant to SN1-type methylating agents. Concomitant loss of ALKBH2 and ALKBH3 (ALKBH2ko3ko) rendered cells sensitive to SN1- and SN2-agents, but the additional loss of MLH1 enhanced resistance to both types of damage. We also showed that ALKBH2ko3ko cells have an ATR-dependent arrest at the G2/M checkpoint, increased apoptotic signaling, and replication fork stress in response to methylation. However, these responses were not observed with the loss of functional MLH1 in MLH1koALKBH2ko3ko cells. Finally, in MLH1koALKBH2ko3ko cells, we observed elevated mutant frequency in untreated and temozolomide treated cells. These results suggest that obtaining a more accurate prognosis of chemotherapeutic outcome requires information on the functionality of ALKBH2, ALKBH3, and MLH1.


Asunto(s)
Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB , Reparación de la Incompatibilidad de ADN , Homólogo 1 de la Proteína MutL , Humanos , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/genética , Homólogo 1 de la Proteína MutL/metabolismo , Homólogo 1 de la Proteína MutL/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/genética , Desmetilación
19.
J Biol Chem ; 300(8): 107592, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39032648

RESUMEN

MLH1 plays a critical role in DNA mismatch repair and genome maintenance. MLH1 deficiency promotes cancer development and progression, but the mechanism underlying MLH1 regulation remains enigmatic. In this study, we demonstrated that MLH1 protein is degraded by the ubiquitin-proteasome system and have identified vital cis-elements and trans-factors involved in MLH1 turnover. We found that the region encompassing the amino acids 516 to 650 is crucial for MLH1 degradation. The mismatch repair protein PMS2 may shield MLH1 from degradation as it binds to the MLH1 segment key to its turnover. Furthermore, we have identified the E3 ubiquitin ligase UBR4 and the deubiquitylase USP5, which oppositely modulate MLH1 stability. In consistence, UBR4 or USP5 deficiency affects the cellular response to nucleotide analog 6-TG, supporting their roles in regulating mismatch repair. Our study has revealed important insights into the regulatory mechanisms underlying MLH1 proteolysis, critical to DNA mismatch repair related diseases.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Homólogo 1 de la Proteína MutL , Proteolisis , Ubiquitina-Proteína Ligasas , Homólogo 1 de la Proteína MutL/metabolismo , Homólogo 1 de la Proteína MutL/genética , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Estabilidad Proteica , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/metabolismo , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/genética , Células HEK293
20.
J Biol Chem ; 300(1): 105588, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141767

RESUMEN

Proliferating cell nuclear antigen (PCNA) is a homo-trimeric clamp complex that serves as the molecular hub for various DNA transactions, including DNA synthesis and post-replicative mismatch repair. Its timely loading and unloading are critical for genome stability. PCNA loading is catalyzed by Replication factor C (RFC) and the Ctf18 RFC-like complex (Ctf18-RLC), and its unloading is catalyzed by Atad5/Elg1-RLC. However, RFC, Ctf18-RLC, and even some subcomplexes of their shared subunits are capable of unloading PCNA in vitro, leaving an ambiguity in the division of labor in eukaryotic clamp dynamics. By using a system that specifically detects PCNA unloading, we show here that Atad5-RLC, which accounts for only approximately 3% of RFC/RLCs, nevertheless provides the major PCNA unloading activity in Xenopus egg extracts. RFC and Ctf18-RLC each account for approximately 40% of RFC/RLCs, while immunodepletion of neither Rfc1 nor Ctf18 detectably affects the rate of PCNA unloading in our system. PCNA unloading is dependent on the ATP-binding motif of Atad5, independent of nicks on DNA and chromatin assembly, and inhibited effectively by PCNA-interacting peptides. These results support a model in which Atad5-RLC preferentially unloads DNA-bound PCNA molecules that are free from their interactors.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Proteínas de Unión al ADN , Antígeno Nuclear de Célula en Proliferación , Animales , ADN , Replicación del ADN , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Xenopus laevis/metabolismo , Oocitos , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA