Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(7): 2400-2407, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38345220

RESUMEN

Neurotransmitters are important signaling molecules in the brain and are relevant in many diseases. Measuring them with high spatial and temporal resolutions in biological systems is challenging. Here, we develop a ratiometric fluorescent sensor/probe for catecholamine neurotransmitters on the basis of near-infrared (NIR) semiconducting single wall carbon nanotubes (SWCNTs). Phenylboronic acid (PBA)-based quantum defects are incorporated into them to interact selectively with catechol moieties. These PBA-SWCNTs are further modified with poly(ethylene glycol) phospholipids (PEG-PL) for biocompatibility. Catecholamines, including dopamine, do not affect the intrinsic E11 fluorescence (990 nm) of these (PEG-PL-PBA-SWCNT) sensors. In contrast, the defect-related E11* emission (1130 nm) decreases by up to 35%. Furthermore, this dual functionalization allows tuning selectivity by changing the charge of the PEG polymer. These sensors are not taken up by cells, which is beneficial for extracellular imaging, and they are functional in brain slices. In summary, we use dual functionalization of SWCNTs to create a ratiometric biosensor for dopamine.


Asunto(s)
Catecolaminas , Nanotubos de Carbono , Dopamina , Fluorescencia , Neurotransmisores
2.
Med Res Rev ; 44(4): 1800-1866, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38367227

RESUMEN

Ovarian cancer is the most lethal gynecological cancer, with a survival rate of approximately 40% at five years from the diagno. The first-line treatment consists of cytoreductive surgery combined with chemotherapy (platinum- and taxane-based drugs). To date, the main prognostic factor is related to the complete surgical resection of tumor lesions, including occult micrometastases. The presence of minimal residual diseases not detected by visual inspection and palpation during surgery significantly increases the risk of disease relapse. Intraoperative fluorescence imaging systems have the potential to improve surgical outcomes. Fluorescent tracers administered to the patient may support surgeons for better real-time visualization of tumor lesions during cytoreductive procedures. In the last decade, consistent with the discovery of an increasing number of ovarian cancer-specific targets, a wide range of fluorescent agents were identified to be employed for intraoperatively detecting ovarian cancer. Here, we present a collection of fluorescent probes designed and developed for fluorescence-guided ovarian cancer surgery. Original articles published between 2011 and November 2022 focusing on fluorescent probes, currently under preclinical and clinical investigation, were searched in PubMed. The keywords used were targeted detection, ovarian cancer, fluorescent probe, near-infrared fluorescence, fluorescence-guided surgery, and intraoperative imaging. All identified papers were English-language full-text papers, and probes were classified based on the location of the biological target: intracellular, membrane, and extracellular.


Asunto(s)
Colorantes Fluorescentes , Imagen Óptica , Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/diagnóstico por imagen , Colorantes Fluorescentes/química , Animales
3.
Biochem Biophys Res Commun ; 719: 150084, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38733742

RESUMEN

INTRODUCTION: Colorectal cancer (CRC) is a prevalent digestive malignancy with significant global mortality and morbidity rates. Improving diagnostic capabilities for CRC and investigating novel therapeutic approaches are pressing clinical imperatives. Additionally, carcinoembryonic antigen (CEA) has emerged as a highly promising candidate for both colorectal tumor imaging and treatment. METHODS: A novel active CEA-targeting nanoparticle, CEA(Ab)-MSNs-ICG-Pt, was designed and synthesized, which served as a tumor-specific fluorescence agent to help in CRC near-infrared (NIR) fluorescence imaging. In cell studies, CEA(Ab)-MSNs-ICG-Pt exhibited specific targeting to RKO cells through specific antibody-antigen binding of CEA, resulting in distribution both within and around these cells. The tumor-targeting-specific imaging capabilities of the nanoparticle were determined through in vivo fluorescence imaging experiments. Furthermore, the efficacy of the nanoparticle in delivering chemotherapeutics and its killing effect were evaluated both in vitro and in vivo. RESULTS: The CEA(Ab)-MSNs-ICG-Pt nanoparticle, designed as a novel targeting agent for carcinoembryonic antigen (CEA), exhibited dual functionality as a targeting fluorescent agent. This CEA-targeting nanoparticle showed exceptional efficacy in eradicating CRC cells in comparison to individual treatment modalities. Furthermore, it exhibits exceptional biosafety and biocompatibility properties. CEA(Ab)-MSNs-ICG-Pt exhibits significant promise due to its ability to selectively target tumors through NIR fluorescence imaging and effectively eradicate CRC cells with minimal adverse effects in both laboratory and in vivo environments. CONCLUSION: The favorable characteristics of CEA(Ab)-MSNs-ICG-Pt offer opportunities for its application in chemotherapeutic interventions, tumor-specific NIR fluorescence imaging, and fluorescence-guided surgical procedures.


Asunto(s)
Antígeno Carcinoembrionario , Neoplasias Colorrectales , Nanopartículas , Antígeno Carcinoembrionario/metabolismo , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Nanopartículas/química , Humanos , Animales , Línea Celular Tumoral , Imagen Óptica/métodos , Ratones , Ratones Desnudos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Ratones Endogámicos BALB C , Colorantes Fluorescentes/química
4.
Small ; 20(24): e2309481, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38358018

RESUMEN

Enzymes play a pivotal role in regulating numerous bodily functions. Thus, there is a growing need for developing sensors enabling real-time monitoring of enzymatic activity and inhibition. The activity and inhibition of cholinesterase (CHE) enzymes in blood plasma are fluorometrically monitored using near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) as probes, strategically functionalized with myristoylcholine (MC)- the substrate of CHE. A significant decrease in the fluorescence intensity of MC-suspended SWCNTs upon interaction with CHE is observed, attributed to the hydrolysis of the MC corona phase of the SWCNTs by CHE. Complementary measurements for quantifying choline, the product of MC hydrolysis, reveal a correlation between the fluorescence intensity decrease and the amount of released choline, rendering the SWCNTs optical sensors with real-time feedback in the NIR biologically transparent spectral range. Moreover, when synthetic and naturally abundant inhibitors inhibit the CHE enzymes present in blood plasma, no significant modulations of the MC-SWCNT fluorescence are observed, allowing effective detection of CHE inhibition. The rationally designed SWCNT sensors platform for monitoring of enzymatic activity and inhibition in clinically relevant samples is envisioned to not only advance the field of clinical diagnostics but also deepen further understanding of enzyme-related processes in complex biological fluids.


Asunto(s)
Inhibidores de la Colinesterasa , Colinesterasas , Nanotubos de Carbono , Nanotubos de Carbono/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Colinesterasas/metabolismo , Colinesterasas/sangre , Humanos
5.
Cancer Cell Int ; 24(1): 228, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951897

RESUMEN

BACKGROUND: In the treatment of oral cavity cancer, margin status is one of the most critical prognostic factors. Positive margins are associated with higher local recurrence and lower survival rates. Therefore, the universal goal of oral surgical oncology is to achieve microscopically clear margins. Near-infrared fluorescence guided surgery (FGS) could improve surgical resection using fluorescent probes. αVß6 integrin has shown great potential for cancer targeting due to its overexpression in oral cancers. Red fluorescent contrast agent IRDye 680 coupled with anti-αVß6 peptide (IRDye-A20) represents an asset to improve FGS of oral cancer. This study investigates the potential of IRDye-A20 as a selective imaging agent in 3D three-dimensional tongue cancer cells. METHODS: αVß6 integrin expression was evaluated by RT-qPCR and Western Blotting in 2D HSC-3 human tongue cancer cells and MRC-5 human fibroblasts. Targeting ability of IRDye-A20 was studied in both cell lines by flow cytometry technique. 3D tumor spheroid models, homotypic (HSC-3) and stroma-enriched heterotypic (HSC-3/MRC-5) spheroids were produced by liquid overlay procedure and further characterized using (immuno)histological and fluorescence-based techniques. IRDye-A20 selectivity was evaluated in each type of spheroids and each cell population. RESULTS: αVß6 integrin was overexpressed in 2D HSC-3 cancer cells but not in MRC-5 fibroblasts and consistently, only HSC-3 were labelled with IRDye-A20. Round shaped spheroids with an average diameter of 400 µm were produced with a final ratio of 55%/45% between HSC-3 and MRC-5 cells, respectively. Immunofluorescence experiments demonstrated an uniform expression of αVß6 integrin in homotypic spheroid, while its expression was restricted to cancer cells only in heterotypic spheroid. In stroma-enriched 3D model, Cytokeratin 19 and E-cadherin were expressed only by cancer cells while vimentin and fibronectin were expressed by fibroblasts. Using flow cytometry, we demonstrated that IRDye-A20 labeled the whole homotypic spheroid, while in the heterotypic model all cancer cells were highly fluorescent, with a negligible fluorescence in fibroblasts. CONCLUSIONS: The present study demonstrated an efficient selective targeting of A20FMDV2-conjugated IRDye 680 in 3D tongue cancer cells stroma-enriched spheroids. Thus, IRDye-A20 could be a promising candidate for the future development of the fluorescence-guided surgery of oral cancers.

6.
World J Urol ; 42(1): 206, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561548

RESUMEN

OBJECTIVE: Identification of superficial inguinal lymph nodes during low-risk penile cancer surgery using near-infrared (NIR) fluorescence to improve the accuracy of lymph-node dissection and reduce the incidence of missed micrometastases and complications. METHODS: Thirty-two cases were selected, which were under the criteria of < T1, and no lymph-node metastasis was found with magnetic resonance imaging (MRI) detection. Two groups were randomly divided based on the fluorescence technique, the indocyanine green (ICG) group and the non-ICG group. In the ICG group, the ICG preparation was subcutaneously injected into the edge of the penile tumor 10 min before surgery, and the near-infrared fluorescence imager was used for observation. After the lymph nodes were visualized, the superficial inguinal lymph nodes were removed first, and then, the penis surgery was performed. The non-ICG group underwent superficial inguinal lymph-node dissection and penile surgery. RESULTS: Among the 16 patients in the ICG group, we obtained 11 lymph-node specimens using grayscale values of images (4.13 ± 0.72 vs. 3.00 ± 0.82 P = 0.003) along with shorter postoperative healing time (7.31 ± 1.08 vs. 8.88 ± 2.43 P = 0.025), and less lymphatic leakage (0 vs. 5 P = 0.04) than the 16 patients in the non-ICG group. Out of 11, 3 lymph nodes that are excised were further grouped into fluorescent and non-fluorescent regions (G1/G2) and found to be metastasized. CONCLUSION: Near-infrared fluorescence-assisted superficial inguinal lymph-node dissection in penile carcinoma is accurate and effective, and could reduce surgical complications.


Asunto(s)
Neoplasias del Pene , Humanos , Masculino , Colorantes , Verde de Indocianina , Escisión del Ganglio Linfático/métodos , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/cirugía , Ganglios Linfáticos/patología , Metástasis Linfática/patología , Neoplasias del Pene/diagnóstico por imagen , Neoplasias del Pene/cirugía , Neoplasias del Pene/patología , Biopsia del Ganglio Linfático Centinela/métodos
7.
Bioorg Chem ; 149: 107531, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38850779

RESUMEN

Nitroreductase (NTR) overexpression often occurs in tumors, highlighting the significance of effective NTR detection. Despite the utilization of various optical methods for this purpose, the absence of an efficient tumor-targeting optical probe for NTR detection remains a challenge. In this research, a novel tumor-targeting probe (Cy-Bio-NO2) is developed to perform dual-modal NTR detection using near-infrared fluorescence and photoacoustic techniques. This probe exhibits exceptional sensitivity and selectivity to NTR. Upon the reaction with NTR, Cy-Bio-NO2 demonstrates a distinct fluorescence "off-on" response at 800 nm, with an impressive detection limit of 12 ng/mL. Furthermore, the probe shows on-off photoacoustic signal with NTR. Cy-Bio-NO2 has been successfully employed for dual-modal NTR detection in living cells, specifically targeting biotin receptor-positive cancer cells for imaging purposes. Notably, this probe effectively detects tumor hypoxia through dual-modal imaging in tumor-bearing mice. The strategy of biotin incorporation markedly enhances the probe's tumor-targeting capability, facilitating its engagement in dual-modal imaging at tumor sites. This imaging capacity holds substantial promise as an accurate tool for cancer diagnosis.


Asunto(s)
Colorantes Fluorescentes , Nitrorreductasas , Imagen Óptica , Animales , Humanos , Ratones , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Ratones Endogámicos BALB C , Ratones Desnudos , Estructura Molecular , Neoplasias/diagnóstico por imagen , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/metabolismo , Nitrorreductasas/metabolismo , Nitrorreductasas/análisis , Técnicas Fotoacústicas , Dióxido de Nitrógeno/síntesis química , Dióxido de Nitrógeno/química
8.
Bioorg Chem ; 151: 107685, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39094509

RESUMEN

Nonsmall-cell lung cancer (NSCLC) is the most frequent type of lung cancer, with early surgical treatment proving vital for prolonged patient survival. However, precise visualization of NSCLC remains a challenge due to limited molecular imaging probes, the unique anatomical structure of the lungs, and respiratory movement interference. In this study, we investigated the potential utility of CD36, which is highly expressed in NSCLC, as an imaging target. A selective and water-soluble fluorescent probe, MPA-ABT-510, was successfully constructed by coupling ABT-510 with MPA, a near-infrared (NIR) fluorescent dye. Molecular docking analysis shows that MPA-ABT-510 possesses strong binding affinity to the CD36 protein, with specific hydrogen bond interactions at defined amino acid residues. In vitro assays reveals that the fluorescein isothiocyanate-labeled peptide ABT-510 specifically binds to the CD36-high expressing NSCLC cell lines H1299 and A549. In vivo imaging verifies that the MPA-ABT-510 efficiently accumulates in the tumor site with a distinct fluorescent signal. Ex vivo imaging revealed that tumor-to-lung fluorescence ratios for subcutaneous and orthotopic H1299 mouse models were 7.19 ± 0.73 and 1.91 ± 0.42, respectively, while those for A549 mice were 5.53 ± 0.64 and 1.77 ± 0.41, respectively. Biodistribution analysis demonstrated efficient MPA-ABT-510 uptake in H1299 and A549 liver metastases models with tumor-to-liver fluorescence ratios of 2.47 ± 0.48 and 2.19 ± 0.22, respectively. High MPA-ABT-510 accumulation was evident in A549 intestinal metastases models, as evidenced by tumor-to-colorectal fluorescence ratios of 4.27 ± 0.11. MPA-ABT-510 exhibits superior imaging capabilities with minimal safety concerns, so it is a promising candidate for NSCLC surgical navigation.

9.
Surg Endosc ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090199

RESUMEN

BACKGROUND: The role of intraoperative near-infrared fluorescence angiography with indocyanine green in reducing anastomotic leakage (AL) has been demonstrated in colorectal surgery, however, its perfusion assessment mode, and efficacy in reducing anastomotic leakage after laparoscopic intersphincteric resection (LsISR) need to be further elucidated. AIM: Aim was to study near-infrared fluorescent angiography to help identify bowel ischemia to reduce AL after LsISR. MATERIAL AND METHODS: A retrospective case-matched study was conducted in one referral center. A total of 556 consecutive patients with ultra-low rectal cancer including 140 patients with fluorescence angiography of epiploic appendages (FAEA)were enrolled. Perfusion assessment by FAEA in the monochrome fluorescence mode. Patients were divided into two groups based on perfusion assessment by FAEA. The primary endpoint was the AL rate within 6 months, and the secondary endpoint was the structural sequelae of anastomotic leakage (SSAL). RESULTS: After matching, the study group (n = 109) and control group (n = 190) were well-balanced. The AL rate in the FAEA group was lower before (3.6% vs. 10.1%, P = 0.026) and after matching (3.7% vs. 10.5%, P = 0.036). Propensity scores matching analysis (OR 0.275, 95% CI 0.035-0.937, P 0.039), inverse probability of treatment weighting (OR 0.814, 95% CI 0.765-0.921, P 0.002), and regression analysis (OR 0.298, 95% CI 0.112-0.790, P = 0.015), showed that FAEA was an independent protector factor for AL. This technique can significantly shorten postoperative hospital stay [9 (6-13) vs. 10 (8-13), P = 0.024] and reduce the risk of SSAL (1.4% vs. 6.0%, P = 0.029). CONCLUSIONS: Perfusion assessment by FAEA can achieve better visualization in LsISR and reduce the incidence of AL, subsequently avoiding SSAL after LsISR.

10.
Surg Endosc ; 38(7): 3556-3563, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38727831

RESUMEN

BACKGROUND: Near-infrared fluorescence (NIRF) angiography with intraoperative administration of indocyanine green (ICG) has rapidly disseminated in clinical practice. Another clinically approved, and widely available dye, methylene blue (MB), has up to now not been used for this purpose. Recently, we demonstrated promising results for the real-time evaluation of intestinal perfusion using this dye. The primary aim of this study was to perform a quantitative analysis of bowel perfusion assessment for both ICG and MB. METHODS: Four mature female Landrace pigs underwent laparotomy under general anesthesia. An ischemic bowel loop with five regions of interest (ROIs) with varying levels of perfusion was created in each animal. An intravenous (IV) injection of 0.25 mg/kg-0.50 mg/kg MB was administered after 10 min, followed by NIRF imaging in MB mode and measurement of local lactate levels in all corresponding ROIs. This procedure was repeated in ICG mode (IV dose of 0.2 mg/kg) after 60 min. The quest spectrum fluorescence camera (Quest Medical Imaging, Middenmeer, The Netherlands) was used for NIRF imaging of both MB and ICG. RESULTS: Intraoperative NIRF imaging of bowel perfusion assessment with MB and ICG was successful in all studied animals. Ingress (i/s) levels were calculated and correlated with local lactate levels. Both MB and ICG ingress values showed a significant negative correlation (r = - 0.7709; p = < 0.001; r = - 0.5367, p = 0.015, respectively) with local lactate levels. This correlation was stronger for MB compared to ICG, although ICG analysis showed higher absolute ingress values. CONCLUSION: Our fluorescence quantification analysis validates the potential to use MB for bowel perfusion assessment besides the well-known and widely used ICG. Further human studies are necessary to translate our findings to clinical applications.


Asunto(s)
Colorantes , Verde de Indocianina , Azul de Metileno , Animales , Femenino , Colorantes/administración & dosificación , Porcinos , Intestinos/irrigación sanguínea , Intestinos/diagnóstico por imagen , Angiografía con Fluoresceína/métodos , Imagen Óptica/métodos
11.
Int Urogynecol J ; 35(7): 1549-1551, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38780627

RESUMEN

INTRODUCTION AND HYPOTHESIS: We aimed to demonstrate the feasibility of ureteral navigation using intra-ureteric indocyanine green (ICG) and near-infrared fluorescence (NIRF) imaging during transvaginal high uterosacral ligament suspension for prolapse repair to reduce the risk of iatrogenic ureteral injury. METHODS: A cystoscope was inserted into the bladder, the tip of a 6-F open-end ureteral catheter was inserted into the ureteral orifices, and ICG was instilled into the ureters. The ureteral path was then clearly identified using NIRF imaging. Sutures were safely placed in the uterosacral ligaments at the level of the ischial spine, taking advantage of direct ureteral visualization. RESULTS: At the end of the procedure, diagnostic cystoscopy was performed to confirm ureteral patency. No intraoperative or postoperative complications were observed. CONCLUSIONS: Intra-ureteric ICG-NIRF imaging represents a simple, inexpensive, and reproducible trick for intraoperative ureteral detection, and could reassure surgeons during difficult operations, for instance, in the case of severe prolapse and/or when ureteral course abnormalities are expected.


Asunto(s)
Verde de Indocianina , Ligamentos , Prolapso de Órgano Pélvico , Uréter , Femenino , Humanos , Uréter/diagnóstico por imagen , Prolapso de Órgano Pélvico/cirugía , Ligamentos/diagnóstico por imagen , Ligamentos/cirugía , Imagen Óptica/métodos , Cistoscopía/métodos , Estudios de Factibilidad , Procedimientos Quirúrgicos Ginecológicos/métodos , Persona de Mediana Edad
12.
Langenbecks Arch Surg ; 409(1): 90, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466450

RESUMEN

PURPOSE: Near-infrared fluorescence imaging using indocyanine green (ICG-NIFI) can visualize a blood flow in reconstructed gastric tube; however, it depends on surgeon's visual assessment. The aim of this study was to re-analyze the ICG-NIFI data by an evaluator independent from the surgeon and feasibility of creating the time-intensity curve (TIC). METHODS: We retrospectively reviewed 97 patients who underwent esophageal surgery with gastric tube reconstruction between January 2017 and November 2022. From the stored ICG videos, fluorescence intensity was examined in the four regions of interest (ROIs), which was set around the planned anastomosis site on the elevated gastric tube. After creation the TICs using the OpenCV library, we measured the intensity starting point and time constant and assessed the correlation between the anastomotic leakage. RESULTS: Postoperative leakage occurred for 12 patients. The leakage group had significantly lack of blood flow continuity between the right and left gastroepiploic arteries (75.0% vs. 22.4%; P < 0.001) and tended to have slower ICG visualization time assessed by the surgeon's eyes (40 vs. 32 s; P = 0.066). TIC could create in 65 cases. Intensity starting point at all ROIs was faster than the surgeon's assessment. The leakage group tended to have slower intensity starting point at ROI 3 compared to those in the non-leakage group (22.5 vs. 19.0 s; P = 0.087). CONCLUSION: A TIC analysis of ICG-NIFI by an independent evaluator was able to quantify the fluorescence intensity changes that the surgeon had visually determined.


Asunto(s)
Esofagectomía , Estómago , Humanos , Estudios Retrospectivos , Estómago/diagnóstico por imagen , Estómago/cirugía , Estómago/irrigación sanguínea , Esofagectomía/métodos , Verde de Indocianina , Fuga Anastomótica/diagnóstico por imagen , Fuga Anastomótica/etiología , Fuga Anastomótica/cirugía , Anastomosis Quirúrgica/métodos
13.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38542401

RESUMEN

Many efforts have been made to develop near-infrared (NIR) fluorescent dyes with high efficiency for the NIR laser-induced phototherapy of cancer. However, the low tumor targetability and high nonspecific tissue uptake of NIR dyes in vivo limit their applications in preclinical cancer imaging and therapy. Among the various NIR dyes, squaraine (SQ) dyes are widely used due to their high molar extinction coefficient, intense fluorescence, and excellent photostability. Previously, benzoindole-derived SQ (BSQ) was prepared by incorporating carboxypentyl benzoindolium end groups into a classical SQ backbone, followed by conjugating with cyclic RGD peptides for tumor-targeted imaging. In this study, we demonstrate that the structure-inherent tumor-targeting BSQ not only shows a high fluorescence quantum yield in serum but also exhibits superior reactive oxygen species (ROS) generation capability under the 671 nm laser irradiation for effective photodynamic therapy (PDT) in vitro and in vivo. Without targeting ligands, the BSQ was preferentially accumulated in tumor tissue 24 h post-injection, which was the optimal timing of the laser irradiation to induce increments of ROS production. Therefore, this work provides a promising strategy for the development of photodynamic therapeutic SQ dyes for targeted cancer therapy.


Asunto(s)
Ciclobutanos , Neoplasias , Fenoles , Fotoquimioterapia , Humanos , Especies Reactivas de Oxígeno , Fluorescencia , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Colorantes Fluorescentes
14.
Int J Mol Sci ; 25(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791347

RESUMEN

IR-783, a commercially available near-infrared (NIR) heptamethine cyanine dye, has been used for selective tumor imaging in breast, prostate, cervical, and brain cancers in vitro and in vivo. Although the molecular mechanism behind the structure-inherent tumor targeting of IR-783 has not been well-demonstrated, IR-783 has unique properties such as a good water solubility and low cytotoxicity compared with other commercial heptamethine cyanine dyes. The goal of this study is to evaluate the phototherapeutic efficacy of IR-783 as a tumor-targeted photothermal agent in human colorectal cancer xenografts. The results demonstrate that IR-783 shows both the subcellular localization in HT-29 cancer cells and preferential accumulation in HT-29 xenografted tumors 24 h after its intravenous administration. Furthermore, the IR-783 dye reveals the superior capability to convert NIR light into heat energy under 808 nm NIR laser irradiation in vitro and in vivo, thereby inducing cancer cell death. Taken together, these findings suggest that water-soluble anionic IR-783 can be used as a bifunctional phototherapeutic agent for the targeted imaging and photothermal therapy (PTT) of colorectal cancer. Therefore, this work provides a simple and effective approach to develop biocompatible, hydrophilic, and tumor-targetable PTT agents for targeted cancer phototherapy.


Asunto(s)
Terapia Fototérmica , Humanos , Terapia Fototérmica/métodos , Animales , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Células HT29 , Carbocianinas/química , Ratones Desnudos , Rayos Infrarrojos , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/tratamiento farmacológico , Colorantes Fluorescentes/química , Fluorescencia , Ratones Endogámicos BALB C
15.
Angew Chem Int Ed Engl ; : e202410204, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935519

RESUMEN

Positively charged phosphorus-containing heterocycles are characteristic core skeletons for functional molecules. While various phosphonium-containing five- or six-membered ring compounds have been reported, seven-membered ring phosphepinium has not yet been fully studied. In this study, dithieno[2,3-b;3,2-f]phosphepinium ions containing electron-donating aminophenyl groups were synthesized. An X-ray crystallographic analysis of the resulting donor-acceptor-donor dyes revealed a bent conformation of the central seven-membered ring. This compound exhibited fluorescence in the near-infrared region with a bathochromic shift of 70 nm compared to phosphepine oxide congener and a large Stokes shift. High fluorescence quantum yields were obtained even in polar solvents due to the suppression of the nonradiative decay process. The theoretical study revealed that the phosphepinium skeleton is highly electron-accepting owing to the orbital interaction between a px orbital of the phosphonium moiety and a π* orbital of the 1,3,5-hexatriene moiety. Owing to the lower-lying px orbital in the phosphonium moiety compared with that of the phosphine oxide and the bent conformation of the seven-membered ring, the phosphepinium ring effectively furnishes a px-π* conjugation. A large structural relaxation with the contribution of a quinoidal resonance structure is suggested in the excited state, which is responsible for the intense emission with a large Stokes shift.

16.
Angew Chem Int Ed Engl ; 63(9): e202316965, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38100133

RESUMEN

Enzymatic reactions are used to detect analytes in a range of biochemical methods. To measure the presence of an analyte, the enzyme is conjugated to a recognition unit and converts a substrate into a (colored) product that is detectable by visible (VIS) light. Thus, the lowest enzymatic turnover that can be detected sets a limit on sensitivity. Here, we report that substrates and products of horseradish peroxidase (HRP) and ß-galactosidase change the near-infrared (NIR) fluorescence of (bio)polymer modified single-walled carbon nanotubes (SWCNTs). They translate a VIS signal into a beneficial NIR signal. Moreover, the affinity of the nanosensors leads to a higher effective local concentration of the reactants. This causes a non-linear sensor-based signal amplification and translation (SENSAT). We find signal enhancement up to ≈120x for the HRP substrate p-phenylenediamine (PPD), which means that reactions below the limit of detection in the VIS can be followed in the NIR (≈1000 nm). The approach is also applicable to other substrates such as 3,3'-5,5'-tetramethylbenzidine (TMB). An adsorption-based theoretical model fits the observed signals and corroborates the sensor-based enhancement mechanism. This approach can be used to amplify signals, translate them into the NIR and increase sensitivity of biochemical assays.


Asunto(s)
Nanotubos de Carbono , Luz , Peroxidasa de Rábano Silvestre , Adsorción , Bioensayo
17.
Angew Chem Int Ed Engl ; 63(16): e202400637, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38409519

RESUMEN

Abnormal physiological processes and diseases can lead to content or activity fluctuations of biocomponents in organelles and whole blood. However, precise monitoring of these abnormalities remains extremely challenging due to the insufficient sensitivity and accuracy of available fluorescence probes, which can be attributed to the background fluorescence arising from two sources, 1) biocomponent autofluorescence (BCAF) and 2) probe intrinsic fluorescence (PIF). To overcome these obstacles, we have re-engineered far-red to NIR II rhodol derivatives that possess weak BCAF interference. And a series of "zero" PIF sensing-platforms were created by systematically regulating the open-loop/spirocyclic forms. Leveraging these advancements, we devised various ultra-sensitive NIR indicators, achieving substantial fluorescence boosts (190 to 1300-fold). Among these indicators, 8-LAP demonstrated accurate tracking and quantifying of leucine aminopeptidase (LAP) in whole blood at various stages of tumor metastasis. Furthermore, coupling 8-LAP with an endoplasmic reticulum-targeting element enabled the detection of ERAP1 activity in HCT116 cells with p53 abnormalities. This delicate design of eliminating PIF provides insights into enhancing the sensitivity and accuracy of existing fluorescence probes toward the detection and imaging of biocomponents in abnormal physiological processes and diseases.


Asunto(s)
Leucil Aminopeptidasa , Imagen Óptica , Humanos , Fluorescencia , Microscopía Fluorescente/métodos , Retículo Endoplásmico , Espectrometría de Fluorescencia/métodos , Colorantes Fluorescentes , Aminopeptidasas , Antígenos de Histocompatibilidad Menor
18.
Biosens Bioelectron ; 251: 116114, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38354495

RESUMEN

Plant nanobionic sensors enable real-time monitoring of signaling molecules in plants by interfacing them with specifically designed nanoprobes, which have been acknowledged as species-independent analytical tools. In this study, we developed a plant nanobionic sensor for in vivo detection of extracellular adenosine triphosphate (eATP) in living plants by designing a novel second near-infrared (NIR-II) fluorescent metal-organic framework (MOF) nanoprobe. The NIR-II fluorescent nanoprobe (IR-1061 micelle@ZIF-90) with a sandwich structure was synthesized by successive encapsulation of the hydrophobic NIR-II dye IR-1061 with the amphipathic polymer DSPE-mPEG 2000 and MOF ZIF-90. Interestingly, coating ZIF-90 around IR-1061 micelles increased the NIR-II fluorescence 16.6-fold. Utilizing the ultrahigh NIR-II fluorescent emission of the designed nanoprobes and specific recognition of ZIF-90 to ATP, the nanoprobes were applied to spatial and temporal monitoring eATP in model and non-model plants under environmental stress.


Asunto(s)
Técnicas Biosensibles , Boratos , Estructuras Metalorgánicas , Nanopartículas , Piranos , Estructuras Metalorgánicas/química , Adenosina Trifosfato , Colorantes Fluorescentes/química
19.
Vet Clin North Am Small Anim Pract ; 54(4): 707-720, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38503596

RESUMEN

Idiopathic chylothorax is a challenging clinical condition historically associated with poor resolution rates following surgical intervention. Recent advances in imaging and surgical techniques have revolutionized the treatment of this disease process. Computed tomographic lymphangiography has facilitated improved surgical planning and postoperative assessment, while intraoperative use of near-infrared fluorescence imaging aids in highly accurate intraoperative thoracic duct identification. Utilizing these advancements, minimally invasive surgical techniques have been successfully developed and have been associated with considerable improvements in surgical outcomes.


Asunto(s)
Enfermedades de los Gatos , Quilotórax , Enfermedades de los Perros , Quilotórax/veterinaria , Quilotórax/terapia , Quilotórax/cirugía , Animales , Enfermedades de los Perros/cirugía , Enfermedades de los Perros/terapia , Enfermedades de los Perros/diagnóstico , Perros , Enfermedades de los Gatos/cirugía , Enfermedades de los Gatos/terapia , Enfermedades de los Gatos/diagnóstico , Enfermedades de los Gatos/diagnóstico por imagen , Gatos , Linfografía/veterinaria
20.
J Hazard Mater ; 477: 135369, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39088949

RESUMEN

SO2 derivatives, sulfite/bisulfite, are widely employed in both the food processing and drug synthesis industries. Despite their widespread application, excessive levels of sulfite/bisulfite can negatively impact human health. Most probes for detecting sulfite/bisulfite are restricted by their fluorescence within the visible spectrum range and poor solubility in aqueous solution, which limit their use in food testing and biological imaging. Herein, a near-infrared probe comprising of the cyanopyridine cyanine skeleton, 4-((Z)-2-((E)-2-chloro-3-(2-cyano-2-(1-methylpyridine-4(1H)-ylidene)ethylidene)cyclohex-1-en-1-yl)-1-cyanovinyl)-1-methylpyridin-1-ium (abbreviated as CCP), was developed. This probe enables precise quantification of bisulfite (HSO3-) in almost pure buffered solutions, showing a near-infrared fluorescence emission at 784 nm with an impressively low detection limit of 0.32 µM. The probe stands out for its exceptional selectivity, minimal susceptibility to interference, and strong adaptability. The probe CCP utilizes the CC bond to trigger a near-infrared fluorescence quenching reaction with HSO3- via nucleophilic addition, which effectively disrupts the large delocalization within the molecule for accurate HSO3- identification. Moreover, the probe has been successfully applied in detecting HSO3- in various food products and living cells, simplifying the measurement of HSO3- content in water samples. This advancement not only enhances the analytical capabilities but also contributes to ensuring food safety and environmental protection. ENVIRONMENTAL IMPLICATION: SO2 derivatives including sulfite/bisulfite, serving dual roles as preservatives and antioxidants, have widespread application across various sectors including food preservation, water sanitation, and the pharmaceutical industry. Despite their widespread application, excessive levels of sulfite/bisulfite can affect human health. Developing methods for precisely and sensitively detecting sulfite/bisulfite in food products and biological samples is important for ensuring food safety and environmental protection. Here, a sensitive near-infrared and multifunctional fluorescent probe in a 99.9 % buffered solution, along with water gel encapsulation, has been successfully applied for the detection of bisulfite in food, authentic water samples, and biological cells.


Asunto(s)
Colorantes Fluorescentes , Sulfitos , Sulfitos/análisis , Sulfitos/química , Colorantes Fluorescentes/química , Humanos , Piridinas/química , Carbocianinas/química , Células HeLa , Imagen Óptica , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA