Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38732786

RESUMEN

CO2 monitoring is important for carbon emission evaluation. Low-cost and medium-precision sensors (LCSs) have become an exploratory direction for CO2 observation under complex emission conditions in cities. Here, we used a calibration method that improved the accuracy of SenseAir K30 CO2 sensors from ±30 ppm to 0.7-4.0 ppm for a CO2-monitoring instrument named the SENSE-IAP, which has been used in several cities, such as in Beijing, Jinan, Fuzhou, Hangzhou, and Wuhan, in China since 2017. We conducted monthly to yearly synchronous observations using the SENSE-IAP along with reference instruments (Picarro) and standard gas to evaluate the performance of the LCSs for indoor use with relatively stable environments. The results show that the precision and accuracy of the SENSE-IAP compared to the standard gases were rather good in relatively stable indoor environments, with the short-term (daily scale) biases ranging from -0.9 to 0.2 ppm, the root mean square errors (RMSE) ranging from 0.7 to 1.6 ppm, the long-term (monthly scale) bias ranging from -1.6 to 0.5 ppm, and the RMSE ranging from 1.3 to 3.2 ppm. The accuracy of the synchronous observations with Picarro was in the same magnitude, with an RMSE of 2.0-3.0 ppm. According to our evaluation, standard instruments or reliable standard gases can be used as a reference to improve the accuracy of the SENSE-IAP. If calibrated daily using standard gases, the bias of the SENSE-IAP can be maintained within 1.0 ppm. If the standard gases are hard to access frequently, we recommend a calibration frequency of at least three months to maintain an accuracy within 3 ppm.

2.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000924

RESUMEN

Increasing concerns about air quality due to fossil fuel combustion, especially nitrogen oxides (NOx) from marine and diesel engines, necessitate advanced monitoring systems due to the significant health and environmental impacts of nitrogen dioxide (NO2). In this study, a gas detection system based on the principle of the non-dispersive infrared (NDIR) technique is proposed. Firstly, the pyroelectric detector was developed by employing an ultra-thin LiTaO3 (LT) layer as the sensitive element, integrated with nanoscale carbon material prepared by wafer-level graphics technology as the infrared absorption layer. Then, the sensor was hermetically sealed using inert gas through energy storage welding technology, exhibiting a high detectivity (D*) value of 4.19 × 108 cm·âˆšHz/W. Subsequently, a NO2 gas sensor was engineered based on the NDIR principle employing a Micro Electro Mechanical System (MEMS) infrared (IR) emitter, featuring a light path chamber length of 1.5 m, along with integrated signal processing and software calibration algorithms. This gas sensor was capable of detecting NO2 concentrations within the range of 0-500 ppm. Initial tests indicated that the gas sensor exhibited a full-scale relative error of less than 0.46%, a limit of 2.8 ppm, a linearity of -1.09%, a repeatability of 0.47% at a concentration of 500 ppm, and a stability of 2% at a concentration of 500 ppm. The developed gas sensor demonstrated significant potential for application in areas such as industrial monitoring and analytical instrumentation.

3.
Fuel (Lond) ; 331: 125720, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36033729

RESUMEN

Globally, the demand for masks has increased due to the COVID-19 pandemic, resulting in 490,201 tons of waste masks disposed of per month. Since masks are used in places with a high risk of virus infection, waste masks retain the risk of virus contamination. In this study, a 1 kg/h lab-scale (diameter: 0.114 m, height: 1 m) bubbling fluidized bed gasifier was used for steam gasification (temperature: 800 °C, steam/carbon (S/C) ratio: 1.5) of waste masks. The use of a downstream reactor with activated carbon (AC) for tar cracking and the enhancement of hydrogen production was examined. Steam gasification with AC produces syngas with H2, CO, CH4, and CO2 content of 38.89, 6.40, 21.69, and 7.34 vol%, respectively. The lower heating value of the product gas was 29.66 MJ/Nm3 and the cold gas efficiency was 74.55 %. This study showed that steam gasification can be used for the utilization of waste masks and the production of hydrogen-rich gas for further applications.

4.
Sensors (Basel) ; 23(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36905076

RESUMEN

Measurements of atmospheric gas concentrations using of NDIR gas sensors requires compensation of ambient pressure variations to achieve reliable result. The extensively used general correction method is based on collecting data for varying pressures for a single reference concentration. This one-dimensional compensation approach is valid for measurements carried out in gas concentrations close to reference concentration but will introduce significant errors for concentrations further away from the calibration point. For applications, requiring high accuracy, collecting, and storing calibration data at several reference concentrations can reduce the error. However, this method will cause higher demands on memory capacity and computational power, which is problematic for cost sensitive applications. We present here an advanced, but practical, algorithm for compensation of environmental pressure variations for relatively low-cost/high resolution NDIR systems. The algorithm consists of a two-dimensional compensation procedure, which widens the valid pressure and concentrations range but with a minimal need to store calibration data, compared to the general one-dimensional compensation method based on a single reference concentration. The implementation of the presented two-dimensional algorithm was verified at two independent concentrations. The results show a reduction in the compensation error from 5.1% and 7.3%, for the one-dimensional method, to -0.02% and 0.83% for the two-dimensional algorithm. In addition, the presented two-dimensional algorithm only requires calibration in four reference gases and the storing of four sets of polynomial coefficients used for calculations.

5.
Sensors (Basel) ; 23(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36772455

RESUMEN

A multi-gas sensing system was developed based on the detection principle of the non-dispersive infrared (NDIR) method, which used a broad-spectra light source, a tunable Fabry-Pérot (FP) filter detector, and a flexible low-loss infrared waveguide as an absorption cell. CH4, C2H6, and CO2 gases were detected by the system. The concentration of CO2 could be detected directly, and the concentrations of CH4 and C2H6 were detected using a PCA-BP neural network algorithm because of the interference of CH4 and C2H6. The detection limits were achieved to be 2.59 ppm, 926 ppb, and 114 ppb for CH4, C2H6, and CO2 with an averaging time of 429 s, 462 s, and 297 s, respectively. The root mean square error of prediction (RMSEP) of CH4 and C2H6 were 10.97 ppm and 2.00 ppm, respectively. The proposed system and method take full advantage of the multi-component gas measurement capability of the mid-infrared broadband source and achieve a compromise between performance and system cost.

6.
Sensors (Basel) ; 23(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37050648

RESUMEN

Non-dispersive infra-red (NDIR) detectors have become the dominant method for measuring atmospheric CO2, which is thought to be an important gas for honeybee colony health. In this work we describe a microcontroller-based system used to collect data from Senserion SCD41 NDIR sensors placed in the crown boards and queen excluders of honeybee colonies. The same sensors also provide relative humidity and temperature data. Several months of data have been recorded from four different hives. The mass change measurements, from hive scales, when foragers leave the hive were compared with the data from the gas sensors. Our data suggest that it is possible to estimate the colony size from the change in measured CO2, however no such link with the humidity is observed. Data are presented showing the CO2 decreasing over many weeks as a colony dies.


Asunto(s)
Dióxido de Carbono , Registros , Abejas , Animales , Humedad , Temperatura
7.
Sensors (Basel) ; 22(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36433258

RESUMEN

This study presents a multi-gas analyzer based on tunable filter non-dispersive IR (TF-NDIR) sensors that operate with a wide dynamic range of wavelength and concentration. A pyroelectric sensor coupled with a microsized Fabry-Perot interferometer, namely a tunable filter, enables sensing within a narrowly selected wavelength band. Three detectors capable of tuning the bandpass wavelength with a range of 3.8-5.0 µm, 5.5-8.0 µm, and 8.0-10.5 µm are combined to encompass the entire mid-IR region. single-pass cell with an optical path length (OPL) of 5 cm and a multi-pass cell with an OPL of 10.5 m is selected to encompass a concentration range from ppmv to percent. The TF-NDIR sensors and gas cells can be reconfigured by manipulating the beam path. A homemade lock-in amplifier is used to enhance the signal-to-noise ratio 88 times greater than that of the bare signal. The performance of the gas analyzer is evaluated by measuring the SF6 and Novec-4710/CO2 mixture, which are the dielectric gas medium for a gas-insulated switch (GIS). The mixing ratio of the Novec-4710/CO2 mixture is measured within a range of 3-7% using premixes. The measurement precision is 0.72% for 0.5 s. Trace level measurements of Novec-4710, CO2, SF6, which are measurands for detecting gas leakage from the GIS, CO, and SO2 which are measurands for detecting product generated by the arc or thermal decomposition in the switching electrode, are conducted based on dynamic partial pressure adjustment using 1000 ppmv mother premixes in N2. The limit of detection is 54.7 ppmv for Novec-4710, 112.8 ppmv for CO, 118.1 ppmv for CO2, 69.5 ppmv for SO2, and 33.5 ppmv for SF6.


Asunto(s)
Ácido Aminosalicílico , Dióxido de Carbono , Amplificadores Electrónicos , Citoplasma , Electrodos
8.
Int J Refrig ; 133: 313-325, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34776559

RESUMEN

Most COVID-19 vaccines require ambient temperature control for transportation and storage. Both Pfizer and Moderna vaccines are based on mRNA and lipid nanoparticles requiring low temperature storage. The Pfizer vaccine requires ultra-low temperature storage (between -80 °C and -60 °C), while the Moderna vaccine requires -30 °C storage. Pfizer has designed a reusable package for transportation and storage that can keep the vaccine at the target temperature for 10 days. However, the last stage of distribution is quite challenging, especially for rural or suburban areas, where local towns, pharmacy chains and hospitals may not have the infrastructure required to store the vaccine. Also, the need for a large amount of ultra-low temperature refrigeration equipment in a short time period creates tremendous pressure on the equipment suppliers. In addition, there is limited data available to address ancillary challenges of the distribution framework for both transportation and storage stages. As such, there is a need for a quick, effective, secure, and safe solution to mitigate the challenges faced by vaccine distribution logistics. The study proposes an effective, secure, and safe ultra-low temperature refrigeration solution to resolve the vaccine distribution last mile challenge. The approach is to utilize commercially available products, such as refrigeration container units, and retrofit them to meet the vaccine storage temperature requirement. Both experimental and simulation studies are conducted to evaluate the technical merits of this solution with the ability to control temperature at -30 °C or -70 °C as part of the last mile supply chain for vaccine candidates.

9.
Environ Res ; 202: 111560, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34224708

RESUMEN

In order to avoid SARS-CoV-2 transmission inside educational buildings and promote the safe reopening of schools, the Italian Government, in line with the other European countries and in accordance with the WHO recommendations, adopted a contingency plan including actions able to guarantee adequate air ventilation in classrooms. Therefore, in this pilot study, a surveillance activity based on the real-time monitoring of CO2 levels as a proxy of SARS-CoV-2 transmission risk, was conducted inside 9 schools (11 classrooms) located in Apulia Region (South of Italy) during the reopening of schools after the lockdown due to COVID-19 pandemic. More specifically, monitoring activities and data treatment were conducted to evaluate the initial scenario inside the classrooms (first stage of evaluation) and the potential improvements obtained by applying a detailed operating protocol of air ventilation based on specific actions and the simultaneous real time visualization of CO2 levels by non-dispersive infrared (NDIR) sensors (second stage of evaluation). Although, during the first evaluation stage, air ventilation through the opening of windows and doors was guaranteed, 6 (54%) classrooms showed mean values of CO2 higher than 1000 ppm and all classrooms exceeded the recommended CO2 concentration limit value of 700 ppm. The development and implementation of tailored ventilation protocol including the real time visualization of CO2 levels allowed to depict better scenariosAn overall improvement of CO2 levels was indeed registered for all classrooms where teachers were compliant and helpful in the management of the air ventilation strategy. Therefore, this study reports the first evidence-based measures demonstrating that, with the exception of few environments affected by structural limits, the real-time visualization and monitoring of CO2 concentrations allowes effective air exchanges to be implemented and contributes to prevent SARS-CoV-2 transmission. Moreover, on the basis of the monitoring outcomes and in order to ensure adequate air ventilation in educational buildings, a 4 level-risk classification including specific corrective actions for each level was provided.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Contaminación del Aire Interior/análisis , Dióxido de Carbono/análisis , Control de Enfermedades Transmisibles , Humanos , Pandemias , Proyectos Piloto , SARS-CoV-2 , Instituciones Académicas , Ventilación
10.
IEEE Sens J ; 21(15): 17327-17334, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34744520

RESUMEN

Transcutaneous oxygen and carbon dioxide provide the status of pulmonary gas exchange and are of importance in diagnosis and management of respiratory diseases. Though significant progress has been made in oximetry, not much has been explored in developing wearable technologies for continuous monitoring of transcutaneous carbon dioxide. This research reports the development of a truly wearable sensor for continuous monitoring of transcutaneous carbon dioxide using miniaturized nondispersive infrared sensor augmented by hydrophobic membrane to address the humidity interference. The wearable transcutaneous CO2 monitor shows well-behaved response curve to humid CO2 with linear response to CO2 concentration. The profile of transcutaneous CO2 monitored by the wearable device correlates well with the end-tidal CO2 trend in human test. The feasibility of the wearable device for passive and unobstructed tracking of transcutaneous CO2 in free-living conditions has also been demonstrated in field test. The wearable transcutaneous CO2 monitoring technology developed in this research can be widely used in remote assessment of pulmonary gas exchange efficiency for patients with respiratory diseases, such as COVID-19, sleep apnea, and chronic obstructive pulmonary disease (COPD).

11.
Sensors (Basel) ; 21(16)2021 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-34450789

RESUMEN

In this paper, we present a fully integrated Non-dispersive Infrared (NDIR) CO2 sensor implemented on a silicon chip. The sensor is based on an integrating cylinder with access waveguides. A mid-IR LED is used as the optical source, and two mid-IR photodiodes are used as detectors. The fully integrated sensor is formed by wafer bonding of two silicon substrates. The fabricated sensor was evaluated by performing a CO2 concentration measurement, showing a limit of detection of ∼750 ppm. The cross-sensitivity of the sensor to water vapor was studied both experimentally and numerically. No notable water interference was observed in the experimental characterizations. Numerical simulations showed that the transmission change induced by water vapor absorption is much smaller than the detection limit of the sensor. A qualitative analysis on the long term stability of the sensor revealed that the long term stability of the sensor is subject to the temperature fluctuations in the laboratory. The use of relatively cheap LED and photodiodes bare chips, together with the wafer-level fabrication process of the sensor provides the potential for a low cost, highly miniaturized NDIR CO2 sensor.


Asunto(s)
Dióxido de Carbono , Silicio
12.
Sensors (Basel) ; 21(4)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567612

RESUMEN

This research presents a low-cost, easy-to-assemble nondispersive infrared (NDIR) device for monitoring N2O gas concentration in agricultural soils during field and laboratory experiments. The study aimed to develop a cost-effective instrument with a simple optic structure suitable for detecting a wide range of soil N2O gas concentrations with a submerged silicone diffusion cell. A commercially available, 59 cm path-length gas cell, microelectromechanical systems (MEMS)-based infrared emitter, pyroelectric detector, two anti-reflective (AR) coated optical windows, and one convex lens were assembled into a simple instrument with secure preciseness and responsivity. Control of the IR emitter and data recording processes was achieved through a microcontroller unit (MCU). Tests on humidity tolerance and the saturation rate of the diffusion cell were carried out to test the instrument function with the soil atmosphere. The developed calibration model was validated by repeatability tests and accuracy tests. The soil N2O gas concentration was monitored at the laboratory level by a specific experimental setup. The coefficient of determination (R2) of the repeatability tests was more than 0.9995 with a 1-2000 ppm measurability range and no impact of air humidity on the device output. The new device achieved continuous measuring of soil N2O gas through a submerged diffusion cell.

13.
Sensors (Basel) ; 20(8)2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316534

RESUMEN

The article describes the development and implementation of a complex monitoring system for measuring the concentration of carbon dioxide, ambient temperature, relative humidity and atmospheric pressure. The presented system was installed at two locations. The first was in the rooms at the Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava. The second was in the classrooms of the Grammar School and Secondary School of Electrical Engineering and Computer Science in Frenstát pod Radhostem. The article contains a detailed description of the entire measurement network, whose basic component was a device for measuring carbon dioxide concentration, temperature and relative humidity in ambient air and atmospheric pressure via wireless data transmission using IQRF® technology. Measurements were conducted continuously for several months. The data were archived in a database. The article also describes the methods for processing the data with statistical analysis. Carbon dioxide concentration was selected for data analysis. Data were selected from at least two different rooms at each location. The processed results represent the time periods for the given carbon dioxide concentrations. The graphs display in percent how much of the time students or employees spent exposed to safe or dangerous concentrations of carbon dioxide. The collected data were used for the future improvement of air quality in the rooms.

14.
Sensors (Basel) ; 20(19)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977569

RESUMEN

In order to improve the performance of the large divergence angle mid-infrared source in gas sensing, this paper aims at developing a methane (CH4) sensor with non-dispersive infrared (NDIR) technology using a compact pentahedron gas-cell. A paraboloid concentrator, two biconvex lenses and five planar mirrors were used to set up the pentahedron structure. The gas cell is endowed with a 170 mm optical path length with a volume of 19.8 mL. The mathematical model of the cross-section and the three-dimension spiral structure of the pentahedron gas-cell were established. The gas-cell was integrated with a mid-infrared light source and a detector as the optical part of the sensor. Concerning the electrical part, a STM32F429 was employed as a microcontroller to generate the driving signal for the IR source, and the signal from the detector was sampled by an analog-to-digital converter. A static volumetric method was employed for the experimental setup, and 20 different concentration CH4 samples were prepared to study the sensor's evaluation, which revealed a 1σ detection limit of 2.96 parts-per-million (ppm) with a 43 s averaging time.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38984057

RESUMEN

The performance of a bubbler to deliver the low-volatility, liquid cobalt precurso µ 2 - η 2 -(tBu-acetylene) dicobalthexacarbonyl (CCTBA) for reduced-pressure chemical vapor deposition and atomic layer deposition processes was characterized. A relatively large process window was investigated by varying carrier gas flow rate, system pressure, and bubbler temperature. For this range of conditions, the CCTBA partial pressure was measured using a custom-designed non-dispersive infrared gas analyzer, and the CCTBA flow rates were derived from these partial pressure measurements. The dependence of CCTBA flow rate on these process parameters was modeled to obtain a deeper understanding of the factors influencing bubbler performance. Good agreement between measured and modeled CCTBA flow rates was obtained using a model in which a constant CCTBA partial pressure in the bubbler head space for a given bubbler temperature was assumed and in which the pressure drop between the bubbler head space and the pressure measurement location was included. The dependence of CCTBA head space partial pressure on temperature was parameterized in the form of the August equation, which is commonly used to describe the temperature-dependence of vapor pressure. While this report was focused specifically on CCTBA, the results are expected to apply to other low-volatility, liquid precursors of interest in vapor deposition processes.

16.
Sensors (Basel) ; 19(19)2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31575053

RESUMEN

In this paper, we propose a novel, miniaturized non-dispersive infrared (NDIR) CO2 sensor implemented on a silicon chip. The sensor has a simple structure, consisting of a hollow metallic cylindrical cavity along with access waveguides. A detailed analysis of the proposed sensor is presented. Simulation with 3D ray tracing shows that an integrating cylinder with 4 mm diameter gives an equivalent optical path length of 3 . 5 cm. The sensor is fabricated using Deep Reactive Ion Etching (DRIE) and wafer bonding. The fabricated sensor was evaluated by performing a CO2 concentration measurement, showing a limit of detection of ∼100 ppm. The response time of the sensor is only ∼2.8 s, due to its small footprint. The use of DRIE-based waveguide structures enables mass fabrication, as well as the potential co-integration of flip-chip integrated midIR light-emitting diodes (LEDs) and photodetectors, resulting in a compact, low-power, and low-cost NDIR CO2 sensor.

17.
Sensors (Basel) ; 18(9)2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30200512

RESUMEN

This paper discusses the output characteristics of the sensor response of infrared ethanol gas detectors based on incident radiation intensity. Sensors placed at each focal point of two elliptical waveguides were fabricated to yield two module combinations and to verify the output characteristics. A thin Parylene-C film was deposited onto the reflector surfaces of one module. The thermal properties were compared between the sensor (2.0 Ø) and sensor with a hollow disk (1.6 Ø), the disk being mounted at the end of one detector. The fabricated sensor modules were placed inside a gas chamber. The temperature was increased from 253 K to 333 K, over the concentration range from 0 to 500 ppm. As the temperature increases by 10 K, the output of sensor (2.0 Ø) without and with Parylene-C coating typically increased by 70 mV and 52 mV, respectively. However, the sensor output with the hollow disk showed an average decrement of 0.8 mV/50 ppm and 1 mV/50 ppm for module without and with Parylene-C deposition, respectively. For concentrations higher than 50 ppm, the estimation error was around ±5%. Further, the sensitivity to temperature variation and the absorbance of infrared (IR) reflection was found higher for Parylene-C coated module.

18.
Sensors (Basel) ; 18(12)2018 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-30544879

RESUMEN

Schools are amongst the most densely occupied indoor areas and at the same time children and young adults are the most vulnerable group with respect to adverse health effects as a result of poor environmental conditions. Health, performance and well-being of pupils crucially depend on indoor environmental quality (IEQ) of which air quality and thermal comfort are central pillars. This makes the monitoring and control of environmental parameters in classes important. At the same time most school buildings do neither feature automated, intelligent heating, ventilation, and air conditioning (HVAC) systems nor suitable IEQ monitoring systems. In this contribution, we therefore investigate the capabilities of a novel wireless gas sensor network to determine carbon dioxide concentrations, along with temperature and humidity. The use of a photoacoustic detector enables the construction of long-term stable, miniaturized, LED-based non-dispersive infrared absorption spectrometers without the use of a reference channel. The data of the sensor nodes is transmitted via a Z-Wave protocol to a central gateway, which in turn sends the data to a web-based platform for online analysis. The results show that it is difficult to maintain adequate IEQ levels in class rooms even when ventilating frequently and that individual monitoring and control of rooms is necessary to combine energy savings and good IEQ.


Asunto(s)
Contaminación del Aire Interior , Monitoreo del Ambiente/instrumentación , Gases/aislamiento & purificación , Tecnología Inalámbrica/instrumentación , Niño , Gases/toxicidad , Humanos , Instituciones Académicas , Ventilación
19.
Sensors (Basel) ; 18(10)2018 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-30322155

RESUMEN

Carbon monoxide (CO) is a toxic gas, and environmental pollutant. Its detection and control in residential and industrial environments are necessary in order to avoid potentially severe health problems in humans. In this review paper, we discuss the importance of furthering research in CO sensing technologies for finding the proper material with low-range detection ability in very optimum condition. We build our discussion through the perspective of a cyber-physical system (CPS) modeling framework, because it provides a comprehensive framework to model and develop automated solutions for detection and control of poisonous chemical compounds, such as the CO. The most effective CO sensors, then, can be used in CPS network to provide a pathway for real-time monitoring and control in both industrial and household environment. In this paper, first, we discuss the necessity of CO detection, the proposal of a basic CPS framework for modeling and system development, how the CPS-CO model can be beneficiary to the environment, and a general classification of the various CO detection mechanisms. Next, a broad overview emphasizes the sensitivity, selectivity, response and recovery time, low concentration detection ability, effects of external parameters and other specifications that characterize the performance of the sensing methods proposed so far. We will discuss recent studies reported on the use of metal oxide semiconductor (MOS) sensing technologies for the detection of CO. MOS based micro-sensors play an important role in the measurement and monitoring of various trace amounts of CO gas. These sensors are used to sense CO through changes in their electrical properties. In addition to MOS based sensors, optical sensing methods have recently become popular, due to their increased performance. Hence, a brief overview of newly proposed optical based CO detection methods is provided as well.

20.
Pflugers Arch ; 469(10): 1267-1275, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28585052

RESUMEN

The purpose of this study is to describe a low-cost and simply made instrument capable of measuring the total CO2 content of microliter volumes of biological fluids utilizing a commercially available CO2 sensor based on a NDIR detector. The described instrument is based on transformation of dissolved HCO3- to CO2 by acidification and subsequent measurement of the produced CO2. The instrument has a linear response in the range 0.025-10 µmol HCO3-, which enables measurements in fresh urine and plasma samples down to 5 µl. The values from plasma were compared to measurements made on 65 µl whole blood in an automatic blood gas analyzer and found not to differ significantly. Compared to currently commercially available instruments applying the same principles to measure total CO2, this study provides a simple and robust alternative which even can be used on smaller sample volumes.


Asunto(s)
Bicarbonatos/orina , Análisis de los Gases de la Sangre/instrumentación , Líquidos Corporales/química , Dióxido de Carbono/orina , Animales , Productos Biológicos , Análisis de los Gases de la Sangre/métodos , Líquidos Corporales/metabolismo , Dióxido de Carbono/sangre , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA