RESUMEN
Risedronate is a nitrogen-containing bisphosphonate for the treatment and prevention of postmenopausal osteoporosis. The current work aims to develop a novel green HPLC-UV method for the rapid analysis of risedronate sodium in bulk and tablet formulation. The analyzed samples were separated on Waters Atlantis dC18 (150 mm × 3.9 mm; 5 µm) column using a green mobile phase consisting of potassium phosphate buffer pH 2.9 and potassium edetate buffer pH 9.5 in a ratio of 1:2, the final pH was adjusted to 6.8 with phosphoric acid, the mobile phase was pumped at a rate of 1.0 mL/min, with column temperature set at 30 °C, eluted samples were detected at 263 nm and the chromatographic run time was 3.0 min. The method was found to be linear over the concentration range of 14-140 µg/mL with a correlation coefficient (r2) of 0.9994. Accuracy and precision were evaluated from three QC samples (LQC, MQC and HQC) together with the five calibrators where the percentage accuracy was found to be 101.84%. Processed quality control samples of risedronate sodium were tested for stability at different conditions, short term, long term and freeze- thaw stability. The current method was further extended to study the content uniformity of Actonel® tablets following United States Pharmacopoeia (USP) guidelines. The proposed method was fully validated as per ICH guidelines.
RESUMEN
Atorvastatin (ATO) is of the statin class and is used as an orally administered lipid-lowering drug. ATO is a reversible synthetic competitive inhibitor of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase thus leading to a reduction in cholesterol synthesis. It has recently been demonstrated that ATO has different pharmacological actions, which are unrelated to its lipid-lowering effects and has the ability to treat chronic airway diseases. This paper reviews the potential of ATO as an anti-inflammatory, antioxidant, and anti-proliferative agent after oral or inhaled administration. This paper discusses the advantages and disadvantages of using ATO under conditions associated with those found in the airways. This treatment could potentially be used to support the formulating of ATO as an inhaler for the treatment of chronic respiratory diseases.
RESUMEN
Date fruits are well known to be very nutritious. Nevertheless, the protein contents of the fruit, particularly the seed and flesh, are still understudied, largely due to their difficult physical characteristics. This study was conducted to compare three different protein extraction methods which were the trichloroacetic acid (TCA)-acetone (TCA-A), phenol (Phe), and TCA-acetone-phenol (TCA-A-Phe), and to perform proteomic analysis on date palm seed and flesh. Phe extraction method showed the highest protein yields for both seed (8.26 mg/g) and flesh (1.57 mg/g). Through sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Phe, and TCA-A-Phe extraction methods were shown to be efficient in removing interfering compounds and gave well-resolved bands over a wide range of molecular weights. Following liquid chromatography-tandem mass spectrometry analysis, about 50-64% of extracted proteins were identified with known functions including those involved in glycolysis, Krebs cycle, defense, and storage. Phe protein extraction method was proven to be the optimal method for date flesh and seed.
Asunto(s)
Frutas/química , Phoeniceae/química , Proteínas de Plantas/análisis , Semillas/química , Acetona/química , Electroforesis en Gel de Poliacrilamida/métodos , Fenol/química , Proteínas de Plantas/aislamiento & purificación , Espectrometría de Masas en Tándem/métodos , Ácido Tricloroacético/químicaRESUMEN
Despite the widespread use of silver nanoparticles (NPs), these NPs can accumulate and have toxic effects on various organs. However, the effects of silver nanostructures (Ag-NS) with alginate coating on the male reproductive system have not been studied. Therefore, this study aimed to investigate the impacts of this NS on sperm function and testicular structure. After the synthesis and characterization of Ag-NS, the animals were divided into five groups (n = 8), including one control group, two sham groups (received 1.5 mg/kg/day alginate solution for 14 and 35 days), and two treatment groups (received Ag-NS at the same dose and time). Following injections, sperm parameters, apoptosis, and autophagy were analyzed by the TUNEL assay and measurement of the mRNA expression of Bax, Bcl-2, caspase-3, LC3, and Beclin-1. Fertilization rate was assessed by in vitro fertilization (IVF), and testicular structure was analyzed using the TUNEL assay and hematoxylin and eosin (H&E) staining. The results showed that the NS was rod-shaped, had a size of about 60 nm, and could reduce sperm function and fertility. Gene expression results demonstrated an increase in the apoptotic markers and a decrease in autophagy markers, indicating apoptotic cell death. Moreover, Ag-NS invaded testicular tissues, especially in the chronic phase (35 days), resulting in tissue alteration and epithelium disintegration. The results suggest that sperm parameters and fertility were affected. In addition, NS has negative influences on testicular tissues, causing infertility in men exposed to these NS.
RESUMEN
The rise of antibiotic resistance has increased the need for alternative ways of preventing and treating enteropathogenic bacterial infection. Various probiotic bacteria have been used in animal and human. However, Saccharomyces boulardii is the only yeast currently used in humans as probiotic. There is scarce research conducted on yeast species commonly found in kefir despite its claimed potential preventative and curative effects. This work focused on adhesion properties, and antibacterial metabolites produced by Kluyveromyces lactis and Saccharomyces unisporus isolated from traditional kefir grains compared to Saccharomyces boulardii strains. Adhesion and sedimentation assay, slide agglutination, microscopy and turbidimetry assay were used to analyze adhesion of Salmonella Arizonae and Salmonella Typhimurium onto yeast cells. Salmonella growth inhibition due to the antimicrobial metabolites produced by yeasts in killer toxin medium was analyzed by slab on the lawn, turbidimetry, tube dilution and solid agar plating assays. Alcohol and antimicrobial proteins production by yeasts in killer toxin medium were analyzed using gas chromatography and shotgun proteomics, respectively. Salmonella adhered onto viable and non-viable yeast isolates cell wall. Adhesion was visualized using scanning electron microscope. Yeasts-fermented killer toxin medium showed Salmonella growth inhibition. The highest alcohol concentration detected was 1.55%, and proteins with known antimicrobial properties including cathelicidin, xanthine dehydrogenase, mucin-1, lactadherin, lactoperoxidase, serum amyloid A protein and lactotransferrin were detected in yeasts fermented killer medium. These proteins are suggested to be responsible for the observed growth inhibition effect of yeasts-fermented killer toxin medium. Kluyveromyces lactis and Saccharomyces unisporus have anti-salmonella effect comparable to Saccharomyces boulardii strains, and therefore have potential to control Salmonella infection.
RESUMEN
This study aimed to evaluate the efficacy of chitosan-silver nanocomposites in the treatment of experimentally infested pigeons with Pseudolynchia canariensis (P. canariensis) with evaluation of different immunological parameters before and after treatment. Therefore, fourteen birds were divided into 2 groups; group1(infested group including 12 birds) which subdivided into 6 sub-groups experimentally infested pigeons 2 pigeons each, and five group of them were treated with chitosan-silver nanocomposites and sub-group number 6 was treated with deltamethrin while, group 2 including two pigeons were kept as control negative ones. P. canariensis flies distributed under the wing and /or under the tail in infested group and these pigeons showed significantly lower RBCs and higher WBCs than that in non-infested pigeons. The cell mediated immune response against experimentally infested pigeons with P. canariensis was studied. P. canariensis infestation in pigeons have a negative impact on pigeon's blood parameters, increase TNF-α and IL-1ß cytokines levels. This study cleared out the role of P. canariensis in the induction of a case of oxidative stress indicated by high level of nitric oxide and malondialdehyde (MDA) with low antioxidant capacity in shape of reduced zinc concentration in the sera of experimentally infested pigeon. Chitosan-silver nanocomposite has a promising effect in the elimination of P. canariensis infestation in pigeons.
RESUMEN
Current pre-clinical evidences of Centella focus on its pharmacological effects on normal wound healing but there are limited studies on the bioactivity of Centella in cellular dysfunction associated with diabetic wounds. Hence we planned to examine the potential of Centella cordifolia in inhibiting methylglyoxal (MGO)-induced extracellular matrix (ECM) glycation and promoting the related cellular functions. A Cell-ECM adhesion assay examined the ECM glycation induced by MGO. Different cell types that contribute to the healing process (fibroblasts, keratinocytes and endothelial cells) were evaluated for their ability to adhere to the glycated ECM. Methanolic extract of Centella species was prepared and partitioned to yield different solvent fractions which were further analysed by high performance liquid chromatography equipped with photodiode array detector (HPLC-PDA) method. Based on the antioxidant [2,2-diphenyl-1-picrylhydrazyl (DPPH) assay] screening, anti-glycation activity and total phenolic content (TPC) of the different Centella species and fractions, the ethyl acetate fraction of C. cordifolia was selected for further investigating its ability to inhibit MGO-induced ECM glycation and promote cellular distribution and adhesion. Out of the three Centella species (C. asiatica, C. cordifolia and C. erecta), the methanolic extract of C. cordifolia showed maximum inhibition of Advanced glycation end products (AGE) fluorescence (20.20 ± 4.69 %, 25.00 ± 3.58 % and 16.18 ± 1.40 %, respectively). Its ethyl acetate fraction was enriched with phenolic compounds (3.91 ± 0.12 mg CAE/µg fraction) and showed strong antioxidant (59.95 ± 7.18 µM TE/µg fraction) and antiglycation activities. Improvement of cells spreading and adhesion of endothelial cells, fibroblasts and keratinocytes was observed for ethyl acetate treated MGO-glycated extracellular matrix. Significant reduction in attachment capacity of EA.hy926 cells seeded on MGO-glycated fibronectin (41.2%) and attachment reduction of NIH3t3 and HaCaT cells seeded on MGO-glycated collagen (33.7% and 24.1%, respectively) were observed. Our findings demonstrate that ethyl acetate fraction of C. cordifolia was effective in attenuating MGO-induced glycation and cellular dysfunction in the in-vitro wound healing models suggesting that C. cordifolia could be a potential candidate for diabetic wound healing. It could be subjected for further isolation of new phytoconstituents having potential diabetic wound healing properties.
RESUMEN
Introduction: Neomenthol, a cyclic monoterpenoid, is a stereoisomer of menthol present in the essential oil of Mentha spp. It is used in food as a flavoring agent, in cosmetics and medicines because of its cooling effects. However, neomenthol has not been much explored for its anticancer potential. Additionally, targeting hyaluronidase, Cathepsin-D, and ODC by phytochemicals is amongst the efficient approach for cancer prevention and/or treatment. Objectives: To investigate the molecular and cell target-based antiproliferative potential of neomenthol on human cancer (A431, PC-3, K562, A549, FaDu, MDA-MB-231, COLO-205, MCF-7, and WRL-68) and normal (HEK-293) cell lines. Methods: The potency of neomenthol was evaluated on human cancer and normal cell line using SRB, NRU and MTT assays. The molecular target based study of neomenthol was carried out in cell-free and cell-based test systems. Further, the potency of neomenthol was confirmed by quantitative real-time PCR analysis and molecular docking studies. The in vivo anticancer potential of neomenthol was performed on mice EAC model and the toxicity examination was accomplished through in silico, ex vivo and in vivo approaches. Results: Neomenthol exhibits a promising activity (IC50 17.3 ± 6.49 µM) against human epidermoid carcinoma (A431) cells by arresting the G2/M phase and increasing the number of sub-diploid cells. It significantly inhibits hyaluronidase activity (IC50 12.81 ± 0.01 µM) and affects the tubulin polymerization. The expression analysis and molecular docking studies support the in vitro molecular and cell target based results. Neomenthol prevents EAC tumor formation by 58.84% and inhibits hyaluronidase activity up to 10% at 75 mg/kg bw, i.p. dose. The oral dose of 1000 mg/kg bw was found safe in acute oral toxicity studies. Conclusion: Neomenthol delayed the growth of skin carcinoma cells by inhibiting the tubulin polymerization and hyaluronidase activity, which are responsible for tumor growth, metastasis, and angiogenesis.
Asunto(s)
Neoplasias Cutáneas , Tubulina (Proteína) , Animales , Proliferación Celular , Células HEK293 , Humanos , Hialuronoglucosaminidasa , Ratones , Simulación del Acoplamiento Molecular , Polimerizacion , Neoplasias Cutáneas/tratamiento farmacológicoRESUMEN
OBJECTIVES: This study compared the effects of normal salivary pH, and acidic pH found in patients with poor oral hygiene, on the durability of aesthetic archwire coated with epoxy resin and polytetrafluoroethylene (PTFE). METHODS: The posterior parts of the archwires were sectioned into 20â¯mm segments (Nâ¯=â¯102) and divided among six groups. Four groups were treated with different pH levels and two served as controls. The specimens were immersed in individual test tubes containing 10â¯ml of artificial saliva adjusted to a pH of 6.75 or 3.5. The tubes were sealed and stored in a 37⯰C water bath for 28â¯days. After 28â¯days, the specimens were ligated to brackets embedded in an acrylic block and subjected to mechanical stress using an electronic toothbrush for 210â¯s. The specimens were photographed, and images were measured for coating loss using AutoCAD® software. Surface morphology was observed using a scanning electron microscope (SEM). RESULTS: Significant coating loss (pâ¯<â¯0.001) was found in the epoxy resin groups, regardless of pH value, but not in the PTFE groups. The acidic pH caused epoxy resin layer coating loss by twice as much as normal pH. SEM revealed existing manufacturing defects on the as-received epoxy resin coating, whereas the retrieved epoxy resin demonstrated rupture, roughness, and coating loss in multiple locations. SIGNIFICANCE: Epoxy resin coatings demonstrate poor durability in acidic environments. This condition is worsened by the existing manufacturing defects found on as-received archwires. Hence, archwires coated with epoxy resin are not recommended in patients with poor oral hygiene.
RESUMEN
In regenerative medical products for clinical applications, a major concern is the risk of ruminant-derived materials developing transmissible spongiform encephalopathy (TSE) in the manufacturing process. Because of the risk of TSE causing prion disease, the raw materials derived from ruminants should be compliant with the "Standard for Biological Raw Materials" to ensure the quality and safety of pharmaceutical products. We therefore tested whether plasmid DNA could withstand four chemical reagents (Gdn-HCl, Gdn-SCN, TCA, or SDS), having referred to the report by Tateishi et al. [1], which describes how Creutzfeldt-Jakob disease pathogens can be inactivated by chemical reagents capable of producing a 7-log reduction in prion inactivation. We observed that plasmid DNA was mixed with chemical reagents and that the functionality of plasmid DNA was equivalent for both chemical and non-chemical treatment. The potency of plasmid DNA was monitored by the existence of DNA fragments and the function by which GFP proteins were produced by HEK293-cell transfected plasmid DNA. The existence of DNA fragments was detected in plasmid DNA treated by chemical reagents, except when undergoing TCA treatment. Additionally, when HEK293 cells were transfected with the plasmid DNA after chemical treatment, GFP protein was produced. These results indicate that plasmid DNA can withstand the chemical treatments for blocking prion transmission.
RESUMEN
Table olives, a product of olive tree (Olea europaea L.), is an important fermented product of the Mediterranean Diet. Agronomical factors, particularly the cultivar, the ripening stage and the processing method employed are the main factors influencing the nutritional and non-nutritional composition of table olives and their organoleptic properties. The important nutritional value of this product is due to its richness in monounsaturated fat (MUFA), mainly oleic acid, fibre and vitamin E together with the presence of several phytochemicals. Among these, hydroxytyrosol (HT) is the major phenolic compound present in all types of table olives. There is a scarcity of in vitro, in vivo and human studies of table olives. This review focused comprehensively on the nutrients and bioactive compound content as well as the health benefits assigned to table olives. The possible health benefits associated with their consumption are thought to be primarily related to effects of MUFA on cardiovascular health, the antioxidant (AO) capacity of vitamin E and its role in protecting the body from oxidative damage and the anti-inflammatory and AO activities of HT. The influence of multiple factors on composition of the end product and the potential innovation in the production of table olives through the reduction of its final salt content was also discussed.
Asunto(s)
Frutas , Olea , Dieta Mediterránea , Humanos , Valor NutritivoRESUMEN
Plants produce a high diversity of natural products with a prominent function in the protection against microbial pathogens on the basis of their toxic effect on growth and reproduction. In the present study, effect of partially purified acetone fraction of L. inermis leaves on various cytomorphological parameters i.e. mycelium width, conidial size, etc. of test fungi and fraction was subjected to confirming the presence of primary and secondary metabolites by rapid qualitative phytochemical tests, chromatographic methods such as TLC, column chromatography, GC-MS, etc. which were responsible for the inhibition of growth of test pathogen conidial size of Curvularia lunata decreased up to 64.76% at 0.039⯵g/ml concentration of the extract. Mycelial width of C. lunata increased up to 55.91% at 0.312⯵g/ml concentration of the extract. Carbohydrate, steroids, volatile oils, flavonoids, and tannins were found to be present in acetone extract of L. inermis leaf. Total of 7 bands were observed in TLC fingerprinting of L. inermis acetone fraction. Total of 10 fractions were collected from the column chromatography. Fractions which show the most significant antifungal activity against the test fungus was subjected to further GC-MS analysis for the separation and identification of active principle. GC-MS analyses show the presence of total 6 constituents i.e. hexacosane, octadecane, docosane, heptacosane methyl, octacosane, and tetracosane.
RESUMEN
Understanding levels of in utero drug exposure is important to properly customize the immediate, as well as ongoing, medical and social management needs of affected newborns. Here, we present the development of a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the detection and quantification of 4 cannabinoid analytes in two neonatal matrices. The analytes targeted were Δ9-tetrahydrocannabinal (THC), 11-nor-9-carboxy-THC (THCA), 11-hydroxy-THC (11-OH-THC), and cannabinol (CBN). The matrices analyzed were umbilical cord tissue and meconium. A fifth analyte, cannabidiol (CBD), was also detected uniquely in meconium. Extracts were analyzed by LC-MS/MS in negative electrospray ionization mode. Paired meconium and umbilical cord samples (i.e., one specimen from each matrix collected from each single birth, nâ¯=â¯46 pairs) were tested to evaluate concentration and metabolite profiles. THCA was detected in all positive (containing one or more analytes) meconium samples (nâ¯=â¯32). CBN, THC, 11-OH-THC, and CBD were present in 57% (nâ¯=â¯26), 39% (nâ¯=â¯18), 24% (nâ¯=â¯11), and 20% (nâ¯=â¯9), respectively. Concentrations were lower in the umbilical cord samples for all analytes (i.e., 0.27-537â¯ng/g for meconium and 0.1-9â¯ng/g for umbilical cord). In umbilical cord THCA was also detected in all positive samples (nâ¯=â¯19) while THC, CBN, and 11-OH-THC were present in 24% (nâ¯=â¯11), 17% (nâ¯=â¯8), and 11% (nâ¯=â¯5), respectively. Testing neonatal matrices for cannabinoids could be used to support studies designed to detect newborns exposed to cannabis in utero, as well as provide data that could be examined for correlations with clinical and social outcomes.
RESUMEN
Monocrotophos (MCP) is an organophosphate mainly used as insecticides in agriculture, and veterinary practice to control pests. Exposure to MCP is known to induce significant systemic toxicity in animals and humans. Short term exposure to a high dose of MCP has been reported to cause systemic toxicity, however limited information is available regarding low dose long term exposure in rats. We studied the effects of low dose long term exposure to MCP on oxidative/nitrosative stress, cholinesterase activity and neuronal loss in rat. Male rats were exposed to MCP (0.1 µg or 1 µg/ml) via drinking water for 8 weeks. The pro-oxidant markers such as reactive oxygen species (ROS), lipid peroxidation (MDA), nitrite level and antioxidant markers such as reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and inhibition of cholinesterase activities were measured to evaluate the effects of MCP on brain along with plasma cholinesterase activity. Neuronal loss was analyzed in cortical region using H&E stained slices. The results suggested that exposure to MC even at the low dose, increased reactive oxygen species, thiobarbituric acid reactive substance levels and decreased glutathione, superoxide dismutase, catalase and cholinesterase activities in brain. No significant effect however, was observed on nitrite levels. Histological analysis revealed that low dose MCP exposure lead to structural changes in the cortical neurons in rats. It can be concluded from the study that low dose long term exposure (lower than No Observed Effect Level) of MCP may lead to the generation of oxidative stress by elevation of pro-oxidants markers and depletion of antioxidant enzymes markers along with inhibition of cholinesterase activity. These changes might thus be considered as the possible mechanism of cortical neuronal loss in these animals.
RESUMEN
Carbamates, most commonly used pesticides in agricultural practices, have been reported to produce free radicals causing deleterious effects in animals. The present study was designed to assess the carbofuran induced oxidative stress in rat liver slices in vitro and also to evaluate protective role of vitamin C by incubating them in Krebs-Ringer HEPES Buffer (KRHB) containing incubation media (Williams medium E (WME) supplemented with glucose and antibiotics) with different concentrations of carbofuran. The results demonstrated that carbofuran caused significant increase in lipid peroxidation and inhibition in the activity of hepatic superoxide dismutase (SOD) in concentration dependent manner. The data with incubation medium reflected that carbofuran at lowest concentration caused an increase in SOD activity followed by its inhibition at higher concentration. Carbofuran treatment caused inhibition in the activity of catalase in liver slices and WME incubation medium. Pre-incubation of liver slices and the WME media with vitamin C restored the values of biochemical indices tested. The results indicated that carbofuran might induce oxidative stress in hepatocytes. The pretreatment with vitamin C may offer hepatoprotection from toxicity of pesticide at low concentration only.
RESUMEN
Abundant, low prices and a highly reduced nature make glycerol to be an ideal feedstock for the production of reduced biochemicals and biofuels. Escherichia coli has been paid much attention as the platform of microbial cell factories due to its high growth rate (giving higher metabolite production rate) and the capability of utilizing a wide range of carbon sources. However, one of the drawbacks of using E. coli as a platform is its mixed metabolite formation under anaerobic conditions. In the present study, it was shown that ethanol could be exclusively produced from glycerol by the wild type E. coli, while d-lactic acid could be exclusively produced from glucose by pflA.cra mutant, where the glucose uptake rate could be increased by this mutant as compared to the wild type strain. It was also shown that the growth rate is significantly reduced in pflA.cra mutant for the case of using glycerol as a carbon source due to redox imbalance. The metabolic regulation mechanisms behind the fermentation characteristic were clarified to some extent.
RESUMEN
OBJECTIVES: Immunoglobulin paraproteins can interfere with multiple chemistry assays. We want to investigate the mechanisms of immunoglobulin interference. DESIGN AND METHODS: Serum samples containing paraproteins from the index patient and eight additional patients were used to investigate the interference with the creatinine and total protein assays on the Beckman Coulter AU5400/2700 analyzer, and to determine the effects of pH and ionic strength on the precipitation of different immunoglobulins in these patient samples. RESULTS: The paraprotein interference with the creatinine and total protein assays was caused by the precipitation of IgM paraprotein in the index patient's samples under alkaline assay conditions. At extremely high pH (12-13) and extremely low pH (1-2) and low ionic strength, paraprotein formed large aggregates in samples from the index patient but not from other patients. CONCLUSIONS: The pH and ionic strength are the key factors that contribute to protein aggregation and precipitation which interfere with the creatinine and total protein measurements on AU5400/2700. The different amino acid sequence of each monoclonal paraprotein will determine the pH and ionic strength at which the paraprotein will precipitate.