Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 37(1): e22678, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36538269

RESUMEN

Mitochondrial calcium (Ca2+ ) regulation is critically implicated in the regulation of bioenergetics and cell fate. Ca2+ , a universal signaling ion, passively diffuses into the mitochondrial intermembrane space (IMS) through voltage-dependent anion channels (VDAC), where uptake into the matrix is tightly regulated across the inner mitochondrial membrane (IMM) by the mitochondrial Ca2+ uniporter complex (mtCU). In recent years, immense progress has been made in identifying and characterizing distinct structural and physiological mechanisms of mtCU component function. One of the main regulatory components of the Ca2+ selective mtCU channel is the mitochondrial Ca2+ uniporter dominant-negative beta subunit (MCUb). The structural mechanisms underlying the inhibitory effect(s) exerted by MCUb are poorly understood, despite high homology to the main mitochondrial Ca2+ uniporter (MCU) channel-forming subunits. In this review, we provide an overview of the structural differences between MCUb and MCU, believed to contribute to the inhibition of mitochondrial Ca2+ uptake. We highlight the possible structural rationale for the absent interaction between MCUb and the mitochondrial Ca2+ uptake 1 (MICU1) gatekeeping subunit and a potential widening of the pore upon integration of MCUb into the channel. We discuss physiological and pathophysiological information known about MCUb, underscoring implications in cardiac function and arrhythmia as a basis for future therapeutic discovery. Finally, we discuss potential post-translational modifications on MCUb as another layer of important regulation.


Asunto(s)
Canales de Calcio , Calcio , Calcio/metabolismo , Canales de Calcio/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Transporte Biológico , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
2.
Mol Cell ; 64(4): 760-773, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27818145

RESUMEN

Skeletal muscle is a dynamic organ, characterized by an incredible ability to rapidly increase its rate of energy consumption to sustain activity. Muscle mitochondria provide most of the ATP required for contraction via oxidative phosphorylation. Here we found that skeletal muscle mitochondria express a unique MCU complex containing an alternative splice isoform of MICU1, MICU1.1, characterized by the addition of a micro-exon that is sufficient to greatly modify the properties of the MCU. Indeed, MICU1.1 binds Ca2+ one order of magnitude more efficiently than MICU1 and, when heterodimerized with MICU2, activates MCU current at lower Ca2+ concentrations than MICU1-MICU2 heterodimers. In skeletal muscle in vivo, MICU1.1 is required for sustained mitochondrial Ca2+ uptake and ATP production. These results highlight a novel mechanism of the molecular plasticity of the MCU Ca2+ uptake machinery that allows skeletal muscle mitochondria to be highly responsive to sarcoplasmic [Ca2+] responses.


Asunto(s)
Proteínas de Unión al Calcio/genética , Calcio/metabolismo , Mitocondrias Musculares/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Músculo Esquelético/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas de Unión al Calcio/metabolismo , Expresión Génica , Células HEK293 , Células HeLa , Humanos , Transporte Iónico , Masculino , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Morfolinos/genética , Morfolinos/metabolismo , Especificidad de Órganos , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
3.
J Cell Sci ; 134(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34110411

RESUMEN

Mitochondria-endoplasmic reticulum contacts (MERCs) play an essential role in multiple cell physiological processes. Although Mfn2 was the first protein implicated in the formation of MERCs, there is debate as to whether it acts as a tether or antagonizer, largely based on in vitro studies. To understand the role of Mfn2 in MERCs in vivo, we characterized ultrastructural and biochemical changes of MERCs in pyramidal neurons of hippocampus in Mfn2 conditional knockout mice and in Mfn2 overexpressing mice, and found that Mfn2 ablation caused reduced close contacts, whereas Mfn2 overexpression caused increased close contacts between the endoplasmic reticulum (ER) and mitochondria in vivo. Functional studies on SH-SY5Y cells with Mfn2 knockout or overexpression demonstrating similar biochemical changes found that mitochondrial calcium uptake along with IP3R3-Grp75 interaction was decreased in Mfn2 knockout cells but increased in Mfn2 overexpressing cells. Lastly, we found Mfn2 knockout decreased and Mfn2 overexpression increased the interaction between the ER-mitochondria tethering pair of VAPB-PTPIP51. In conclusion, our study supports the notion that Mfn2 plays a critical role in ER-mitochondrial tethering and the formation of close contacts in neuronal cells in vivo.


Asunto(s)
Retículo Endoplásmico , Proteínas Mitocondriales , Animales , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Hipocampo/metabolismo , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Neuronas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo
4.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(3): 552-557, 2023 May.
Artículo en Zh | MEDLINE | ID: mdl-37248583

RESUMEN

Objective: To observe the effect of sepsis on skeletal muscle function and to explore the role of skeletal muscle mitochondrial calcium uptake protein 1 (MICU1). Methods: A total of 40 specific-pathogen-free (SPF) healthy male C57BL/6J mice were randomly assigned to 4 groups, a sham operation group (Sham group, n=8), a sepsis modeling 6 h group (cecal ligation and puncture [CLP]-6 h group, n=10), a sepsis modeling 12 h group (CLP-12 h group, n=10), and a sepsis modeling 24 h group (CLP-24 h, n=12). The sepsis model was established by CLP. Mice in the Sham group only underwent laparotomic exploration of the cecum. Another 20 SPF mice were selected. The tibialis anterior muscle on one side was empty-transfected with adeno-associated virus (AAV) as controls (AAV-C), and the tibialis anterior muscle on the other side was transfected with AAV to enhance MICU1 expression (AAV-M). The mice were randomly assigned to two groups, a sham operation group (AAV-C-Sham and AAV-M-Sham, n=8) and a sepsis model 24 h group (AAV-C-CLP and AAV-M-CLP, n=12). The grip strength and compound muscle action potential (CMAP) of the tibialis anterior muscle were measured in each group at the corresponding time points. The levels of inflammatory factors, including tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), in the skeletal muscle were measured by ELISA. The morphological changes of skeletal muscle cells were observed through H&E staining. The expression levels of MICU1 and muscle atrophy-related proteins, including muscle RING-finger containing protein 1 (MuRF1) and muscle atrophy Fbox protein (MAFbx), were determined by Western blot. The expression levels of MICU1 mRNA in skeletal muscle were determined by RT-qPCR. Results: Compared with mice in the Sham group, mice in the CLP group showed decreased body weight ( P<0.05); their grip strength decreased with the prolongation of CLP modeling time ( P<0.05); the amplitude of CMAP decreased, showing prolonged duration and latency ( P<0.05); the expression levels of inflammatory factors, including TNF-α and IL-6, in skeletal muscle increased gradually ( P<0.05); the fiber diameter and cross-sectional area of skeletal muscle decreased gradually with the prolongation of modeling time ( P<0.05); the protein expression levels of MuRF1and MAFbx proteins increased gradually ( P<0.05); the expression levels of MICU1 protein and mRNA decreased gradually ( P<0.05). There was no significant difference in all indices between AAV-M-Sham and AAV-C-Sham groups ( P>0.05). Compared with mice in the AAV-C-CLP group, mice in the AAV-M-CLP group showed increased grip strength ( P<0.05); the amplitude of CMAP increased, showing shortened duration and latency ( P <0.05); the fiber diameter and cross-sectional area of skeletal muscle increased ( P<0.05); the expression levels of MuRF1and MAFbx decreased ( P<0.05). Conclusion: Sepsis leads to skeletal muscle dysfunction, which is related to the decrease in mitochondrial MICU1 expression.


Asunto(s)
Sepsis , Factor de Necrosis Tumoral alfa , Ratones , Masculino , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Calcio/metabolismo , Ratones Endogámicos C57BL , Músculo Esquelético , Sepsis/complicaciones , Sepsis/metabolismo , Atrofia Muscular , Proteínas de Unión al Calcio , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
5.
Infect Immun ; 90(2): e0055121, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34871043

RESUMEN

Neutrophils simultaneously restrict Staphylococcus aureus dissemination and facilitate bactericidal activity during infection through the formation of neutrophil extracellular traps (NETs). Neutrophils that produce higher levels of mitochondrial superoxide undergo enhanced terminal NET formation (suicidal NETosis) in response to S. aureus; however, mechanisms regulating mitochondrial homeostasis upstream of neutrophil antibacterial processes are not fully resolved. Here, we demonstrate that mitochondrial calcium uptake 1 (MICU1)-deficient (MICU1-/-) neutrophils accumulate higher levels of calcium and iron within the mitochondria in a mitochondrial calcium uniporter (MCU)-dependent manner. Corresponding with increased ion flux through the MCU, mitochondrial superoxide production is elevated, thereby increasing the propensity for MICU1-/- neutrophils to undergo suicidal NETosis rather than primary degranulation in response to S. aureus. Increased NET formation augments macrophage killing of bacterial pathogens. Similarly, MICU1-/- neutrophils alone are not more antibacterial toward S. aureus, but rather, enhanced suicidal NETosis by MICU1-/- neutrophils facilitates increased bactericidal activity in the presence of macrophages. Similarly, mice with a deficiency in MICU1 restricted to cells expressing LysM exhibit lower bacterial burdens in the heart with increased survival during systemic S. aureus infection. Coinciding with the decrease in S. aureus burdens, MICU1-/- neutrophils in the heart produce higher levels of mitochondrial superoxide and undergo enhanced suicidal NETosis. These results demonstrate that ion flux by the MCU affects the antibacterial function of neutrophils during S. aureus infection.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Antibacterianos , Calcio/metabolismo , Canales de Calcio , Proteínas de Unión al Calcio , Humanos , Ratones , Proteínas de Transporte de Membrana Mitocondrial , Neutrófilos/metabolismo , Staphylococcus aureus/metabolismo , Superóxidos
6.
Am J Physiol Cell Physiol ; 320(4): C465-C482, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33296287

RESUMEN

Calcium (Ca2+) signaling is critical for cell function and cell survival. Mitochondria play a major role in regulating the intracellular Ca2+ concentration ([Ca2+]i). Mitochondrial Ca2+ uptake is an important determinant of cell fate and governs respiration, mitophagy/autophagy, and the mitochondrial pathway of apoptosis. Mitochondrial Ca2+ uptake occurs via the mitochondrial Ca2+ uniporter (MCU) complex. This review summarizes the present knowledge on the function of MCU complex, regulation of MCU channel, and the role of MCU in Ca2+ homeostasis and human disease pathogenesis. The channel core consists of four MCU subunits and essential MCU regulators (EMRE). Regulatory proteins that interact with them include mitochondrial Ca2+ uptake 1/2 (MICU1/2), MCU dominant-negative ß-subunit (MCUb), MCU regulator 1 (MCUR1), and solute carrier 25A23 (SLC25A23). In addition to these proteins, cardiolipin, a mitochondrial membrane-specific phospholipid, has been shown to interact with the channel core. The dynamic interplay between the core and regulatory proteins modulates MCU channel activity after sensing local changes in [Ca2+]i, reactive oxygen species, and other environmental factors. Here, we highlight the structural details of the human MCU heteromeric assemblies and their known roles in regulating mitochondrial Ca2+ homeostasis. MCU dysfunction has been shown to alter mitochondrial Ca2+ dynamics, in turn eliciting cell apoptosis. Changes in mitochondrial Ca2+ uptake have been implicated in pathological conditions affecting multiple organs, including the heart, skeletal muscle, and brain. However, our structural and functional knowledge of this vital protein complex remains incomplete, and understanding the precise role for MCU-mediated mitochondrial Ca2+ signaling in disease requires further research efforts.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Metabolismo Energético , Mitocondrias/metabolismo , Animales , Apoptosis , Canales de Calcio/química , Canales de Calcio/efectos de los fármacos , Canales de Calcio/genética , Señalización del Calcio/efectos de los fármacos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Metabolismo Energético/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Potencial de la Membrana Mitocondrial , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/patología , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Terapia Molecular Dirigida , Enfermedades Musculares/tratamiento farmacológico , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Conformación Proteica , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
7.
Am J Physiol Heart Circ Physiol ; 321(4): H615-H632, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34415186

RESUMEN

Cardiac dysfunction in heart failure (HF) and diabetic cardiomyopathy (DCM) is associated with aberrant intracellular Ca2+ handling and impaired mitochondrial function accompanied with reduced mitochondrial calcium concentration (mito-[Ca2+]). Pharmacological or genetic facilitation of mito-Ca2+ uptake was shown to restore Ca2+ transient amplitude in DCM and HF, improving contractility. However, recent reports suggest that pharmacological enhancement of mito-Ca2+ uptake can exacerbate ryanodine receptor-mediated spontaneous sarcoplasmic reticulum (SR) Ca2+ release in ventricular myocytes (VMs) from diseased animals, increasing propensity to stress-induced ventricular tachyarrhythmia. To test whether chronic recovery of mito-[Ca2+] restores systolic Ca2+ release without adverse effects in diastole, we overexpressed mitochondrial Ca2+ uniporter (MCU) in VMs from male rat hearts with hypertrophy induced by thoracic aortic banding (TAB). Measurement of mito-[Ca2+] using genetic probe mtRCamp1h revealed that mito-[Ca2+] in TAB VMs paced at 2 Hz under ß-adrenergic stimulation is lower compared with shams. Adenoviral 2.5-fold MCU overexpression in TAB VMs fully restored mito-[Ca2+]. However, it failed to improve cytosolic Ca2+ handling and reduce proarrhythmic spontaneous Ca2+ waves. Furthermore, mitochondrial-targeted genetic probes MLS-HyPer7 and OMM-HyPer revealed a significant increase in emission of reactive oxygen species (ROS) in TAB VMs with 2.5-fold MCU overexpression. Conversely, 1.5-fold MCU overexpression in TABs, that led to partial restoration of mito-[Ca2+], reduced mitochondria-derived reactive oxygen species (mito-ROS) and spontaneous Ca2+ waves. Our findings emphasize the key role of elevated mito-ROS in disease-related proarrhythmic Ca2+ mishandling. These data establish nonlinear mito-[Ca2+]/mito-ROS relationship, whereby partial restoration of mito-[Ca2+] in diseased VMs is protective, whereas further enhancement of MCU-mediated Ca2+ uptake exacerbates damaging mito-ROS emission.NEW & NOTEWORTHY Defective intracellular Ca2+ homeostasis and aberrant mitochondrial function are common features in cardiac disease. Here, we directly compared potential benefits of mito-ROS scavenging and restoration of mito-Ca2+ uptake by overexpressing MCU in ventricular myocytes from hypertrophic rat hearts. Experiments using novel mito-ROS and Ca2+ biosensors demonstrated that mito-ROS scavenging rescued both cytosolic and mito-Ca2+ homeostasis, whereas moderate and high MCU overexpression demonstrated disparate effects on mito-ROS emission, with only a moderate increase in MCU being beneficial.


Asunto(s)
Arritmias Cardíacas/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio , Calcio/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Agonistas Adrenérgicos beta/farmacología , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Técnicas Biosensibles , Canales de Calcio/genética , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Frecuencia Cardíaca , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Microscopía Confocal , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Contracción Miocárdica , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Ratas Sprague-Dawley , Regulación hacia Arriba , Función Ventricular Izquierda , Remodelación Ventricular
8.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477936

RESUMEN

Already in the early 1960s, researchers noted the potential of mitochondria to take up large amounts of Ca2+. However, the physiological role and the molecular identity of the mitochondrial Ca2+ uptake mechanisms remained elusive for a long time. The identification of the individual components of the mitochondrial calcium uniporter complex (MCUC) in the inner mitochondrial membrane in 2011 started a new era of research on mitochondrial Ca2+ uptake. Today, many studies investigate mitochondrial Ca2+ uptake with a strong focus on function, regulation, and localization of the MCUC. However, on its way into mitochondria Ca2+ has to pass two membranes, and the first barrier before even reaching the MCUC is the outer mitochondrial membrane (OMM). The common opinion is that the OMM is freely permeable to Ca2+. This idea is supported by the presence of a high density of voltage-dependent anion channels (VDACs) in the OMM, forming large Ca2+ permeable pores. However, several reports challenge this idea and describe VDAC as a regulated Ca2+ channel. In line with this idea is the notion that its Ca2+ selectivity depends on the open state of the channel, and its gating behavior can be modified by interaction with partner proteins, metabolites, or small synthetic molecules. Furthermore, mitochondrial Ca2+ uptake is controlled by the localization of VDAC through scaffolding proteins, which anchor VDAC to ER/SR calcium release channels. This review will discuss the possibility that VDAC serves as a physiological regulator of mitochondrial Ca2+ uptake in the OMM.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Canales Aniónicos Dependientes del Voltaje/genética , Apoptosis/genética , Transporte Biológico/genética , Canales de Calcio , Señalización del Calcio/genética , Humanos , Transporte Iónico/genética , Mitocondrias/genética , Canales Aniónicos Dependientes del Voltaje/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 319(4): H873-H881, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32857593

RESUMEN

Cardiac alternans, defined as beat-to-beat alternations in action potential duration, cytosolic Ca transient (CaT) amplitude, and cardiac contraction is associated with atrial fibrillation (AF) and sudden cardiac death. At the cellular level, cardiac alternans is linked to abnormal intracellular calcium handling during excitation-contraction coupling. We investigated how pharmacological activation or inhibition of cytosolic Ca sequestration via mitochondrial Ca uptake and mitochondrial Ca retention affects the occurrence of pacing-induced CaT alternans in isolated rabbit atrial myocytes. Cytosolic CaTs were recorded using Fluo-4 fluorescence microscopy. Alternans was quantified as the alternans ratio (AR = 1 - CaTsmall/CaTlarge, where CaTsmall and CaTlarge are the amplitudes of the small and large CaTs of a pair of alternating CaTs). Inhibition of mitochondrial Ca sequestration via mitochondrial Ca uniporter complex (MCUC) with Ru360 enhanced the severity of CaT alternans (AR increase) and lowered the pacing frequency threshold for alternans. In contrast, stimulation of MCUC mediated mitochondrial Ca uptake with spermine-rescued alternans (AR decrease) and increased the alternans pacing threshold. Direct measurement of mitochondrial [Ca] in membrane permeabilized myocytes with Fluo-4 loaded mitochondria revealed that spermine enhanced and accelerated mitochondrial Ca uptake. Stimulation of mitochondrial Ca retention by preventing mitochondrial Ca efflux through the mitochondrial permeability transition pore with cyclosporin A also protected from alternans and increased the alternans pacing threshold. Pharmacological manipulation of MCUC activity did not affect sarcoplasmic reticulum Ca load. Our results suggest that activation of Ca sequestration by mitochondria protects from CaT alternans and could be a potential therapeutic target for cardiac alternans and AF prevention.NEW & NOTEWORTHY This study provides conclusive evidence that mitochondrial Ca uptake and retention protects from Ca alternans, whereas uptake inhibition enhances Ca alternans. The data suggest pharmacological mitochondrial Ca cycling modulation as a potential therapeutic strategy for alternans-related cardiac arrhythmia prevention.


Asunto(s)
Antiarrítmicos/farmacología , Fibrilación Atrial/prevención & control , Canales de Calcio/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Atrios Cardíacos/efectos de los fármacos , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Espermina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Canales de Calcio/metabolismo , Atrios Cardíacos/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Cinética , Masculino , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Conejos
10.
J Mol Cell Cardiol ; 127: 97-104, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30528909

RESUMEN

Single-cell metabolic investigations are hampered by the absence of flexible tools to measure local partial pressure of O2 (pO2) at high spatial-temporal resolution. To this end, we developed an optical sensor capable of measuring local pericellular pO2 for subcellular resolution measurements with confocal imaging while simultaneously carrying out electrophysiological and/or chemo-mechanical single cell experiments. Here we present the OxySplot optrode, a ratiometric fluorescent O2-micro-sensor created by adsorbing O2-sensitive and O2-insensitive fluorophores onto micro-particles of silica. To protect the OxySplot optrode from the components and reactants of liquid environment without compromising access to O2, the micro-particles are coated with an optically clear silicone polymer (PDMS, polydimethylsiloxane). The PDMS coated OxySplot micro-particles are used alone or in a thin (~50 µm) PDMS layer of arbitrary shape referred to as the OxyMat. Additional top coatings on the OxyMat (e.g., fibronectin, laminin, polylysine, special photoactivatable surfaces etc.) facilitate adherence of cells. The OxySplots report the cellular pO2 and micro-gradients of pO2 without disrupting the flow of extracellular solutions or interfering with patch-clamp pipettes, mechanical attachments, and micro-superfusion. Since OxySplots and a cell can be imaged and spatially resolved, calibrated changes of pO2 and intracellular events can be imaged simultaneously. In addition, the response-time (t0.5 = 0.7 s, 0-160 mmHg) of OxySplots is ~100 times faster than amperometric Clark-type polarization microelectrodes. Two usage example of OxySplots with cardiomyocytes show (1) OxySplots measuring pericellular pO2 while tetramethylrhodamine methyl-ester (TMRM) was used to measure mitochondrial membrane potential (ΔΨm); and (2) OxySplots measuring pO2 during ischemia and reperfusion while rhod-2 was used to measure cytosolic [Ca2+]i levels simultaneously. The OxySplot/OxyMat optrode system provides an affordable and highly adaptable optical sensor system for monitoring pO2 with a diverse array of imaging systems, including high-speed, high-resolution confocal microscopes while physiological features are measured simultaneously.


Asunto(s)
Imagen Molecular/métodos , Oxígeno/metabolismo , Animales , Calibración , Potencial de la Membrana Mitocondrial , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Conejos , Ratas
11.
Exp Cell Res ; 362(1): 51-62, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29102602

RESUMEN

Ca2+ signaling is essential for bone metabolism. Fluid shear stress (FSS), which can induce a rapid release of calcium from endoplasmic reticulum (ER) to produce calcium transients, plays a significant role in osteoblast proliferation and differentiation. However, it is still unclear of how calcium transients induced by FSS activating a number of downstream signals which subsequently regulate cell functions. In this study, we performed a group of Ca2+ transients models, which were induced by FSS to investigate the effects of different magnitudes of Ca2+ transients in osteoblast proliferation. Further, we performed a global proteomic profile of MC3T3-E1 cells in different Ca2+ transients models stimulated by FSS. GO enrichment and KEGG pathway analysis revealed that the TCA cycle was activated in the proliferating process. The activation of TCA needed mitochondrial Ca2+ uptake which were influenced by the amplitude of Ca2+ transients induced by FSS. Our work elucidate that osteoblast proliferation induced by FSS was related to the magnitude of calcium transients, which further activated energetic metabolism signaling pathway. This work revealed further understanding the mechanism of osteoblast proliferation induced by mechanic loading and help us to design new methods for osteoporosis therapy.


Asunto(s)
Calcio/metabolismo , Proliferación Celular , Potencial de la Membrana Mitocondrial/fisiología , Osteoblastos/fisiología , Resistencia al Corte/fisiología , Estrés Mecánico , Animales , Señalización del Calcio/fisiología , Células Cultivadas , Ratones , Proteómica , Transducción de Señal
12.
Biochem Biophys Res Commun ; 496(1): 127-132, 2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29307826

RESUMEN

Mitochondrial calcium uniporter (MCU) is the pore-forming subunit of the entire uniporter complex and plays an important role in mitochondrial calcium uptake. However, the single channel recording of MCU remains controversial. Here, we expressed and purified different MCU proteins and then reconstituted them into planar lipid bilayers for single channel recording. We showed that MCU alone from Pyronema omphalodes (pMCU) is active with prominent single channel Ca2+ currents. In sharp contrast, MCU alone from Homo sapiens (hMCU) is inactive. The essential MCU regulator (EMRE) activates hMCU, and therefore, the complex (hMCU-hEMRE) shows prominent single channel Ca2+ currents. These single channel currents are sensitive to the specific MCU inhibitor Ruthenium Red. Our results clearly demonstrate that active MCU can conduct large amounts of calcium into the mitochondria.


Asunto(s)
Canales de Calcio/química , Señalización del Calcio , Calcio/química , Activación del Canal Iónico , Membrana Dobles de Lípidos/química , Potencial de la Membrana Mitocondrial , Membranas Mitocondriales/química , Humanos , Especificidad de la Especie
13.
Am J Respir Crit Care Med ; 195(4): 515-529, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27648837

RESUMEN

RATIONALE: Pulmonary arterial hypertension (PAH) is an obstructive vasculopathy characterized by excessive pulmonary artery smooth muscle cell (PASMC) proliferation, migration, and apoptosis resistance. This cancer-like phenotype is promoted by increased cytosolic calcium ([Ca2+]cyto), aerobic glycolysis, and mitochondrial fission. OBJECTIVES: To determine how changes in mitochondrial calcium uniporter (MCU) complex (MCUC) function influence mitochondrial dynamics and contribute to PAH's cancer-like phenotype. METHODS: PASMCs were isolated from patients with PAH and healthy control subjects and assessed for expression of MCUC subunits. Manipulation of the pore-forming subunit, MCU, in PASMCs was achieved through small interfering RNA knockdown or MCU plasmid-mediated up-regulation, as well as through modulation of the upstream microRNAs (miRs) miR-138 and miR-25. In vivo, nebulized anti-miRs were administered to rats with monocrotaline-induced PAH. MEASUREMENTS AND MAIN RESULTS: Impaired MCUC function, resulting from down-regulation of MCU and up-regulation of an inhibitory subunit, mitochondrial calcium uptake protein 1, is central to PAH's pathogenesis. MCUC dysfunction decreases intramitochondrial calcium ([Ca2+]mito), inhibiting pyruvate dehydrogenase activity and glucose oxidation, while increasing [Ca2+]cyto, promoting proliferation, migration, and fission. In PAH PASMCs, increasing MCU decreases cell migration, proliferation, and apoptosis resistance by lowering [Ca2+]cyto, raising [Ca2+]mito, and inhibiting fission. In normal PASMCs, MCUC inhibition recapitulates the PAH phenotype. In PAH, elevated miRs (notably miR-138) down-regulate MCU directly and also by decreasing MCU's transcriptional regulator cAMP response element-binding protein 1. Nebulized anti-miRs against miR-25 and miR-138 restore MCU expression, reduce cell proliferation, and regress established PAH in the monocrotaline model. CONCLUSIONS: These results highlight miR-mediated MCUC dysfunction as a unifying mechanism in PAH that can be therapeutically targeted.


Asunto(s)
Canales de Calcio/genética , Proteínas de Unión al Calcio/genética , Proteínas de Transporte de Catión/genética , Terapia Genética/métodos , Hipertensión Pulmonar/genética , MicroARNs/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Músculo Liso Vascular/patología , Arteria Pulmonar/patología , Animales , Apoptosis/genética , Calcio/metabolismo , Canales de Calcio/metabolismo , Estudios de Casos y Controles , Técnicas de Cultivo de Célula/métodos , Proliferación Celular/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Citosol/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Glucólisis , Humanos , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/terapia , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiopatología , Fenotipo , Arteria Pulmonar/efectos de los fármacos , Complejo Piruvato Deshidrogenasa/metabolismo , Ratas , Regulación hacia Arriba/genética
14.
Biochim Biophys Acta ; 1863(10): 2457-64, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26968367

RESUMEN

Mitochondrial Ca(2+) uptake regulates a wide array of cell functions, from stimulation of aerobic metabolism and ATP production in physiological settings, to induction of cell death in pathological conditions. The molecular identity of the Mitochondrial Calcium Uniporter (MCU), the highly selective channel responsible for Ca(2+) entry through the IMM, has been described less than five years ago. Since then, research has been conducted to clarify the modulation of its activity, which relies on the dynamic interaction with regulatory proteins, and its contribution to the pathophysiology of organs and tissues. Particular attention has been placed on characterizing the role of MCU in cardiac and skeletal muscles. In this review we summarize the molecular structure and regulation of the MCU complex in addition to its pathophysiological role, with particular attention to striated muscle tissues. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.


Asunto(s)
Canales de Calcio/fisiología , Calcio/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Animales , Canales de Calcio/química , Canales de Calcio/deficiencia , Señalización del Calcio , Proteínas de Unión al Calcio/deficiencia , Modelos Animales de Enfermedad , Humanos , Transporte Iónico/fisiología , Ratones , Ratones Noqueados , Ratones Transgénicos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Musculares/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/fisiopatología , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Membranas Mitocondriales/metabolismo , Proteínas Musculares/química , Proteínas Musculares/fisiología , Especificidad de Órganos , Conformación Proteica
15.
EMBO Rep ; 16(10): 1318-33, 2015 10.
Artículo en Inglés | MEDLINE | ID: mdl-26341627

RESUMEN

The mitochondrial calcium uniporter (MCU) is responsible for mitochondrial calcium uptake and homeostasis. It is also a target for the regulation of cellular anti-/pro-apoptosis and necrosis by several oncogenes and tumour suppressors. Herein, we report the crystal structure of the MCU N-terminal domain (NTD) at a resolution of 1.50 Å in a novel fold and the S92A MCU mutant at 2.75 Å resolution; the residue S92 is a predicted CaMKII phosphorylation site. The assembly of the mitochondrial calcium uniporter complex (uniplex) and the interaction with the MCU regulators such as the mitochondrial calcium uptake-1 and mitochondrial calcium uptake-2 proteins (MICU1 and MICU2) are not affected by the deletion of MCU NTD. However, the expression of the S92A mutant or a NTD deletion mutant failed to restore mitochondrial Ca(2+) uptake in a stable MCU knockdown HeLa cell line and exerted dominant-negative effects in the wild-type MCU-expressing cell line. These results suggest that the NTD of MCU is essential for the modulation of MCU function, although it does not affect the uniplex formation.


Asunto(s)
Canales de Calcio/química , Canales de Calcio/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Calcio/metabolismo , Canales de Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Cristalografía por Rayos X , Células HEK293 , Células HeLa , Humanos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Modelos Moleculares , Mutación , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
16.
J Mol Cell Cardiol ; 76: 235-46, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25252178

RESUMEN

The heart is an excitable organ that undergoes spontaneous force generation and relaxation cycles driven by excitation-contraction (EC) coupling. A fraction of the oscillating cytosolic Ca(2+) during each heartbeat is taken up by mitochondria to stimulate mitochondrial metabolism, the major source of energy in the heart. Whether the mitochondrial metabolism is regulated individually during EC coupling and whether this heterogeneous regulation bears any physiological or pathological relevance have not been studied. Here, we developed a novel approach to determine the regulation of individual mitochondrial metabolism during cardiac EC coupling. Through monitoring superoxide flashes, which are stochastic and bursting superoxide production events arising from increased metabolism in individual mitochondria, we found that EC coupling stimulated the metabolism in individual mitochondria as indicated by significantly increased superoxide flash activity during electrical stimulation of the cultured intact myocytes or perfused heart. Mechanistically, cytosolic calcium transients promoted individual mitochondria to take up calcium via mitochondrial calcium uniporter, which subsequently triggered transient opening of the permeability transition pore and stimulated metabolism and bursting superoxide flash in that mitochondrion. The bursting superoxide, in turn, promoted local calcium release. In the early stage of heart failure, EC coupling regulation of superoxide flashes was compromised. This study highlights the heterogeneity in the regulation of cardiac mitochondrial metabolism, which may contribute to local redox signaling.


Asunto(s)
Acoplamiento Excitación-Contracción , Mitocondrias Cardíacas/metabolismo , Animales , Células Cultivadas , Metabolismo Energético , Femenino , Células HEK293 , Insuficiencia Cardíaca/metabolismo , Humanos , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Ratas Sprague-Dawley
17.
Curr Cancer Drug Targets ; 24(3): 354-367, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37702230

RESUMEN

BACKGROUND: Although endometrial cancer represents a frequently diagnosed malignancy of the female reproductive tract, we know very little about the factors that control endometrial cancer. OBJECTIVE: Our study was presented to investigate the function of MCU in endometrial tumorigenesis and the molecular mechanisms involved. MATERIALS AND METHODS: A total of 94 endometrial cancer patients were recruited into our cohort. MCU and VDAC1 expression was examined in tumor and normal tissues via immunohistochemistry and immunofluorescence. Associations of MCU and VDAC1 expression with clinicopathological characteristics were evaluated. After transfection with shRNA targeting MCU or full-length MCU plasmids, clone formation, wound healing, transwell and MitoTracker Red staining were separately presented in Ishikawa and RL95-2 cells. Moreover, Western blotting or immunofluorescence was utilized to examine the expression of MCU, VDAC1, Na+/Ca2+/Li+ exchanger (NCLX), and ß-catenin under VDAC1 knockdown and/or MCU overexpression or knockdown. RESULTS: MCU and VDAC1 expression were prominently up-regulated in endometrial cancer tissues and were significantly associated with histological grade, depth of myometrial invasion and lymph node status. MCU up-regulation enhanced clone formation, migration, and mitochondrial activity of endometrial cancer cells. The opposite results were investigated when MCU was silenced. MCU or VDAC1 silencing reduced the expression of MCU, VDAC1, NCLX, and ß-catenin. Moreover, VDAC1 knockdown alleviated the promoting effect of MCU overexpression on the above proteins. CONCLUSION: This investigation demonstrated that MCU-induced mitochondrial calcium uptake plays a critical role in endometrial tumorigenesis through interaction with VDAC1.


Asunto(s)
Canales de Calcio , Calcio , Neoplasias Endometriales , Femenino , Humanos , beta Catenina/metabolismo , Calcio/metabolismo , Carcinogénesis , Neoplasias Endometriales/genética , Procesos Neoplásicos , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
18.
Adv Sci (Weinh) ; 11(28): e2401009, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38751156

RESUMEN

Biodegradable plastics, hailed for their environmental friendliness, may pose unforeseen risks as they undergo gastrointestinal degradation, forming oligomer nanoplastics. Despite this, the influence of gastrointestinal degradation on the potential human toxicity of biodegradable plastics remains poorly understood. To this end, the impact of the murine in vivo digestive system is investigated on the biotransformation, biodistribution, and toxicity of PLA polymer and PLA oligomer MPs. Through a 28-day repeated oral gavage study in mice, it is revealed that PLA polymer and oligomer microplastics undergo incomplete and complete degradation, respectively, in the gastrointestinal tract. Incompletely degraded PLA polymer microplastics transform into oligomer nanoplastics, heightening bioavailability and toxicity, thereby exacerbating overall toxic effects. Conversely, complete degradation of PLA oligomer microplastics reduces bioavailability and mitigates toxicity, offering a potential avenue for toxicity reduction. Additionally, the study illuminates shared targets and toxicity mechanisms in Parkinson's disease-like neurotoxicity induced by both PLA polymer and PLA oligomer microplastics. This involves the upregulation of MICU3 in midbrains, leading to neuronal mitochondrial calcium overload. Notably, neurotoxicity is mitigated by inhibiting mitochondrial calcium influx with MCU-i4 or facilitating mitochondrial calcium efflux with DBcAMP in mice. These findings enhance the understanding of the toxicological implications of biodegradable microplastics on human health.


Asunto(s)
Microplásticos , Poliésteres , Animales , Microplásticos/toxicidad , Ratones , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Plásticos Biodegradables , Masculino , Distribución Tisular , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/metabolismo
19.
Exp Neurol ; 361: 114302, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36549422

RESUMEN

Intracerebral hemorrhage (ICH) is one type of stroke with a high incidence and mortality. Mitochondria provide energy for various life processes and regulate calcium-mediated signaling pathways by taking up calcium ions from cytoplasm. Mitochondrial calcium uptake family 3 (MICU3) is a tissue-specific enhancer of mitochondrial calcium uptake. The effects and mechanisms of MICU3 in ICH are unknown. In this study, we aimed to explore the role of MICU3 in ICH in rats and neuronal models. First, we constructed ICH model both in vivo and in vitro and observed increased expression of MICU3. Then lentivirus was transduced to knock down MICU3. We observed that knockdown of MICU3 significantly reduced mitochondrial uptake of calcium in primary neurons. Moreover, the downregulation of MICU3 attenuated cell apoptosis and decreased the accumulation of reactive oxygen species (ROS). Recovery of neurobehavioral and cognitive function also benefited from downregulation of MICU3. The findings demonstrated that MICU3 played an important role in cell apoptosis, oxidative stress, and maintenance of mitochondrial structure and function, and promoted rehabilitation of neurobehavior. In conclusion, MICU3 is expected to be a molecular marker and a potential therapeutic target for ICH.


Asunto(s)
Lesiones Encefálicas , Neoplasias Encefálicas , Animales , Ratas , Apoptosis , Lesiones Encefálicas/metabolismo , Calcio/metabolismo , Hemorragia Cerebral/metabolismo , Regulación hacia Abajo , Proteínas de Transporte de Membrana Mitocondrial , Estrés Oxidativo
20.
Heart Rhythm ; 19(10): 1725-1735, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35660475

RESUMEN

BACKGROUND: An aberrant increase in the diastolic calcium concentration ([Ca2+]i) level is a hallmark of heart failure (HF) and the cause of delayed afterdepolarization and ventricular arrhythmia (VA). Although mitochondria play a role in regulating [Ca2+]i, whether they can compensate for the [Ca2+]i abnormality in ventricular myocytes is unknown. OBJECTIVE: The purpose of this study was to investigate whether enhanced Ca2+ uptake of mitochondria may compensate for an abnormal increase in the [Ca2+]i of ventricular myocytes in HF to effectively mitigate VA. METHODS: We used a HF mouse model in which myocardial infarction was induced by permanent left anterior descending coronary artery ligation. The mitochondrial Ca2+ uniporter was stimulated by kaempferol. Ca2+ dynamics and membrane potential were measured using an epifluorescence microscope, a confocal microscope, and the perforated patch-clamp technique. VA was induced in Langendorff-perfused hearts, and hemodynamic parameters were measured using a microtip transducer catheter. RESULTS: Protein expression of the mitochondrial Ca2+ uniporter, as assessed by its subunit expression, did not change between HF and sham mice. Treatment of cardiomyocytes with kaempferol, isolated from HF mice 28 days after coronary ligation, reduced the appearance of aberrant diastolic [Ca2+]i waves and sparks and spontaneous action potentials. Kaempferol effectively reduced VA occurring in Langendorff-perfused hearts. Intravenous administration of kaempferol did not markedly affect left ventricular hemodynamic parameters. CONCLUSION: The effects of kaempferol in HF of mice implied that mitochondria may have the potential to compensate for abnormal [Ca2+]i. Mechanisms involved in mitochondrial Ca2+ uptake may provide novel targets for treatment of HF-associated VA.


Asunto(s)
Calcio , Insuficiencia Cardíaca , Animales , Arritmias Cardíacas , Calcio/metabolismo , Canales de Calcio , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/etiología , Quempferoles/metabolismo , Quempferoles/farmacología , Ratones , Miocitos Cardíacos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA