Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 365: 121616, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38941854

RESUMEN

Volcanic eruption is associated with the release of large volumes of pollutants in the environment, which can pose a risk to humans and other living organisms. The elemental and radioisotope composition of ash released during the Shiveluch Volcano eruption in 2023 was analyzed using ICP-MS and low-background gamma spectrometry. The ash consisted of 59% SiO2, 16.7% Al2O3, 5.3% CaO, 4.6 % Na2O, 4.5% Fe2O3, 1.4% K2O, 0.48% TiO2, 0.17% P2O5, 0.15% S, 0.078% MnO and 44 trace elements. Hazard Quotient and Hazard Index were calculated in order to evaluate the potential health risks to children and adults due to exposure to contaminants via inhalation, ingestion, and dermal contact. All values were below the unit, indicating a low probability of non-carcinogenic and cancerogenic risk occurrence in target groups. The average activity concentrations of the natural radionuclides were 350, 12.4 and 4.84 Bq/kg for 40K, 226Ra and 232Th. Radiological indices, including external and internal risk assessment, radium equivalent activity, annual effective dose, gamma index, and excess lifetime cancer risk were calculated to estimate the radiological hazard for the population. The values of all indices were below the recommended safety limits, indicating a low level of hazard for the exposed population.

2.
Environ Geochem Health ; 46(6): 181, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695964

RESUMEN

This study determined natural and artificial radionuclide concentrations to evaluate natural radioactivity and health risk levels of nine travertines in the Yaprakhisar and Balkayasi regions in Turkey. The samples coded B1-M, B2, B5, B7, B8, and B10 represent waste derived from the Yaprakhisar travertines, as well as samples T5-M, T12, and Z1 travertines derived from Balkayasi. The levels of natural and artificial radionuclide concentrations (232Th, 40K, and 137Cs) were measured using a high-purity germanium (HpGe) detector system. The travertine activity ranged from 2.09 to 12.07 Bq kg-1 for 232Th, 4.21 to 13.41 Bq kg-1 for 40K, and 0.42-3.26 Bq kg-1 for 137Cs. The results showed that the activity concentration values for 232Th, 40K, and 137Cs were coherent with the travertine analysis results in the UNSCEAR, 2000; 2008 publications. The values obtained were lower than the average values in the UNSEAR reports. The radiological hazard parameters calculated in this study were absorbed gamma dose rate (D), radium equivalent activity (Raeq), annual gonadal dose equivalent (AGDE), exposure dose (ER), total annual effective dose (AEDEtotal), excess lifetime cancer risk (ELCRtotal), gamma representative level (GRL), internal hazard index (Hin) and external hazard index (Hex).


Asunto(s)
Radioisótopos de Cesio , Radioisótopos de Potasio , Monitoreo de Radiación , Turquía , Monitoreo de Radiación/métodos , Radioisótopos de Potasio/análisis , Radioisótopos de Cesio/análisis , Torio/análisis , Contaminantes Radiactivos del Suelo/análisis , Radiación de Fondo , Humanos , Medición de Riesgo
3.
Environ Monit Assess ; 196(3): 330, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427152

RESUMEN

The Kanyakumari coast is known to be a high background natural radiation area due to the placer deposits of heavy minerals such as ilmenite, monazite, and rutile. The Kanyakumari river sediments that could be the source of the elevated amounts of natural radionuclides in the coastal sands have been studied in this paper. The activity concentrations of primordial radionuclides 226Ra, 232Th, and 40K were determined using high-purity germanium (HPGe) gamma-ray spectrometry. The mean activity concentrations of 226Ra, 232Th, and 40K were found to be 75 Bq kg-1, 565 Bq kg-1, and 360 Bq kg-1, respectively. The mean absorbed dose rate was 395 nGy h-1. Radiological hazard parameters were studied and compared with the world average values. The contribution of 232Th to the total dose rate was found to be higher than that of the two other radionuclides. The high mean ratio of 232Th/226Ra suggested an enrichment of 232Th and the occurrence of 226Ra leaching due to an oxidizing environment. Principal component analysis (PCA) was carried out for the radionuclides in order to discriminate the source of the sediments. This study provides new insights into the distribution of natural radionuclides in sediments of rivers and streams.


Asunto(s)
Monitoreo de Radiación , Contaminantes Radiactivos del Suelo , Ríos , Radiación de Fondo , Monitoreo del Ambiente , Torio/análisis , Radioisótopos/análisis , Contaminantes Radiactivos del Suelo/análisis , India , Medición de Riesgo , Monitoreo de Radiación/métodos , Radioisótopos de Potasio/análisis
4.
Ecotoxicol Environ Saf ; 263: 115210, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37418943

RESUMEN

This study investigated the distribution features of uranium-238 (238U), radium-226 (226Ra), thorium-232 (232Th), and potassium-40 (40K) and evaluated the associated environmental radiological hazards of the topsoil and river sediments in the Jinding lead-zinc (Pb-Zn) mine catchment from Southwest China. The activity concentrations of 238U, 226Ra, 232Th, and 40K ranged from 24.0 ± 2.29-60.3 ± 5.26 Bq.kg-1, from 32.5 ± 3.95-69.8 ± 3.39 Bq.kg-1, from 15.3 ± 2.24-58.3 ± 4.92 Bq.kg-1, and from 203 ± 10.2-1140 ± 27.4 Bq.kg-1, respectively. The highest activity concentrations for all these radionuclides were primarily found in the mining areas and decreased with increasing distance from the mining sites. The radiological hazard indices, including radium equivalent activity, absorbed gamma dose rate in the air, outdoor annual effective dose equivalent, annual gonadal dose equivalent, and excess lifetime cancer, revealed that the highest values were observed in the mining area and downstream, specifically in the vicinity of the ore body. These elevated values exceeded the global mean value but remained below the threshold value, suggesting that routine protection measures for Pb-Zn miners during production activities are sufficient. The correlation analysis and cluster analysis revealed strong associations between radionuclides such as 238U, 226Ra, and 232Th, indicating a common source of these radionuclides. The activity ratios of 226Ra/238U, 226Ra/232Th, and 238U/40K varied with distance, suggesting the influence of geological processes and lithological composition on their transport and accumulation. In the mining catchment areas, the variations in these activity ratios increased indicated the impact of limestone material dilution on the levels of 232Th, 40K, and 238U in the upstream region. Moreover, the presence of sulfide minerals in the mining soils contributed to the enrichment of 226Ra and the removal of 238U caused those activity ratios decreased in the mining areas. Therefore, in the Jinding PbZn deposit, the patterns of mining activities and surface runoff processes in the catchment area favored the accumulation of 232Th and 226Ra over 40K and 238U. This study provides the first case study on the geochemical distributions of natural radionuclides in a typical Mississippi Valley-type PbZn mining area and offers fundamental information on radionuclide migration and baseline radiometric data for PbZn deposits worldwide.


Asunto(s)
Monitoreo de Radiación , Radio (Elemento) , Contaminantes Radiactivos del Suelo , Uranio , Suelo , Plomo/análisis , Zinc/análisis , Radioisótopos/análisis , Uranio/análisis , Radio (Elemento)/análisis , Torio/análisis , Contaminantes Radiactivos del Suelo/análisis , Minería
5.
J Radiol Prot ; 43(2)2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37257439

RESUMEN

The outdoor222Rn and220Rn concentrations at 320 sampling points at 1 m above the ground in different sites surrounding rare earth element (REE) and uranium mines from northern Vietnam were measured using the RAD7. Results showed that222Rn concentrations were always higher than220Rn concentrations with large variation ranges from 25.7 to 573 Bq m-3and from 18.5 to 385 Bq m-3, respectively. The high correlation between220Rn and228Ra concentrations in surface soil of the studied sites were observed. The highest220Rn and222Rn concentrations are found at the sampling points of the REE NX-Lai Chau site. The220Rn and222Rn activities surrounding the REE mines were found to be higher than those surrounding the uranium mines. The average annual committed effective doses originated from the inhalation of220Rn and222Rn outdoor concentrations is about five times higher than the worldwide average value.


Asunto(s)
Monitoreo de Radiación , Radón , Uranio , Radón/análisis , Uranio/análisis , Vietnam , Minería , Medición de Riesgo
6.
Environ Monit Assess ; 195(8): 915, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402006

RESUMEN

The "passive" sorption detectors based on the activated charcoal together with scintillation spectrometry were utilized to measure radon flux density from the soil surface as well as volumetric activity of indoor radon at the dwellings of rural areas of Uzbekistan. Additionally, gamma dose rates as well as concentrations of natural radionuclides in soil and building materials samples were determined. Based on the values of natural radionuclides, common radiological indices have been calculated. It was found that varying greatly, 94% radon flux density values did not exceed 80 mBq/(m2·s), while volumetric activities of radon were in the range of 35-564 Bq/m3. The radium equivalent activity for studied soil and building materials samples were below the allowed limit of 370 Bq/kg. Computed gamma dose rates were in the range of 55.50-73.89 ƞGyh-1 below the limit of 80 ƞGyh-1 and annual effective dose rate 0.068-0.091 mSvy-1, the average value of which was higher than the standard limit > 0.47 mSvy-1. The gamma representative index range was 0.89-1.19 with an average of 1.002 which was higher than the standard limit of 1.0. The range of activity utilization index was equal to 0.70-0.86 with an average value 0.77 which was lower than the recommended level ≤ 2.0. And lastly, excess lifetime cancer risk index values were from 1.9 × 10-4 to 2.5 × 10-4 and were lower than the recommended value 2.9 × 10-4 indicating low radiological risk. The results are consistent with the research conducted by other authors earlier, implying suitability of employing the method for the assessment of residential areas.


Asunto(s)
Contaminación del Aire Interior , Monitoreo de Radiación , Radón , Radón/análisis , Uzbekistán , Monitoreo del Ambiente , Radioisótopos/análisis , Suelo , Monitoreo de Radiación/métodos , Contaminación del Aire Interior/análisis
7.
Environ Monit Assess ; 195(11): 1385, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37889342

RESUMEN

Internal exposure of public to radiation arising from ingestion of natural radionuclides in tuber crops of Ebonyi State origin was investigated in this study. Committed effective doses and lifetime cancer risk of 40K, 226Ra, and 232Th in cassava, cocoyam, water yam, and white yam were calculated. The average activity concentrations of 40K, 226Ra, and 232Th determined by gamma spectrometric Na (TI) detector were, respectively, 199.15 ± 23.51, 77.57 ± 7.98, and 118.20 ± 10.72 Bq/kg in cassava; 146.62 ± 40.69, 43.42 ± 7.63, and 75.61 ± 2.89 Bq/kg in cocoyam; 162.81 ± 20.43, 63.17 ± 11.36, and 81.50 ± 10.27 Bq/kg in water yam; and 184.50 ± 20.22, 80.23 ± 10.93, and 116.29 ± 5.93 Bq/kg in white yam. The total committed effective dose via ingestion aligned in this order of cassava (7.05 mSv/year) > white yam (4.38 mSv/year) > water yam (0.42 mSv/year) > cocoyam (0.21 mSv/year) with overall average dose of 3.12 mSv/year. The values of dose were higher than world average of 0.29 mSv/year given by United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The lifetime cancer risk values were above tolerance level of >10-4 prescribed by United States Environmental Protection Agency (USEPA), suggesting probable evolvement of radiogenic cancer morbidity. The data presented in this study contributes to baseline information on radiological characteristics of tuber crops in Ebonyi, which would be valuable to WHO/FAO food safety policy in Nigeria and rest of the world.


Asunto(s)
Neoplasias , Monitoreo de Radiación , Radio (Elemento) , Monitoreo de Radiación/métodos , Nigeria/epidemiología , Radioisótopos/análisis , Productos Agrícolas/química , Agua/análisis , Ingestión de Alimentos , Radio (Elemento)/análisis , Neoplasias/epidemiología
8.
Ecotoxicol Environ Saf ; 242: 113849, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35809394

RESUMEN

Groundwater may contain radioactive substances which can be dangerous to human health. Concentrations of natural radionuclides polonium (Po), thorium (Th), uranium (U), and radium (Ra) isotopes were measured in groundwater samples collected from different locations in the vicinity of the Waste Isolation Pilot Plant (WIPP) site in Carlsbad, New Mexico. The average values of gross activity concentrations of 210Po, 228Th, 238U, 234U, 226Ra and 228 Ra isotopes were determined to be 1.62 Bq L-1 in shallow groundwater and 5.88 Bq L-1 in deep groundwater, respectively. The total radioactivity in deep groundwater was higher than that in shallow groundwater, and most of the radioactivity in the water is from 226Ra. Furthermore, the effective doses for ingestion of natural radionuclides were about 0.333 mSv y-1 for shallow groundwater and about 1.338 mSv y-1 for deep groundwater samples, which are higher than the World Health Organization (WHO, 2017) guideline level (0.1 mSv y-1) for drinking water. Ra dominated the total ingestion dose, contributing 93.06 % and 75.40 % of the total effective doses to the deep and shallow groundwater, respectively. The ingrowth and decay of natural radionuclides suggested that 228Ra/226Ra ratio can be a useful indicator of the source of radioactive contamination. The radioactivity data obtained from the investigated groundwater samples can be used to establish a baseline for radioactivity levels in groundwater around the WIPP site.


Asunto(s)
Agua Subterránea , Polonio , Monitoreo de Radiación , Radiactividad , Radio (Elemento) , Uranio , Contaminantes Radiactivos del Agua , Humanos , Polonio/análisis , Radioisótopos/análisis , Radio (Elemento)/análisis , Torio/análisis , Uranio/análisis , Contaminantes Radiactivos del Agua/análisis
9.
Artículo en Inglés | MEDLINE | ID: mdl-35899392

RESUMEN

This study determined the activity concentrations and corresponding transfer factors (TF) of 40K, 226Ra, and 232Th in three tobacco components (root, stem, and leaf). The radiation hazard index parameters were assessed for the tobacco leaf. The activity concentrations in the soil were 589-762, 32-43, and 49-59 Bq kg-dw-1 (dry weight) for 40K, 226Ra, and 232Th, respectively. The average activity concentrations of 40K, 226Ra, and 232Th were 447, 5.41 and 5.69 Bq/kg-dw for the root, 670, 9.64 and 7.61 Bq kg-dw-1 for the stem, and 793, 6.79 and 6.15 Bq kg-dw-1 for the leaf, respectively. The TF values were 0.42-1.42, 0.10-0.49 and 0.06-0.23 for 40K, 226Ra, and 232Th, respectively. The stem and leaf 40K TF values were significantly higher than the root values. The stem 226Ra TF values were significantly higher than the root values. The 226Ra and 232Th activity concentrations and TFs of tobacco components had a significant positive correlation. Based on the activity concentrations of the tobacco leaves, the annual inhalation effective dose to the lungs for an adult smoker was 0.32-0.81 mSv y-1 (average 0.60 mSv y-1). The Excess Lifetime Cancer Risk (ELCR) caused by smoking was an average of 2.39 × 10-3.


Asunto(s)
Monitoreo de Radiación , Radio (Elemento) , Contaminantes Radiactivos del Suelo , Hojas de la Planta/química , Radioisótopos de Potasio/análisis , Radioisótopos/análisis , Radio (Elemento)/análisis , Medición de Riesgo , Fumar , Suelo , Contaminantes Radiactivos del Suelo/análisis , Contaminantes Radiactivos del Suelo/toxicidad , Nicotiana , Factor de Transferencia
10.
J Radiol Prot ; 42(2)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34879358

RESUMEN

The in situtechnique for measuring radionuclides in the soil using a portable Ge detector is a highly versatile tool for both the radiological characterisation and for the monitoring of operating nuclear power plants. The main disadvantage of this technique is related to the lack of knowledge of the geometry of the source whose activity concentration is to be determined. However, its greatest advantage is the high spatial representability of the samples and the reduced time and resource consumption compared to gamma spectrometry laboratory measurements. In this study, the possibilities and limits offered byin situgamma spectrometry with a high-resolution gamma portable detector in two common uses are shown. First, the radiological background characterisation and its relationship with the geology of an area of 2700 km2are assessed. Second, its potential for monitoring man-made activity concentration in soils located around an operating nuclear power plant in Spain for surveillance purposes is evaluated. Finally, high-accuracy radiation maps were prepared from the measurements that were carried out. These radiation maps are essential tools to know the radioactive background of an area, especially useful to assess artificial radioactive deposits produced after a nuclear accident or incident.


Asunto(s)
Monitoreo de Radiación , Contaminantes Radiactivos del Suelo , Humanos , Plantas de Energía Nuclear , Monitoreo de Radiación/métodos , Radioisótopos/análisis , Contaminantes Radiactivos del Suelo/análisis , Espectrometría gamma/métodos
11.
Environ Monit Assess ; 194(10): 706, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36001168

RESUMEN

The assessment of radiation exposure on biota is one of the main parts of environment protection system. Earthworms have been recognized as an important organism group in the terrestrial ecosystems. According to many researchers the potential risks of naturally occurring radionuclides for soil invertebrates were not significant because the exposure doses to the invertebrate populations were low. Our study aimed to assess the radiation exposure and the radiological risks from naturally occurring radionuclides for earthworm populations at four sites. This research was based on three dosimetric approaches simultaneously: ERICA and RESRAD-BIOTA-the commonly used ones, and also on the original method proposed by Thomas and Liber (Environment International, 27, 341-353, 2001) for aquatic organisms. To calculate radiation dose rates to soil invertebrates inhabiting background and contaminated areas, the specific activities of radionuclides in soil, and, depending on the model, the default, or determined in this study, input mass-geometric parameters had been applied. The weighted absorbed dose rates calculated by different models and site-specific data were 0.3-1.4 µGy/h for the background and from 3.4 to 170 µGy/h for the contaminated sites. Analysis of radiation risks for earthworms indicated that 226Ra was the key contributor to the external dose rate; 226Ra and 210Po played a dominant role in formation of internal dose rate for radioecological situations in our study. More conservative radiation risk assessments were derived from RESRAD-BIOTA tool. Dose assessments obtained using various models had shown that there are real environmental situations in which the radiological risks to reference organisms are significantly higher than the lowest benchmark protection level proposed for ecosystems.


Asunto(s)
Oligoquetos , Exposición a la Radiación , Monitoreo de Radiación , Animales , Ecosistema , Dosis de Radiación , Monitoreo de Radiación/métodos , Radioisótopos , Medición de Riesgo/métodos , Suelo
12.
Environ Monit Assess ; 194(6): 438, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35587836

RESUMEN

To evaluate the concentration of natural radionuclides and to carry out geophysical interpretation of part of Igarra area, Southern Nigeria, an integrated geophysical approach was adopted involving radiometric, gravity, and magnetic methods. The RS-230 Super-Spec spectrometer, G-512 Lacoste and Romberg gravimeter, and the GSM-19v7.0 Overhauser instrument were used for the radiometric, gravity, and magnetic data acquisitions, respectively, along a specified traverse within the area. The datasets were processed using Oasis Montaj, Grav-Master, and Ms-Excel software. Gravity results show that the mean free air and Bouguer anomalies in the area are - 67.42 and - 84.22 mGal, while magnetic survey indicates that the mean corrected magnetic field intensity in this area is 32218.49 nT. Radiometric survey results show that the mean radioactivity concentrations of thorium ([Formula: see text], uranium ([Formula: see text]), and potassium ([Formula: see text]) are 31.81 Bq/kg, 26.48 Bq/kg, and 167.33 Bq/kg, respectively. Further analysis also revealed that the mean radioactivity equivalent of the area is 84.86 Bq/kg; absorbed dose rate is 72.74nGy/h, while the mean external hazard index is 0.30. A novel model equation for estimating absorbed dose rate from radioactivity equivalent was also obtained and validated. The gravity and magnetic survey results indicate the presence of low-density and high magnetic basement rocks underlying this area, while radiometric results reveal that radiations in this area did not exceed acceptable standards of 370 Bq/kg for radioactivity equivalent, 84 nGy/h for absorbed dose rate, and unity which corresponds to 370 Bq/kg for external hazard index as recommended by the United Nations Scientific Committee on the Effects of Atomic Radiation and the International Atomic Energy Agency.


Asunto(s)
Monitoreo de Radiación , Radiactividad , Radio (Elemento) , Contaminantes Radiactivos del Suelo , Radiación de Fondo , Nigeria , Radioisótopos de Potasio/análisis , Monitoreo de Radiación/métodos , Radio (Elemento)/análisis , Contaminantes Radiactivos del Suelo/análisis , Espectrometría gamma/métodos , Torio/análisis
13.
Environ Monit Assess ; 193(12): 822, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34792660

RESUMEN

A comprehensive measurement of concentrations of the natural radionuclides 238U, 232Th and 40K, and 226Ra in the soil and rocks along with natural uranium and tritium activity levels in lake water were carried out during the Indian expedition to Antarctica. The samples were collected from the Larsemann Hills region in Antarctica (latitude 69°20' S to 69°25'S, longitude 76°6' E to 76°23'E). The data on the natural radioactivity for this region is limited. The study was carried out to establish baseline levels of radioactivity in different terrestrial matrices of this region such as soil, rocks, and lake water. A radiation survey mapping for terrestrial radioactivity was conducted in the region before collection of soil and rock samples. The soil and rock samples were analyzed for natural radioactivity concentrations using high-resolution gamma spectroscopy system. The major contributor to elevated gamma radiation background is attributed to the higher concentration of 232Th and 40K radionuclides in both soil and rocks. Terrestrial components of gamma dose rate due to natural radioactivity have been estimated from the measured radioactivity concentrations and dose conversion coefficients. Several "hotspots" and high background areas in the region have been identified having significantly higher concentration of 232Th and 40K. Rocks in Larsemann Hills region showed high reserve of thorium mineralization in monazites and 40K in K-feldspar. The concentrations of 232Th in soil are found to be in the range of 106-603 Bq/kg, whereas in rock it is in the range of 8-4514 Bq/kg. Natural radioactivity U (nat) and 3H contents in the lake water samples in Larsemann Hills region were estimated as 0.4 and 1.3 Bq/L and are well within the prescribed limit of radioactivity in drinking water as recommended by World Health Organization.


Asunto(s)
Monitoreo de Radiación , Radiactividad , Contaminantes Radiactivos del Suelo , Regiones Antárticas , Radiación de Fondo , Lagos/análisis , Radioisótopos de Potasio/análisis , Suelo , Contaminantes Radiactivos del Suelo/análisis , Espectrometría gamma , Torio/análisis
14.
Environ Res ; 186: 109537, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32315825

RESUMEN

More and more by-products are being used in certain materials, especially in the construction industry. Natural construction materials contain amounts of heavy metals and radionuclides, but when by-products are used in these kinds of materials, this could lead to a growth in their concentrations and have a negative impact on public health.In this paper, red mud was used as a raw material (as a clay substitute) to manufacture fired bricks. Physical, mechanical, radiological and heavy metal leaching properties of fired bricks with a replacement ratio of up to 80 wt% of clay to red mud are discussed. In addition, the effect of different sintering temperatures (1173K and 1373K) was analyzed, and results showed that the higher the temperature produced, the higher the mechanical strength.To environmentally characterize materials, they were subjected to two different leaching tests: a batch test for raw materials and a monolithic test for the bricks, respectively. The results obtained were compared with the limits stated for several heavy metals by the European Landfill Directive. Results showed that red mud gives leachate concentration values for Cr higher than the limits stated for non-hazardous by-products. Bricks do not exhibit the same problem in the samples containing a high RM proportion and manufactured at a low sintering temperature (1173K), although in the case of V, a high concentration is observed.The contents of radionuclides such as Ra-220, Th-232 and K-40 of the final construction materials were analyzed and compared with different indexes. This paper indicates the maximum amounts of RM that can be used to replace clay for the manufacture of fired bricks without environmental risk.


Asunto(s)
Metales Pesados , Reciclaje , Silicatos de Aluminio , Arcilla , Materiales de Construcción , Metales Pesados/análisis
15.
J Environ Manage ; 271: 111001, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32778287

RESUMEN

In topsoils, the activity concentrations of natural radionuclides (hereafter NRs) increase due to the addition of NRs from fertilizers, irrigation water, and air dust pollution. On the other hand, various physical-chemical and environmental processes such as radioactive decay, volatilization, leaching, erosion, and plant uptake were responsible for the decrease of the activity concentrations of NRs in the topsoils. In this study, behaviours of 40K, 210Pb, 226Ra, 238U, and 232Th in topsoils were modelled by the CEMC soil model and the HYDRUS-1D model. An exponential equation was proposed for estimating the accumulation rates of these radionuclides in the topsoils. Long-term accumulation of radionuclides was assessed for water spinach (Ipomoea Aquatica Forssk.) soil (hereafter VES) and rice (Oryza sativa L.) soil (hereafter RIS). We found that the current agricultural practices caused the increase of 40K activity concentration in the water spinach soil, and 40K, 210Pb, 226Ra, and 232Th activity concentrations in the rice soil. The accumulation rates of radionuclides were in the order 238U < 232Th < 226Ra < 210Pb < 40K. 25 years of cultivation with water spinach can increase/decrease + (165 ± 6) Bq of 40K, - (8.2 ± 0.7) Bq of 210Pb, - (4.3 ± 0.2) Bq of 226Ra, - (7 0.3 ± 0.3) Bq of 238U, and - (1.8 ± 0.1) Bq of 232Th in 1 kg soil. For rice cultivation, these values are + (1004 ± 39), + (3.3 ± 0.2), + (3.0 ± 0.2), - (5.1 ± 0.3), (2.2 ± 0.1) Bq kg-1 for 40K, 210Pb, 226Ra, 238U, and 232Th, respectively.


Asunto(s)
Ipomoea , Oryza , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo/análisis , Plomo , Radioisótopos/análisis , Spinacia oleracea , Vietnam , Agua
16.
Environ Monit Assess ; 192(10): 666, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33001295

RESUMEN

Knowledge of the background activity concentrations of anthropogenic radionuclides before the start of operation of the new nuclear power plant in Belarus, BelNPP, is an issue of great importance for neighbouring countries. In this study, we provide the pilot characterisation of the Lithuanian part of the 30-km zone of the BelNPP, emphasising the forest plants, terrestrial mosses, forest organic and mineral topsoil to describe the preoperational radioecological state of the pine forest ecosystem. Key anthropogenic radionuclides (14C, 3H, 137Cs and 239,240Pu) were analysed. The 14C specific activity varied from 97.80 ± 1.30 to 102.40 ± 0.79 pMC. The 3H specific activity in the tissue-free water tritium form varied from 13.2 ± 2.2 TU to 20.8 ± 2.3 TU, which corresponded to the 3H level of precipitation in this region. The activity concentrations of 239,240Pu in soil and moss samples did not exceed 1 Bq/kg and were mainly due to global fallout after nuclear tests. The 137Cs inventory in the pine forest soils of the Lithuanian part of the BelNPP 30-km zone varied from 930 ± 70 to 1650 ± 430 Bq/m2. High variation of the inventory and uneven distribution in the soil profile conditioned a wide range of 137Сs activity in terrestrial plants from 1.0 ± 0.5 to 40.5 ± 1.8 Bq/kg dry weight. The abundance of microorganisms in different seasons and soil depths do not exceed the natural levels. According to PCA loads, the number of microorganisms and variability of 137Cs specific activity is determined by soil abiotic parameters.


Asunto(s)
Plantas de Energía Nuclear , Contaminantes Radiactivos del Suelo/análisis , Ecosistema , Monitoreo del Ambiente , Bosques , Suelo
17.
Regul Toxicol Pharmacol ; 92: 245-250, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29277438

RESUMEN

Black sand samples collected from Baltim beaches (Kafr El-Sheikh governorate) in Egypt on the Mediterranean Sea shore were analyzed radiometrically and evaluated using a nondestructive gamma ray spectroscopic techniques. The natural radionuclides of 226Ra, 232Th and 40K in the black sand samples were identified and quantified. It is found that the activity concentrations for 226Ra, 232Th and 40K in different eleven sites (S1S11) were found within the ranges of 28-322, 91-308 and 81-339 Bq/kg, respectively. Moreover, different radiological hazardous parameters (absorbed dose rate, annual effective dose equivalent, radium activity, annual gonadal dose equivalent and excess lifetime cancer risk) were calculated. The results show that these values are greater than the permissible values due to increasing the activity concentrations of the primordial radionuclides 226Ra, 232Th and 40K. The dose rate for radiation emitted at 1 m from the surface of land was measured directly and the results shown that all sites emit radiation doses more than the international permissible value (57 nGy/h) especially at three sites which around 340 nGy/h. These values are important to establish baseline levels of this environmental radioactivity to detect any upcoming change for the local population and resorts people. The relatively high dose rate will be considered as a spa for the physical therapy such as treatment of some skin diseases and rheumatoid.


Asunto(s)
Radioisótopos de Potasio/química , Monitoreo de Radiación/métodos , Radioisótopos/química , Radio (Elemento)/química , Contaminantes Radiactivos del Suelo/análisis , Torio/química , Monitoreo del Ambiente/métodos , Rayos gamma , Mar Mediterráneo , Dosis de Radiación , Radiactividad
18.
Toxics ; 12(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38922108

RESUMEN

Chiang Mai province of Thailand is known for having the highest natural background radiation in the country, as well as being recognized as one of the world's most polluted cities for air quality. This represents the major contributor to the development of lung cancer. This research aims to estimate the comprehensive dose of both internal and external exposure due to natural background radiation and related health perspectives in the highly polluted area of Chiang Mai. The average values of indoor radon and thoron concentrations in 99 houses over 6 months were 40.8 ± 22.6 and 17.8 ± 16.3 Bq/m3, respectively. These results exceed the worldwide value for indoor radon and thoron (40 and 10 Bq/m3), respectively. During burning season, the average values of indoor radon (56.7 ± 20 Bq/m3) and thoron (20.8 ± 20.4 Bq/m3) concentrations were higher than the world-wide averages. The radon concentration in drinking water (56 samples) varied from 0.1 to 91.9 Bq/L, with an average value of 9.1 ± 22.8 Bq/L. Most of the drinking water samples (87%) fell below the recommended maximum contamination limit of 11.1 Bq/L. The average values of natural radionuclide (226Ra, 232Th and 40K) in 48 soil samples were 47 ± 20.9, 77.9 ± 29.7 and 700.1 ± 233 Bq/kg, respectively. All values were higher than the worldwide average of 35, 30 and 400 Bq/kg, respectively. The average value of outdoor absorbed gamma dose rate (98 ± 32.5 nGy/h) exceeded the worldwide average of 59 nGy/h. Meanwhile, the average activity concentrations of 226Ra, 232Th and 40K in 25 plant food samples were 2.7 ± 0.1, 3.2 ± 1.6 and 1000.7 ± 1.9 Bq/kg, respectively. The 40K concentration was the most predominant in plant foods. The highest concentrations of 226Ra, 232Th and 40K were found in Chinese cabbage, celery and cilantro, respectively. The total annual effective dose for residents in the study area varied from 0.6 to 4.3 mSv, with an average value of 1.4 mSv. This indicates a significant long-term public health hazard due to natural background radiation and suggests a heightened radiation risk for the residents. The excess lifetime cancer risk value (5.4) associated with natural background radiation was found to be higher than the recommended value. Moreover, the number of lung cancer cases per year per million average of 25.2 per million persons per year was in the limit range 170-230 per million people. Overall, our results will be used for future decision making in the prevention of lung cancer risk associated with natural background radiation.

19.
Appl Radiat Isot ; 205: 111170, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38160568

RESUMEN

The levels of naturally occurring radionuclides in soil, grass, and milk were measured in this study in order to calculate the transfer factor of radionuclides from soil to grass and grass to milk obtained from Erbil governorate in Iraq. High efficiency gamma spectrometry used for the measurement. It has been determined that the mean activity concentrations of 232Th, 226Ra, and 40K are 3.08, 8.37, and 253 BqKg-1 in soil, 0.5, 0.39, and 203.05 BqKg-1, in grass, and 0.29, 0.084, and 29.69 BqL-1, in milk, respectively. For soil to grass, the transfer factor values for 232Th, 226Ra, and 40K were found to be 0.18, 0.052, and 0.84, respectively, for soil to grass. For grass to milk, the transfer factor values for 232Th, 226Ra, and 40K were found to be 0.45, 0.166, and 0.11 dayL-1, respectively. The average transfer factor for 232Th, 226Ra, and 40K in all samples were lower than the world average value.


Asunto(s)
Monitoreo de Radiación , Radiactividad , Contaminantes Radiactivos del Suelo , Animales , Suelo/química , Poaceae/química , Factor de Transferencia/análisis , Leche/química , Irak , Monitoreo de Radiación/métodos , Contaminantes Radiactivos del Suelo/análisis , Radioisótopos/análisis
20.
Mar Pollut Bull ; 203: 116500, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38762937

RESUMEN

The study on natural radionuclides in edible bivalves from the Cochin backwater lagoon, Kerala, employing alpha spectrometry, revealed higher concentrations of 210Po and 210Pb compared to 238U and 232Th. The annual committed effective dose (ACED) for the adult coastal population was calculated at a range of 1494.9 to 5783.4 µSv y-1, with 210Po being the predominant contributor, responsible for about 85 % of the dose. This highlighted significant health risks, underscored by a calculated cumulative mortality and morbidity risk range between 5.23 × 10-3 and 2.02 × 10-2. These findings emphasized the need for further research and the development of regulatory measures to mitigate exposure risks.


Asunto(s)
Bivalvos , Monitoreo de Radiación , Contaminantes Radiactivos del Agua , Animales , India , Contaminantes Radiactivos del Agua/análisis , Polonio/análisis , Torio/análisis , Radioisótopos de Plomo/análisis , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA