Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Chinese Journal of Immunology ; (12): 82-85, 2024.
Artículo en Zh | WPRIM | ID: wpr-1024720

RESUMEN

Objective:To explore role of miR-146a in regulating TLR4/NF-κB pathway on inflammatory injury and neuropro-tection in intracerebral hemorrhage model rats and its possible mechanism.Methods:A total of 40 rats were selected and randomly divided into sham,model,over-expressing miR-146a adenovirus and negative virus injection groups,with 10 rats in each group.Garcia score was used for neurological function;HE staining was used to observe changes of brain tissues.ELISA was used to detect inflammatory factors levels.TLR4,NF-κB protein and gene expressions in brain tissues were detected by Western blot and RT-PCR.Results:Compared with model group,neural function score of overexpressed miR-146a adenovirus injection group was increased(P<0.05).Model group had abnormal cell morphology,edema and inflammation.Cell morphology,edema and inflammation were alleviated in overexpressed miR-146a adenovirus injection group.Inflammatory factors levels in model group were higher than sham group(P<0.05).Inflammatory factors levels in overexpressed miR-146a adenovirus injection group were lower than model group(P<0.05).TLR4,NF-κB protein and mRNA expressions in model group were increased than sham group(P<0.05).TLR4,NF-κB protein and mRNA expressions in overexpressed miR-146a adenovirus injection group were decreased than model group(P<0.05).Conclusion:miR-146a can improve neural function and reduce inflammatory injury in rats with intracerebral hemorrhage,possibly by inhibiting activation of TLR4/NF-κB signaling pathway and reducing inflammatory factors levels of brain tissues.

2.
Artículo en Zh | WPRIM | ID: wpr-1019352

RESUMEN

Purpose To investigate the effect of MYD88 gene overexpression on the proliferation and apoptosis of human diffuse large B cell lymphoma(DLBCL)cells,and to prelimi-narily explore the mechanism of MYD88 gene action.Methods PEGFP-C2-MYD88 overexpressing MYD88 L265P gene was transfected into DLBCL cells by plasmid transfection.The exper-iment was divided into blank control group,negative control group and MYD88 L265P overexpression group.The fluores-cence expression of MYD88 L265P after overexpression was ob-served under inverted fluorescence microscope.RT-PCR and Western blot were used to detect the mRNA and protein expres-sion of MYD88 L265P,IRAK4,NF-κB and BCL2 in DLBCL cells before and after overexpression of MYD88 L265.CCK8 method was used to detect DLBCL cells proliferation and Ho-echst staining was used to detect DLBCL cells apoptosis.Re-sults After overexpression of MYD88 L265P,compared with the blank control group(0.670 4±0.017 5)and the negative control group(0.715 3±0.019 6),the MYD88L265P overex-pression group(1.157 2±0.010 2)increased significantly,with statistical significance(all P<0.05).After overexpression of MYD88 L265P,compared with the blank control group(0.69 ±0.04)and the negative control group(0.81±0.07),the MYD88L265P overexpression group(0.48±0.05)was signifi-cantly decreased,with statistical significance(all P<0.05).After overexpression of MYD88 L265P,compared with the blank control group(mRNA:1.0158±0.0115,0.987 3±0.010 2,1.007 6±0.015 3,protein:0.183 4±0.058 9,0.096 8± 0.015 7,0.147 5±0.0418)and negative control group(mR-NA:0.9132±0.0098,1.0032±0.0156,0.9327± 0.011 2,protein:0.187 9±0.042 3,0.088 9±0.0513,0.134 8±0.050 1),the mRNA(3.243 2±0.013 6,2.976 6 ±0.0213,1.585 9±0.019 8)and protein expressions(0.452 7±0.052 4,0.218 9±0.047 5,0.301 4±0.059 8)of IRAK4,NF-κB and anti-apoptosis protein BCL2 in MYD88L265P overexpression group were significantly increased,which was statistically significant(all P<0.05).Conclusion After overexpression of MYD88 L265P,the apoptosis rate of DLBCL cells decreased and the cell proliferation rate increased.The mechanism may be related to the mutation of MYD88 L265P gene,activation and amplification of NF-κB pathway,and pro-motion of the overexpression of antiapoptotic protein BCL2.

3.
Artículo en Zh | WPRIM | ID: wpr-1016442

RESUMEN

ObjectiveTo study the anti-inflammatory effects of Blumea balsamifera (L.) DC oil (BBO) based on nuclear factor kappa-B (NF-κB) nonclassical and arachidonic acid (AA) pathway. MethodsEffects of BBO on the production of slow reacting substance of anaphylaxis (SRS-A) were detected by the ileal smooth muscle method. The contents of prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) in lipopolysaccharides (LPS) -induced macrophages were detected by ELISA kit. The expression of COX-2, 5-LOX, FLAP and RelB were detected by qRT-PCR. Western blot was performed to detect the effects of BBO on the level of NF-κB nonclassical pathway proteins TNF receptor associated factor 3 (TRAF3), TNF receptor associated factor 2 (TRAF2), NF-κB-inducing kinase (NIK), p100 and RelB. ResultsThe contractile tension of guinea pig ileum was reduced (P<0.001), and the SRS-A production inhibition rate reached 65.34% at 1mg·mL-1 BBO concentration. Compared with LPS group, BBO reduced the concentrations of PGE2 (P<0.05) and LTB4 (P<0.05), and decreased the expressions of COX-2 (P<0.05), 5-LOX (P<0.05) and FLAP (P<0.05) in AA pathway at concentrations of 40-80 μg·mL-1. Moreover, 40-80 μg·mL-1 BBO decreased the concentrations of TRAF3 (P<0.05), TRAF2 (P<0.05), and NIK (P<0.05), and further inhibited the phosphorylation of p100 (P<0.05), as well as the level of the transcription factor RelB in genes (P<0.05) and proteins (P<0.05) in nonclassical NF-κB pathway, whereas BBO did not cause such changes. ConclusionBBO may potentially exert its anti-inflammatory effects by suppressing the regulatory proteins TRAF3 and TRAF2 and the transcription factor RelB in NF-κB nonclassical pathway. The inhibitory action extending to the induction kinase function of NIK, further hindering the phosphorylation of p100 and its binding with the transcription factor RelB. Consequently, downstream elements in the AA pathway, including the pivotal rate-limiting enzymes COX-2, 5-LOX and FLAP, were altered. This modulation influences the levels of inflammatory mediators such as PGE2 and LTB4.

4.
Artículo en Zh | WPRIM | ID: wpr-1028771

RESUMEN

AIM To investigate the effect of Wendan Decoction on nerve injury in a mouse model of sleep disorders and its mechanism.METHODS A mouse model of insomnia was established by the modified multiple platform sleep deprivation method.After successful modeling,the mice were randomly divided into the model group,the estazolam tablet group(0.15 mg/kg)and the low-dose and high-dose Wendan Decoction groups(12.5,50 g/kg),with 6 mice in each group,in contrast to the 6 mice of the control group.After 7 days of drug intervention,the mice had their changes of cerebral cortex,hippocampal CA1 area and hypothalamus observed by HE staining;their neuronal damage observed by Nissl staining;their levels of neurofilament light chain(NEFL),neuron-specific enolase(NSE),S100 calcium-binding protein B(S100B),tumor necrosis factor(TNF-α),interleukin-6(IL-6)and interleukin-1β(IL-1β)in brain tissue and serum detected by ELISA;their cerebral expression of glial fibrillary acidic protein(GFAP)detected by immunohistochemical method;and their cerebral expressions of GFAP,phosphorylated IκB kinase β(p-IKKβ)and phosphorylated nuclear transcription factor-κB(p-NF-κB)detected by Western blot.RESULTS Compared with the model group,the high-dose Wendan Decoction group displayed increased number of neurons,complete and neatly arranged structure;decreased number of neurons with nuclear shrinkage and deformation;increased Nissl bodies,decreased levels of NEFL,NSE,S100B,TNF-α,IL-6 and IL-1β in serum and brain tissue(P<0.01);decreased cerebral expression of GFAP(P<0.01);and decreased phosphorylation levels of cerebral p-IKKβ and p-NF-κB(P<0.01).CONCLUSION Wendan Decoction can reduce the nerve damage and the expression of proinflammatory mediator in sleep disorders mice,and the mechanism may be related to the inhibited activation of IKKβ/NF-κB pathway.

5.
Artículo en Zh | WPRIM | ID: wpr-1020855

RESUMEN

Objective To observe the protective effects of codonopsis pilosulae polysaccharide on lung tissues in mice with acute lung injury(ALI)induced by lipopolysaccharide(LPS)and its mechanism.Methods Fifty male Kunming mice were randomly divided into control group,model group,dexamethasone group,codonopsis polysaccharide high-dose group(300 mg/kg)and codonopsis polysaccharide low-dose group(150 mg/kg).The ALI model was established by intraperitoneal injection of LPS.All mice were given gavage administration according to the grouping except for the control group.0.3 s force expiratory volume(FEV 0.3)and force spirometry(FVC)and their ratios were measured using multiparametric lung function test system.The histopathology change of mouse lung was detected by hematoxylin-eosin(HE)staining,and the classification and count of inflammatory cells in alveolar lavage fluid(BALF)was detected by Richter-Giemsa staining.Levels of IL-1β,IL-6,MPO and TNF-α were measured by ELISA in BALF,and Western blot was used to detect the protein expression level of p-p38,p-IκB-α and p-p65.Results Compared with those in the control group,lung histopathological damage was more pronounced in the model mice,with significantly lower FEV 0.3,FVC,FEV0.3/FVC assay value,but signifi-cantly higher lung tissue wet mass/dry mass(W/D),neutrophils,lymphocytes,IL-1β,IL-6,MPO,TNF-α,p-p38 MAPK,p-IκB-α,and p-p65(P<0.05);while codonopsis pilosulae polysaccharide could significantly reverse these effects.Conclusion Codonopsis pilosulae polysaccharide plays a protective role against LPS-induced ALI via inhibiting MAPK/NF-κB pathway to reduce the pathological damage of lung tissue,and the level of inflammatory factors,thus to improve lung function in ALI model mice.

6.
Artículo en Zh | WPRIM | ID: wpr-1016459

RESUMEN

ObjectiveTo investigate the effects of Tongluo Juanbi granules on chondrocyte apoptosis and Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway of rabbits with knee osteoarthritis (KOA) and study the mechanism of Tongluo Juanbi granules in the prevention and treatment of KOA. MethodThirty New Zealand rabbits were randomly assigned to the following five groups (n=6): sham group, model group, low-dose and high-dose groups of Tongluo Juanbi granules (4.1 and 8.2 g·kg-1·d-1), and celecoxib group (10.9 mg·kg-1·d-1). The KOA model was established by destabilization of the medial meniscus (DMM) for six weeks. Six weeks after the modeling, the drug was given once a day for eight weeks. The pathological changes of cartilago articularis were observed by hematoxylin-eosin (HE) staining and Safranin O-Fast Green staining. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was performed to detect chondrocyte apoptosis. Enzyme-linked immunosorbent assay (ELISA) was used to detect the contents of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in synovial fluid. The mRNA and protein expression levels of genes related to the TLR4/MyD88/NF-κB signaling pathway were detected by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot, respectively. ResultCompared with the sham group, the cartilago articularis of the model group significantly degenerated. Mankin's score was increased (P<0.01), and the contents of IL-1β and TNF-α in synovial fluid were increased (P<0.01). The number of apoptosis of chondrocytes was increased (P<0.01). The mRNA and protein expressions of TLR4, MyD88, and NF-κB p65 in cartilage tissue were up-regulated (P<0.01), while the mRNA and protein expressions of Bcl-2 were down-regulated (P<0.01). Compared with the model group, chondrocyte degeneration in both low-dose and high-dose groups of Tongluo Juanbi granules was improved, and Mankin's score was decreased (P<0.01). The contents of IL-1β and TNF-α were decreased (P<0.01), and the number of apoptosis of chondrocytes was decreased (P<0.01). The mRNA and protein expressions of TLR4, MyD88, and NF-κB p65 in cartilage tissue were down-regulated (P<0.01), while the mRNA and protein expressions of Bcl-2 were up-regulated (P<0.01). In addition, in the above observation indicators, the high-dose group of Tongluo Juanbi granules was significantly superior to the low-dose group of Tongluo Juanbi granules. ConclusionTongluo Juanbi granules could inhibit chondrocyte apoptosis in rabbits with KOA and improve cartilage degeneration, which may be related to inhibiting inflammatory responses mediated by TLR4/MyD88/NF-κB signaling pathway.

7.
Artículo en Zh | WPRIM | ID: wpr-1020902

RESUMEN

Objective To explore the effect of circ_0038467 on angiotensin Ⅱ(Ang Ⅱ)-induced cardiomyocyte damage and its possible mechanism.Methods Ang Ⅱ was used to induce rat cardiomyocyte H9C2 to establish a cell injury model.si-NC,si-circ_0038467,miR-NC,miR-495 mimics were transfected into H9C2 cells and then treated with 1 μmol/L Ang Ⅱ for 24 h.si-circ_0038467 and anti-miR-NC,si-circ_0038467 and anti-miR-495 were co-transfected into H9C2 cells and treated with 1 μmol/L Ang Ⅱ for 24 h.qRT-PCR method was used to detect the expression levels of circ_0038467 and miR-495.A kit was used to detect the level of MDA and the activity of LDH and SOD.Flow cytometry was used to detect the rate of apoptosis.The dual lu-ciferase reporter experiment was used to detect the targeting relationship between circ_0038467 and miR-495.Western blot was used to detect the protein expression of cleaved Caspase-3 and cleaved Caspase-9,Bcl-2,p-P65 and p-IKBa.Results The expres-sion of circ_0038467 in H9C2 cells induced by Ang Ⅱ was increased(P<0.05),while the expression of miR-495 was decreased(P<0.05).After transfection of si-circ_0038467 or miR-495 mimics,the activity of LDH and the level of MDA were decreased(all P<0.05),the rate of apoptosis and the protein levels of cleaved Caspase-3,cleaved Caspase-9 were decreased(all P<0.05),while the activity of SOD was increased(P<0.05).Circ_0038467 could target miR-495.Co-transfection of si-circ_0038467 and anti-miR-495 could antagonize the effect of si-circ_0038467 on Ang Ⅱ-induced oxidative stress and apoptosis of H9C2 cells.In addition,circ_0038467 could activate the NF-κB pathway by targeting miR-495.Conclusion circ_0038467 regu-lates oxidative stress and apoptosis of cardiomyocytes by targeting miR-495/NF-KB pathway.

8.
Artículo en Zh | WPRIM | ID: wpr-989938

RESUMEN

Objective:To investigate the effects of early enteral nutrition intervention on systemic inflammation and intestinal injury in rats with acute pancreatitis and its mechanism.Method:Rat acute pancreatitis model was established. The rats were divided into sham surgery groups, model group, 12 h nutrition support group, 24 h nutrition support group, 48 h nutrition support group, and 48 h nutrition support group +PMA group according to the random number chart method, with 10 rats in each group. After laparotomy, the rats in sham operation group were closed after gently turning the pancreas. The sham operation group and model group were injected with the same amount of physiological salt. Nutritional support group for 12 h, nutritional support group for 24 h and nutritional support group for 48 h were given enteral nutrition support for 12, 24 and 48 h, respectively. Nutritional support group for 48 h +PMA group, intraperitoneal injection of 5 mg/kg NF-κB signaling pathway activator PMA was given after modeling, and nutritional support was given for 48 h. The contents of lipase, amylase and creatinine in serum of each group were detected by automatic biochemical analyzer. The serum levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10) and D-lactic acid were detected by enzyme-linked immunosorbent assay (ELISA). The content of diamine oxidase (DAO) was detected by colorimetry. Hematoxylin-eosin (HE) staining was used to detect the pathological changes of intestinal mucosa. Western blot was used to detect the expression of NF-κB pathway-related proteins in pancreatic tissue of rats in each group.Results:(1) Lipase, amylase and creatinine in sham operation group, model group, 12 h nutrition support group, 24 h nutrition support group and 48 h nutrition support group were (4.37±0.61) vs (12.021±1.00) vs (8.77±0.62) vs (6.88±0.63) vs (5.20±0.41) U/ml, (1674.03±172.24) vs (4356.30±229.38) vs (3676.11±382.43) vs (2990.06±251.93) vs (1919.75±179.40) U/L, (32.12±3.37) vs (91.73±9.76) vs (72.38±6.83) vs (53.72±5.98) vs (41.82±4.00) U/L. Compared with sham operation group, the contents of serum lipase, amylase and creatinine in model group were significantly increased. Compared with model group, the contents of lipase, amylase and creatinine were significantly decreased after 12, 24 and 48 h of nutritional support, and were time-dependent ( P<0.05). (2) The levels of IL-6, IL-1β, TNF-α and IL-10 were (40.26±3.93) vs (123.34±13.19) pg/ml in sham operation group, model group, 12 h nutritional support group, 24 h nutritional support group and 48 h nutritional support group, respectively vs (108.97±12.70) vs (77.36±6.75) vs (49.18±4.97) pg/ml, (77.53±9.95) vs (316.36±23.76) vs (254.79±13.96) vs (177.92±17.20) vs (119.19±13.17) pg/ml, (62.94±5.39) vs (353.16±28.03) vs (275.87±22.11) vs (198.78±24.33) vs (94.60±9.41) pg/ml, (41.21±4.29) vs (6.92±1.01) vs (10.76±0.66) vs (21.24±1.64) vs (35.33±1.69) pg/ml. Compared with sham operation group, the contents of serum inflammatory cytokines IL-6, IL-1β and TNF-α in model group were significantly increased, while the content of IL-10 was significantly decreased. Compared with model group, the contents of IL-6, IL-1β and TNF-α were significantly decreased after 12, 24 and 48 h of nutritional support, while the contents of IL-10 were significantly increased in a time-dependent manner ( P<0.05). (3) The intestinal histopathological scores, DAO and D-lactic acid of sham operation group, model group, 12 h nutritional support group, 24 h nutritional support group and 48 h nutritional support group were (0.00±0.00) vs (4.20±0.60) vs (3.00±0.45) points, respectively vs (1.90±0.54) vs (1.30±0.64) points, (4.92±0.42) vs (14.95±1.20) vs (11.87±1.13) vs (9.02±0.53) vs (6.30±0.59) U/L, (2.39±0.22) vs (6.92±0.46) vs (5.21±0.28) vs (3.64±0.39) vs (2.95±0.15) nmol/ml. Compared with sham operation group, intestinal histopathological scores, DAO and D-lactic acid levels were significantly increased in model group. Compared with model group, intestinal histopathological scores, DAO and D-lactic acid levels were significantly decreased after 12, 24 and 48 h of nutritional support ( P<0.05). (4) The protein expressions of NF-κB p65 and p-IκBα were (0.23±0.03) vs (0.94±0.10) vs (0.75±0.06) vs (0.62±0.06) in sham operation group, model group, 12 h nutrition support group, 24 h nutrition support group and 48 h nutrition support group, respectively. vs (0.41±0.06), (1.06±0.12) vs (0.25±0.04) vs (0.47±0.03) vs (0.62±0.08) vs (0.85±0.08). Compared with sham operation group, NF-κB p65 protein level in model group was significantly increased, while p-IκBα protein level was significantly decreased. Compared with model group, the NF-κB p65 protein level was significantly decreased after 12, 24 and 48 h of nutritional support, while the P-iκBα protein was significantly increased ( P<0.05). (5) NF-κB p65, p-IκBα, IκBα, IL-6, IL-1β, TNF-α, IL-10, lipase, amylase and creatinine were (0.41±0.06) vs (0.82±0.06) in the 48 h group and the 48 h +PMA group, respectively. (0.85±0.08) vs (0.37±0.02), (1.05±0.11) vs (1.10±0.14), (49.18±4.97) vs (105.68±10.69) pg/ml, (119.19±13.17) vs (247.16±23.41) pg/ml, (94.60±9.41) vs (328.24±30.86) pg/ml, (5.20±0.41) vs (10.33±1.01) U/ml, (1919.75±179.40) vs (4023.40±334.56) U/L, (5.20±0.41) vs (10.33±1.01) U/ml, (41.82±4.00) U/L vs (81.33±7.96) U/L. Compared with the 48 h group, the expression level of NF-κB p65 protein, IL-6, IL-1β, TNF-α, lipase, amylase and creatinine in the 48 h +PMA group were significantly increased, while the expression level of P-iκBα protein and the content of IL-10 were significantly decreased ( P<0.05) . Conclusion:Early nutritional intervention can inhibit inflammatory response, reduce intestinal injury and control the development of acute pancreatitis by regulating NF-κB signaling pathway.

9.
International Journal of Surgery ; (12): 681-686, 2023.
Artículo en Zh | WPRIM | ID: wpr-1018045

RESUMEN

Objective:The relative expression of lncRNA NPIPA9 in prostate cancer tissues was analyzed, and the relative expression of miR-210-3p and its effect on the growth and migration of prostate cancer cells were detected by overexpressing lncRNA NPIPA9.Methods:The relative expression of lncRNA NPIPA9 in prostate cancer tissues was analyzed by Oncomine database. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the relative expression of lncRNA NPIPA9 in prostate cancer cell lines DU-145, PC-3, C4-2B, 22Rv1, LNCaP and normal prostate epithelial cell RWPE-1. Prostate cancer PC-3 cells were cultured in vitro and divided into control group (transfected with control vector 100 nmol/L) and NPIPA9 group (transfected with lncRNA NPIPA9 vector 100 nmol/L). The proliferation activity of PC-3 cells was detected by CCK-8 method. The migration ability of PC-3 cells was detected by Transwell method. Potential target of lncRNA NPIPA9 were predicted using bioinformatics techniques. The dual-luciferase reporter gene assay determined the target binding relationship between lncRNA NPIPA9 and miR-210-3p. The effect of lncRNA NPIPA9 on the relative expression of miR-210-3p in prostate cancer cells was detected by RT-qPCR. The effect of lncRNA NPIPA9 on the expression of nuclear factor kappa-B (NF-κB) pathway proteins in prostate cancer cells was detected by Western blotting. Measurement data were expressed as mean±standard deviation ( ± s), and t-test was used for comparison between two groups, one-way analysis of variance was used for comparison between multiple groups. Results:The expression of lncRNA NPIPA9 in prostate cancer tissue was lower than that in adjacent tissue, the difference was statistically significant ( P<0.01). The relative expression of lncRNA NPIPA9 in prostate cancer cell lines was lower than that in RWPE-1 cells, the difference was statistically significant ( P<0.01), and the relative expression of lncRNA NPIPA9 in prostate cancer PC-3 cells was the lowest, the difference was statistically significant ( P<0.01). Compared with the control group, lncRNA NPIPA9 had an inhibitory effect on the viability of prostate cancer PC-3 cells, the difference was statistically significant ( P<0.05). The migration numbers of PC-3 cells in the control group and NPIPA9 group were 101.70±8.63 and 45.97±8.83, respectively, and lncRNA NPIPA9 had an inhibitory effect on PC-3 cell migration, the difference was statistically significant ( P<0.01). lncRNA NPIPA9 can directly target miR-210-3p, the difference was statistically significant ( P<0.01). The relative expression of miR-210-3p in PC-3 cells in control group and NPIPA9 group were 5.32 ± 0.79 and 1.11 ± 0.56, respectively, and lncRNA NPIPA9 could directly down-regulate the expression of miR-210-3p in PC-3 cells, the difference was statistically significant ( P<0.01). Compared with the control group, lncRNA NPIPA9 can reduce the expression of NF-κB pathway proteins c-Myc, MMP-9, VEGF, p65, p50 in PC-3 cells. Conclusion:The expression of lncRNA NPIPA9 is down-regulated in prostate cancer tissues, and it reduces the proliferation and migration ability of prostate cancer PC-3 cells by targeting and negatively regulating miR-210-3p.

10.
Artículo en Zh | WPRIM | ID: wpr-1030449

RESUMEN

Objective To study the effect and its mechanism of hederagenin(hed)on dextran sulfate sodium(DSS)-induced ulcerative colitis(UC)in mice.Methods(1)In vitro experiments:after treating RAW264.7 cells with different concentrations(0,2.5,5,10,20,40 μmol·L-1)of hed for 24 hours,the cell survival rate was detected by MTT assay.RAW264.7 cells were divided into:blank group,lipopolysaccharide(LPS)group(1 μg·L-1),LPS+2.5 μmol·L-1 hed group,LPS+5 μmol·L-1 hed group and LPS+10 μmol·L-1 hed group;an in vitro cellular inflammation model was established using LPS intervention for 24 hours and co-incubated with hed for 24 hours.The levels of interleukin 1β(IL-1β),IL-6 and tumor necrosis factor α(TNF-α)in the cell supernatant were determined by ELISA;the expression levels of TLR4/NF-κB pathway-related proteins in the cells were detected by Western Blot.(2)In vivo experiments:C57BL/6 mice were randomly divided into a blank group,a model group,a Salazosulfapyridine group(200 mg·kg-1),and an hed low-,medium-,and high-dosage groups(12.5,25,and 50 mg·kg-1),with 5 mice in each group.Mice were induced to establish UC model by drinking 3%DSS solution freely for 7 days.The UC model was then established by gavage once a day for 7 days.At the end of the administration,the Disease Activity Index(DAI)was evaluated;pathological changes in the colonic tissues of mice were observed by HE staining;the levels of IL-1β,IL-6,and TNF-α in the colonic tissue were measured by ELISA;and the expression levels of proteins related to the TLR4/NF-κB pathway in the colonic tissue were detected by Western Blot.Results(1)In vitro experiments:compared with the blank group(0 μ mol·L-1 group),there was no significant change in the cell survival rate in the 2.5-10 μmol·L-1 hed group(P>0.05),and there was no significant toxicity effect on RAW264.7 cells.Compared with the blank group,the expression levels of IL-1β,IL-6,and TNF-α in RAW264.7 cells in the LPS group were significantly increased(P<0.01);and the protein expression levels of TLR4 and p-NF-κ B/NF-κ B were significantly increased(P<0.01).Compared with the LPS group,the expression levels of IL-1β and TNF-α in RAW264.7 cells in the hed 2.5,5,and 10 μmol·L-1 concentration groups were significantly decreased(P<0.05,P<0.01),and the protein expression levels of TLR4,p-NF-κB/NF-κB were significantly decreased(P<0.05,P<0.01);the IL-6 expression level of RAW264.7 cells in the hed 5 and 10 μmol·L-1 concentration groups was significantly reduced(P<0.05,P<0.01).(2)In vivo experiments:compared with the blank group,the body mass of mice in the model group was consistently reduced(P<0.01),the DAI score was significantly elevated(P<0.01),and the length of the colon was significantly shortened(P<0.01);the colonic tissue showed obvious epithelial cell damage,and the histopathological scores were significantly elevated(P<0.01);and the expression levels of the pro-inflammatory cytokines IL-1β,IL-6 and TNF-α were significantly increased(P<0.01);protein expression levels of TLR4 and p-NF-κB/NF-κB were significantly increased(P<0.01)in colon tissue.Compared with the model group,the body mass of mice in the low-,medium-and high-dose groups of hed were significantly increased(P<0.05,P<0.01),the DAI score was significantly decreased(P<0.05,P<0.01),the pathological damage of colon tissue improved to different degrees,and the protein expression levels of TLR4,p-NF-κB/NF-κB in the colonic tissue were significantly decreased(P<0.05,P<0.01);the colon length of mice in the medium-and high-dose groups of hed were significantly increased(P<0.05,P<0.01),and the expression levels and histopathological scores of IL-1β,IL-6,and TNF-α in colon tissue were significantly reduced(P<0.05,P<0.01).Conclusion Hed were able to effectively ameliorate colonic histopathological injury and reduce the levels of inflammatory factors in DSS-induced UC mice,and their mechanism of action may be related to the inhibition of the TLR4/NF-κB pathway.

11.
Acta Pharmaceutica Sinica B ; (6): 1093-1109, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971751

RESUMEN

Interleukin-1 receptor-associated kinase 4 (IRAK4) is a pivotal enzyme in the Toll-like receptor (TLR)/MYD88 dependent signaling pathway, which is highly activated in rheumatoid arthritis tissues and activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL). Inflammatory responses followed by IRAK4 activation promote B-cell proliferation and aggressiveness of lymphoma. Moreover, proviral integration site for Moloney murine leukemia virus 1 (PIM1) functions as an anti-apoptotic kinase in propagation of ABC-DLBCL with ibrutinib resistance. We developed a dual IRAK4/PIM1 inhibitor KIC-0101 that potently suppresses the NF-κB pathway and proinflammatory cytokine induction in vitro and in vivo. In rheumatoid arthritis mouse models, treatment with KIC-0101 significantly ameliorated cartilage damage and inflammation. KIC-0101 inhibited the nuclear translocation of NF-κB and activation of JAK/STAT pathway in ABC-DLBCLs. In addition, KIC-0101 exhibited an anti-tumor effect on ibrutinib-resistant cells by synergistic dual suppression of TLR/MYD88-mediated NF-κB pathway and PIM1 kinase. Our results suggest that KIC-0101 is a promising drug candidate for autoimmune diseases and ibrutinib-resistant B-cell lymphomas.

12.
Artículo en Zh | WPRIM | ID: wpr-984582

RESUMEN

ObjectiveTo explore the mechanisms of internal treatment (Renshen Baidusan), external treatment (Yurui Enema), and combination of the two methods in treating intestinal mucosal injury in the rat model of ulcerative colitis (UC) from the changes of phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt)/nuclear factor-κB (NF-κB) pathway. MethodFifty SPF-grade SD rats were randomized into blank, model, Renshen Baidusan (15.6 g·kg-1), Yurui Enema (25 g·kg-1), and combined treatment (15.6 g·kg-1 Renshen Baidusan + 25 g·kg-1 Yurui Enema) groups (n=10). The rat model of UC was established in other groups except the blank group by 2,4, 6-trinitrosulfonic acid (TNBS)/ethanol. The rats were administered with corresponding drugs once a day for 14 consecutive days since the 8th day after modeling. The histopathological changes of colon were observed by hematoxylin-eosin (HE) staining. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-4, and IL-10 in the colon tissue. The apoptosis of colon epithelial cells was detected by terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL). The location and expression of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), TNF-α, and IL-6 in the colon tissue were examined by immunohistochemistry. Real-time quantitative fluorescence polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the mRNA and protein levels, respectively, of the proteins in the PI3K/Akt/NF-κB pathway in the colon tissue. ResultIn the model group, HE staining showed a large number of inflammatory cell infiltration in the mucosa and submucosa. Compared with the blank group, the model group showed elevated levels of TNF-α and IFN-γ and lowered levels of IL-4 and IL-10 in the colon tissue, increased apoptosis rate of colon epithelial cells, increased positive expression of Bax, TNF-α, and IL-6, and decreased positive expression of Bcl-2 (P<0.05). Moreover, the model group showed up-regulated mRNA levels of PI3K, Akt, and NF-κB and protein levels of PI3K, p-PI3K, Akt, p-Akt, p65, p-p65, Bax, and cleaved Caspase-3, increased Bax/Bcl-2 and cleaved Caspase-3/Caspase-3 ratios, and down-regulated protein levels of NF-κB suppressor protein α(IκBα), Bcl-2, and Caspase-3 in the colon tissue (P<0.05). Compared with the model group, the internal treatment, the external treatment, and the combination (referred to as the three groups) alleviated the colonic mucosal injury, lowered the levels of TNF-α and IFN-γ and elevated the levels of IL-4 and IL-10 in the colon tissue, decreased the apoptosis rate of colon cells, inhibited the positive expression of Bax, TNF-α, and IL-6, and promoted the positive expression of Bcl-2 (P<0.05). Furthermore, the combination group down-regulated the mRNA level of PI3K (P<0.05). The three groups down-regulated the mRNA levels of Akt and NF-κB and the protein levels of p-PI3K, Akt, p-Akt, p65, p-p65, Bax, and cleaved Caspase-3 in the colon tissue, decreased the Bax/Bcl-2 and cleaved Caspase-3/Caspase-3 ratios, and up-regulated the protein levels of IκBα, Bcl-2, and Caspase-3 (P<0.05). ConclusionRenshen Baidusan, Yurui Enema, and their combination may inhibit the activation of PI3K/Akt/NF-κB signaling pathway and regulate the expression of genes and proteins related to this pathway to achieve anti-inflammatory and anti-apoptotic effects, thus restoring the intestinal mucosal barrier function of UC rats.

13.
Acta Pharmaceutica Sinica B ; (6): 4234-4252, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1011169

RESUMEN

The mesencephalic astrocyte-derived neurotrophic factor (MANF) has been recently identified as a neurotrophic factor, but its role in hepatic fibrosis is unknown. Here, we found that MANF was upregulated in the fibrotic liver tissues of the patients with chronic liver diseases and of mice treated with CCl4. MANF deficiency in either hepatocytes or hepatic mono-macrophages, particularly in hepatic mono-macrophages, clearly exacerbated hepatic fibrosis. Myeloid-specific MANF knockout increased the population of hepatic Ly6Chigh macrophages and promoted HSCs activation. Furthermore, MANF-sufficient macrophages (from WT mice) transfusion ameliorated CCl4-induced hepatic fibrosis in myeloid cells-specific MANF knockout (MKO) mice. Mechanistically, MANF interacted with S100A8 to competitively block S100A8/A9 heterodimer formation and inhibited S100A8/A9-mediated TLR4-NF-κB signal activation. Pharmacologically, systemic administration of recombinant human MANF significantly alleviated CCl4-induced hepatic fibrosis in both WT and hepatocytes-specific MANF knockout (HKO) mice. This study reveals a mechanism by which MANF targets S100A8/A9-TLR4 as a "brake" on the upstream of NF-κB pathway, which exerts an impact on macrophage differentiation and shed light on hepatic fibrosis treatment.

14.
Artículo en Inglés | WPRIM | ID: wpr-982405

RESUMEN

The syndrome of dampness stagnancy due to spleen deficiency (DSSD) is relatively common globally. Although the pathogenesis of DSSD remains unclear, evidence has suggested that the gut microbiota might play a significant role. Radix Astragali, used as both medicine and food, exerts the effects of tonifying spleen and qi. Astragalus polysaccharide (APS) comprises a macromolecule substance extracted from the dried root of Radix Astragali, which has many pharmacological functions. However, whether APS mitigates the immune disorders underlying the DSSD syndrome via regulating gut microbiota and the relevant mechanism remains unknown. Here, we used DSSD rats induced by high-fat and low-protein (HFLP) diet plus exhaustive swimming, and found that APS of moderate molecular weight increased the body weight gain and immune organ indexes, decreased the levels of interleukin-1β (IL-1β), IL-6, and endotoxin, and suppressed the Toll-like receptor 4/nuclear factor-‍κB (TLR4/NF-‍κB) pathway. Moreover, a total of 27 critical genera were significantly enriched according to the linear discriminant analysis effect size (LEfSe). APS increased the diversity of the gut microbiota and changed its composition, such as reducing the relative abundance of Pseudoflavonifractor and Paraprevotella, and increasing that of Parasutterella, Parabacteroides, Clostridium XIVb, Oscillibacter, Butyricicoccus, and Dorea. APS also elevated the contents of short-chain fatty acids (SCFAs). Furthermore, the correlation analysis indicated that 12 critical bacteria were related to the body weight gain and immune organ indexes. In general, our study demonstrated that APS ameliorated the immune disorders in DSSD rats via modulating their gut microbiota, especially for some bacteria involving immune and inflammatory response and SCFA production, as well as the TLR4/NF-κB pathway. This study provides an insight into the function of APS as a unique potential prebiotic through exerting systemic activities in treating DSSD.


Asunto(s)
Ratas , Animales , FN-kappa B/metabolismo , Bazo , Microbioma Gastrointestinal , Receptor Toll-Like 4 , Polisacáridos/farmacología , Planta del Astrágalo/metabolismo , Enfermedades del Sistema Inmune/tratamiento farmacológico , Peso Corporal
15.
Artículo en Zh | WPRIM | ID: wpr-980168

RESUMEN

ObjectiveTo investigate the effect of Zhishi Xiebai Guizhitang (ZXGT) on isoproterenol (ISO)-induced myocardial infarction (MI) in rats through the tumor necrosis factor/nuclear factor-κB (TNF/NF-κB) signaling pathway. MethodForty-eight SD rats were randomly divided into control group (blank), model group, perindopril group (4 mg·kg-1), ZXGT group (24.4 g·kg-1), ZXGT +inhibitor group (ZXGT, 24.4 g·kg-1, TNF-α receptor inhibitor R7050, 5 mg·kg-1), and an inhibitor group (R7050, 5 mg·kg-1), with eight rats in each group. The rats in each group were orally administered with their respective drugs for 7 days. Additionally, in the ZXGT + inhibitor group and the inhibitor group, R7050 was injected intraperitoneally at a dose of 5 mg·kg-1 on the 6th and 7th days. Except for the control group, all other groups were given intraperitoneal injections of ISO for 2 consecutive days to induce MI in rats. On the 7th day of the experiment, the rats were anesthetized 30 min after ISO injection, and their electrocardiograms (ECGs) were recorded to observe ST-segment elevation. Small animal echocardiography was used to measure global longitudinal strain (GLS) and cardiac synchrony. Blood samples were collected from the abdominal aorta to measure the levels of serum cardiac troponin T (cTnT), creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β). Histopathological changes in myocardial tissue were observed using hematoxylin-eosin (HE) staining. Immunohistochemistry (IHC) was used to detect the expression of TNF-α, NF-κB p65, and p-NF-κB p65 proteins in myocardial tissue. Western blot was performed to measure the expression of tumor necrosis factor receptor 1 (TNFR1), tumor necrosis factor receptor-associated factor 2 (TRAF2), transforming growth factor-beta-activated kinase 1 (TAK1), NF-κB inhibitory protein alpha (IκBα), phosphorylated (p)-IκBα, NF-κB p65, and p-NF-κB p65 proteins in myocardial tissue. ResultCompared with the control group, the model group showed significant ST segment elevation on the ECG (P<0.01), increased GLS, and reduced cardiac synchrony on echocardiography (P<0.01). Histopathological examination revealed extensive myocardial necrosis. Furthermore, the serum levels of cTnT, CK-MB, LDH, TNF-α, and IL-1β were significantly increased (P<0.01), and the expression levels of TNF-α, TNFR1, TRAF2, TAK1, p-IκBα, and p-NF-κB p65 proteins in myocardial tissue were significantly elevated (P<0.01), while the expression level of IκBα was significantly decreased (P<0.01). Compared with the model group, the perindopril group, the ZXGT group, the ZXGT + inhibitor group, and the inhibitor group rats showed a significant reduction in ST-segment elevation on the ECG (P<0.05, P<0.01), improvement in GLS and cardiac synchrony (P<0.05, P<0.01), a decrease in the area of myocardial necrosis, and reduced serum levels of cTnT, CK-MB, LDH, TNF-α, and IL-1β (P<0.01). Additionally, the ZXGT group, the ZXGT + inhibitor group, and the inhibitor group downregulated the increased TNF-α, TNFR1, TRAF2, TAK1, p-IκBα, and p-NF-κB p65 protein expression levels and upregulated IκBα expression levels in the myocardial tissue (P<0.05, P<0.01). No significant differences were observed between the ZXGT group and the ZXGT + inhibitor group or the inhibitor group. ConclusionZXGT can protect against ISO-induced myocardial injury in rats and improve cardiac function, and its mechanism of action may be related to the regulation of the TNF/NF-κB signaling pathway.

16.
Artículo en Zh | WPRIM | ID: wpr-1008674

RESUMEN

To investigate the intervention effect and mechanism of Zhenwu Decoction on diabetic nephropathy(DN) mice of spleen-kidney Yang deficiency syndrome based on the Rho-associated coiled-coil kinase(ROCK)/IκB kinase(IKK)/nuclear factor-κB(NF-κB) pathway. Ninety-five 7-week-old db/db male mice and 25 7-week-old db/m male mice were fed adaptively for one week. The DN model of spleen-kidney Yang deficiency syndrome was induced by Dahuang Decoction combined with hydrocortisone by gavage, and then the model was evaluated. After modeling, they were randomly divided into a model group, high-dose, medium-dose, and low-dose Zhenwu Decoction groups(33.8, 16.9, and 8.45 g·kg~(-1)·d~(-1)), and an irbesartan group(25 mg·kg~(-1)·d~(-1)), with at least 15 animals in each group. The intervention lasted for eight weeks. After the intervention, body weight and food intake were measured. Serum crea-tinine(Scr), blood urea nitrogen(BUN), fasting blood glucose(FBG), urinary albumin(uALb), and urine creatinine(Ucr) were determined. The uALb/Ucr ratio(ACR) and 24 h urinary protein(UTP) were calculated. Renal pathological morphology was evaluated by HE staining and Masson staining. The levels of key molecular proteins in the ROCK/IKK/NF-κB pathway were detected by Western blot. Enzyme-linked immunosorbent assay(ELISA) was used to detect interleukin-1β(IL-1β), interleukin-6(IL-6), interleukin-8(IL-8), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α). Compared with the blank group, the model group showed increased content of BUN, uALb, and SCr, increased values of 24 h UTP and ACR, decreased content of Ucr(P<0.05), enlarged glomeruli, thickened basement membrane, mesangial matrix proliferation, inflammatory cell infiltration, and collagen fiber deposition. The protein expression of ROCK1, ROCK2, IKK, NF-κB, phosphorylated IKK(p-IKK), phosphorylated NF-κB(p-NF-κB), and phosphorylated inhibitor of NF-κB(p-IκB) increased(P<0.05), while the protein expression of inhibitor of NF-κB(IκB) decreased(P<0.05). The levels of inflammatory factors IL-1β, IL-6, IL-8, and TNF-α increased(P<0.05), while the level of IL-10 decreased(P<0.05). Compared with the model group, the groups with drug treatment showed decreased levels of BUN, uALb, SCr, 24 h UTP, and ACR, increased level of Ucr(P<0.05), and improved renal pathological status to varying degrees. The high-and medium-dose Zhenwu Decoction groups and the irbesartan group showed reduced protein expression of ROCK1, ROCK2, IKK, NF-κB, p-IKK, p-NF-κB, and p-IκB in the kidneys(P<0.05), increased protein expression of IκB(P<0.05), decreased levels of serum inflammatory factors IL-1β, IL-6, IL-8, and TNF-α(P<0.05), and increased level of IL-10(P<0.05). Zhenwu Decoction can significantly improve renal function and renal pathological damage in DN mice of spleen-kidney Yang deficiency syndrome, and its specific mechanism may be related to the inhibition of inflammatory response by down-regulating the expression of key molecules in the ROCK/IKK/NF-κB pathway in the kidney.


Asunto(s)
Ratones , Masculino , Animales , FN-kappa B/metabolismo , Interleucina-8 , Interleucina-10 , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6 , Quinasa I-kappa B , Bazo , Irbesartán , Uridina Trifosfato , Deficiencia Yang/tratamiento farmacológico , Riñón/patología
17.
Artículo en Zh | WPRIM | ID: wpr-1005808

RESUMEN

【Objective】 To investigate the influence of matrine (MT) on the balance of T helper cell 17 (Th17)/regulatory T cells (Treg) in rats with inflammatory bowel disease by regulating interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3)/nuclear transcription factor-κB (NF-κB) pathway. 【Methods】 SD rats were grouped into control check group (CK group), model group, low-dose MT group (MT-L group, 50 mg/kg), medium-dose MT group (MT-M group, 100 mg/kg), high-dose MT group (MT-H group, 200 mg/kg), mesalazine group (MSLM group, 0.42 g/kg), and MT-H+rIL-6 (IL-6 activator) group (200 mg/kg+0.05 mg/kg) according to the random number table method, with 18 in each group. Except for the CK group, the rats in other groups all received with 5% trinitrobenzenesulfonic acid (20 mg/kg) buffer solution mixed with 50% ethanol at a ratio of 1∶1 and then enema to construct a rat model of inflammatory bowel disease. After the successful modeling, they were treated with drug administration once a day for 7 weeks. The body weight of rats was measured at 1, 3, 5, and 7 weeks of administration; the changes of colon length of rats in each group were compared; HE staining was used to detect the pathological damage of rat colon tissue; the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-17 and IL-10 in serum of rats were detected by ELISA; the proportions of Th17 and Treg cells in peripheral blood of rats were detected by flow cytometry; Western blottingt was performed to detect the protein expression of retinoic acid-related orphan receptor γt (RORγt), forkhead box protein P3 (Foxp3), IL-6, p-STAT3, and p-NF-κB p65 in rat colon tissue. 【Results】 Compared with the CK group, the colon tissue of the model group was severely damaged by pathology, and the body weight (at 3, 5, and 7 weeks), the level of IL-10, the proportion of Treg cell, and the expression of Foxp3 protein were decreased, the colon length shortened, the levels of TNF-α, IL-17, the proportions of Th17 cell, Th17/Treg ratio, and the protein expression of RORγt, IL-6, p-STAT3, and p-NF-κB p65 increased (P<0.05). Compared with the model group, the corresponding indicators of the MT-L group, MT-M group, MT-H group, and MSLM group had the opposite trends (P<0.05); rIL-6 attenuated the promoting effect of high-dose MT on Th17/Treg balance in inflammatory bowel disease rats. 【Conclusion】 MT may promote Th17/Treg balance in inflammatory bowel disease rats by inhibiting IL-6/STAT3/NF-κB signaling pathway.

18.
Artículo en Zh | WPRIM | ID: wpr-930255

RESUMEN

Objective:To explore the mechanism of dexmedetomidine (DEX) regulating microglial (MG) polarization and neuroinflammation after traumatic brain injury (TBI) in rats.Methods:Forty-two adult male SD rats were randomly (random number) divided into the sham group, TBI group, TBI+DEX group (further divided into 1 d, 3 d and 7 d subgroups), TBI+NF-κB inhibitor (pyrrolidine dithiocarbamate, PDTC) group and TBI+DEX+PDTC group, with 6 animals in each group. The rat TBI model was established according to the modified Feeney free fall method. PDTC was intraperitoneally injected 1 h after modeling with a dose of 100 mg/kg, and DEX was intraperitoneally injected 2 h after modeling with a dose of 100 μg/kg. Modified neurological severity score (mNSS) was used to evaluate rat neurological function, ELISA was used to detect serum inflammatory factors, and rats’ damaged cortex was collected to detect the phenotype markers of MG and protein expressions of MyD88 and NF-κB p65, and immunofluorescence staining was used to observe the expression and nuclear entry of NF-κB p65 in MG in injured cortex. One-way and two-way ANOVA were used to compare the measurement data among multiple groups.Results:Compared with the sham group, the mNSS score was significantly higher in the TBI group, and DEX treatment significantly decreased the mNSS score of TBI rats ( P<0.05). ELISA and Western blot results showed that in the TBI group, the tumor necrosis factor-α (TNF-α), interleukin (IL)-1β in serum and M1 phenotype marker (TNF-α, IL-1β) in brain were increased, the expression of anti-inflammatory factor IL-10 in serum and M2 phenotype markers (arginase-1 and IL-10) in brain were decreased ( P<0.05), and DEX downregulated the expression of TNF-α, IL-1β in serum and M1 phenotype markers in brain, while upregulated the level of L-10 in serum and the M2 phenotype marker in brain ( P<0.05). In addition, the expression of MyD88 and the nuclear translocation of NF-κB p65 were inhibited in the DEX group, and this effect could be enhanced by PDTC. Conclusions:DEX modulates MG activation in TBI rats by inhibiting NF-κB nuclear translocation and reduces neuroinflammation.

19.
Acta Pharmaceutica Sinica ; (12): 3587-3595, 2022.
Artículo en Zh | WPRIM | ID: wpr-964313

RESUMEN

Acute lung injury (ALI) is a kind of lung disease mainly caused by excessive inflammatory reaction. At present, there is a lack of effective therapeutic drugs in clinic. The aim of this study was to investigate the improvement effect of Panax notoginseng saponins (PNS) on ALI and its potential mechanism. The model of wild-type C57BL/6J mice was established by intratracheal instillation of 50 μL 25 mg·mL-1 lipopolysaccharide (LPS). 24 h later, 200 and 400 mg·kg-1 PNS was given intragastric, respectively. 24 h after administration, the improvement effect of PNS on ALI mice was evaluated by lung function, wet-to-dry weight ratio (W/D), total protein, interleukin 6 (IL6) and tumor necrosis factor α (TNFα) concentration of bronchoalveolar lavage fluid (BALF), expression levels of IL6 and TNFα in lung tissues, pathological changes of lung tissues and expression of inflammatory cells in BALF. The protein expression levels of NF-κB and its upstream kinases in Raw264.7 cells and ALI mice lung tissues were further detected to evaluate the potential mechanism of PNS improving ALI mice. The experimental scheme was approved by the Animal Experiment Ethics Committee of Shanghai University of Traditional Chinese Medicine. It was found that 400 mg·kg-1 PNS could significantly improve the lung function of ALI mice, reduce the contents of W/D, BALF total protein, IL6 and TNFα, neutrophils expression in BALF and the infiltration of inflammatory cells in lung tissue. In Raw264.7 cells and ALI mice lung tissue, PNS significantly reduced the expression of NF-κB, reduced the protein expression and phosphorylation of NF-κB, promoted the expression of IκBα, and inhibited the inflammatory response. This study showed that PNS can improve ALI by inhibiting the activity of NF-κB, inhibiting the release of inflammatory factors and inflammatory cells infiltration, alleviating lung inflammation.

20.
China Pharmacy ; (12): 542-547, 2022.
Artículo en Zh | WPRIM | ID: wpr-920722

RESUMEN

OBJECTIVE To explore the effects of acteoside on hypoxia/reoxygena tion(H/R)-induced cardiomyocyte damage by regulating Rho family GTPase 3(Rnd3)/nuclear factor κB(NF-κB)pathway. METHODS The H 9c2 cardiomyocyte were divided into control group (no administration ,no modeling ),H/R group (only modeling ),H/R+AS-L group ,H/R+AS-M group , H/R+AS-H group (10,30,90 μmol/L acteoside for above 3 groups firstly ,and then modeling ),H/R+pcDNA group [transfecting pcDNA (empty vector ) firstly,and then modeling] ,H/R + pcDNA-Rnd 3 group [overexpression of Rnd 3 by transfecting pcDNA-Rnd3(Rnd3 overexpression vector )firstly,and then modeling] ,H/R+AS-H+si-NC group [transfecting si-NC (negative control)firstly,and then giving 90 μmol/L acteoside and modeling],H/R+AS-H+si-Rnd3 group [inhibiting overexpression of Rnd 3 by transfecting si-Rnd 3 (Rnd3 small interfering RNA ) firstly,and then giving 90 μ mol/L acteoside and modeling]. After corresponding treatment ,the apoptotic rate ,release of lactate dehydrogenase (LDH),malondialdehyde(MDA)level,the activity of superoxide dismutase (SOD),the level of tumor necrosis factor α(TNF-α),interleukin 1β(IL-1β)and interleukin- 6(IL-6), mRNA and protein expression of Rnd 3 and NF-κB subunit p65(NF-κB p65),the expression of aspartate proteolytic enzyme 3 (Cleaved Caspase- 3)protein and Cleaved Caspase- 9 protein were detected. RESULTS Different concentrations of acteoside could reduce the apoptotic rate of H/R-induced H 9c2 cardiomyocyte,the protein expressions of Cleaved Caspase- 3 and Cleaved Caspase-9,mRNA and protein expressions of NF-κB p65,the levels of LDH release and MDA ,TNF-α,IL-1β and IL-6,while increase the activity of SOD and mRNA and protein expressions of Rnd 3(P<0.05),in a dose-dependent manner. Overexpression of Rnd 3 could decrease the apoptotic rate of H 9c2 cardiomyocyte,protein expressions of NF-κB p65,Cleaved Caspase- 3 and Cleaved Caspase- 9, the levels of LDH release , MDA, TNF-α,IL-1β and IL-6,while increase the protein expression of Rnd 3 and the activity of SOD (P<0.05). The inhibition overexpression of Rnd 3 could weaken the inhibitory effects of acteoside on H/R-induced apoptosis of H 9c2 cardiomyocyte, oxidative stress and inflammatory reaction (P<0.05). CONCLUSIONS Acteoside could regulate Rnd 3/NF-κ B pathway by promoting the expression of Rnd 3 and inhibiting the expression of NF-κB p65,inhibit cardiomyocyte apoptosis ,oxidative stress and inflammation reaction so as to relieve the H/R-induced cardiomyocyte damage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA