Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Saudi Pharm J ; 28(11): 1353-1363, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33250642

RESUMEN

Atorvastatin (ATO) is of the statin class and is used as an orally administered lipid-lowering drug. ATO is a reversible synthetic competitive inhibitor of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase thus leading to a reduction in cholesterol synthesis. It has recently been demonstrated that ATO has different pharmacological actions, which are unrelated to its lipid-lowering effects and has the ability to treat chronic airway diseases. This paper reviews the potential of ATO as an anti-inflammatory, antioxidant, and anti-proliferative agent after oral or inhaled administration. This paper discusses the advantages and disadvantages of using ATO under conditions associated with those found in the airways. This treatment could potentially be used to support the formulating of ATO as an inhaler for the treatment of chronic respiratory diseases.

2.
Acta Pharm Sin B ; 11(6): 1526-1540, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34221866

RESUMEN

Acute myeloid leukaemia (AML) is the most common form of acute leukaemia in adults, with increasing incidence with age and a generally poor prognosis. Almost 20% of AML patients express mutant isocitrate dehydrogenase 2 (mIDH2), which leads to the accumulation of the carcinogenic metabolite 2-hydroxyglutarate (2-HG), resulting in poor prognosis. Thus, global institutions have been working to develop mIDH2 inhibitors. SH1573 is a novel mIDH2 inhibitor that we independently designed and synthesised. We have conducted a comprehensive study on its pharmacodynamics, pharmacokinetics and safety. First, SH1573 exhibited a strong selective inhibition of mIDH2 R140Q protein, which could effectively reduce the production of 2-HG in cell lines, serum and tumors of an animal model. It could also promote the differentiation of mutant AML cell lines and granulocytes in PDX models. Then, it was confirmed that SH1573 possessed characteristics of high bioavailability, good metabolic stability and wide tissue distribution. Finally, toxicological data showed that SH1573 had no effects on the respiratory system, cardiovascular system and nervous system, and was genetically safe. This research successfully promoted the approval of SH1573 for clinical trials (CTR20200247). All experiments demonstrated that, as a potential drug against mIDH2 R140Q acute myeloid leukaemia, SH1573 was effective and safe.

3.
Acta Pharm Sin B ; 11(7): 1697-1707, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34386316

RESUMEN

Small intestine in vitro models play a crucial role in drug transport research. Although conventional 2D cell culture models, such as Caco-2 monolayer, possess many advantages, they should be interpreted with caution because they have relatively poor physiologically reproducible phenotypes and functions. With the development of 3D culture technology, pluripotent stem cells (PSCs) and adult somatic stem cells (ASCs) show remarkable self-organization characteristics, which leads to the development of intestinal organoids. Based on previous studies, this paper reviews the application of intestinal 3D organoids in drug transport mediated by P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance protein 2 (MRP2). The advantages and limitations of this model are also discussed. Although there are still many challenges, intestinal 3D organoid model has the potential to be an excellent tool for drug transport research.

4.
Acta Pharm Sin B ; 9(5): 1035-1049, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31649852

RESUMEN

Managing the dysregulated host response to infection remains a major challenge in sepsis care. Chinese treatment guideline recommends adding XueBiJing, a five-herb medicine, to antibiotic-based sepsis care. Although adding XueBiJing further reduced 28-day mortality via modulating the host response, pharmacokinetic herb-drug interaction is a widely recognized issue that needs to be studied. Building on our earlier systematic chemical and human pharmacokinetic investigations of XueBiJing, we evaluated the degree of pharmacokinetic compatibility for XueBiJing/antibiotic combination based on mechanistic evidence of interaction risk. Considering both XueBiJing‒antibiotic and antibiotic‒XueBiJing interaction potential, we integrated informatics-based approach with experimental approach and developed a compound pair-based method for data processing. To reflect clinical reality, we selected for study XueBiJing compounds bioavailable for drug interactions and 45 antibiotics commonly used in sepsis care in China. Based on the data of interacting with drug metabolizing enzymes and transporters, no XueBiJing compound could pair, as perpetrator, with the antibiotics. Although some antibiotics could, due to their inhibition of uridine 5'-diphosphoglucuronosyltransferase 2B15, organic anion transporters 1/2 and/or organic anion-transporting polypeptide 1B3, pair with senkyunolide I, tanshinol and salvianolic acid B, the potential interactions (resulting in increased exposure) are likely desirable due to these XueBiJing compounds' low baseline exposure levels. Inhibition of aldehyde dehydrogenase by 7 antibiotics probably results in undesirable reduction of exposure to protocatechuic acid from XueBiJing. Collectively, XueBiJing/antibiotic combination exhibited a high degree of pharmacokinetic compatibility at clinically relevant doses. The methodology developed can be applied to investigate other drug combinations.

5.
Acta Pharm Sin B ; 7(3): 260-280, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28540164

RESUMEN

Oral drug absorption is a process influenced by the physicochemical and biopharmaceutical properties of the drug and its inter-relationship with the gastrointestinal tract. Drug solubility, dissolution and permeability across intestinal barrier are the key parameters controlling absorption. This review provides an overview of the factors that affect drug absorption and the classification of a drug on the basis of solubility and permeability. The biopharmaceutical classification system (BCS) was introduced in early 90׳s and is a regulatory tool used to predict bioavailability problems associated with a new entity, thereby helping in the development of a drug product. Strategies to combat solubility and permeability issues are also discussed.

6.
Acta Pharm Sin B ; 6(5): 475-491, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27709017

RESUMEN

Intestine is responsible for the biotransformation of many orally-exposed chemicals. The constitutive androstane receptor (CAR/Nr1i3) is known to up-regulate many genes encoding drug-metabolizing enzymes and transporters (drug-processing genes/DPGs) in liver, but less is known regarding its effect in intestine. Sixty-day-old wild-type and Car-/- mice were administered the CAR-ligand TCPOBOP or vehicle once daily for 4 days. In wild-type mice, Car mRNA was down-regulated by TCPOBOP in liver and duodenum. Car-/- mice had altered basal intestinal expression of many DPGs in a section-specific manner. Consistent with the liver data (Aleksunes and Klaassen, 2012), TCPOBOP up-regulated many DPGs (Cyp2b10, Cyp3a11, Aldh1a1, Aldh1a7, Gsta1, Gsta4, Gstm1-m4, Gstt1, Ugt1a1, Ugt2b34, Ugt2b36, and Mrp2-4) in specific sections of small intestine in a CAR-dependent manner. However, the mRNAs of Nqo1 and Papss2 were previously known to be up-regulated by TCPOBOP in liver but were not altered in intestine. Interestingly, many known CAR-target genes were highest expressed in colon where CAR is minimally expressed, suggesting that additional regulators are involved in regulating their expression. In conclusion, CAR regulates the basal expression of many DPGs in intestine, and although many hepatic CAR-targeted DPGs were bona fide CAR-targets in intestine, pharmacological activation of CAR in liver and intestine are not identical.

7.
Acta Pharm Sin B ; 5(2): 129-34, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26579438

RESUMEN

The classical functions of bile acids include acting as detergents to facilitate the digestion and absorption of nutrients in the gut. In addition, bile acids also act as signaling molecules to regulate glucose homeostasis, lipid metabolism and energy expenditure. The signaling potential of bile acids in compartments such as the systemic circulation is regulated in part by an efficient enterohepatic circulation that functions to conserve and channel the pool of bile acids within the intestinal and hepatobiliary compartments. Changes in hepatobiliary and intestinal bile acid transport can alter the composition, size, and distribution of the bile acid pool. These alterations in turn can have significant effects on bile acid signaling and their downstream metabolic targets. This review discusses recent advances in our understanding of the inter-relationship between the enterohepatic cycling of bile acids and the metabolic consequences of signaling via bile acid-activated receptors, such as farnesoid X nuclear receptor (FXR) and the G-protein-coupled bile acid receptor (TGR5).

8.
Meta Gene ; 2: 686-93, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25606452

RESUMEN

Human organic solute carrier protein 1 (hOSCP1) is a Na(+)-independent multispecific organic solute transporter. To date, several studies have revealed that gene mutations of the transporters are likely to be associated with some diseases; however, there are no data concerning the genetic polymorphism of the hOSCP1 gene in Japanese patients with non-viral liver carcinoma (LC). In the present study, we isolated genomic DNA from a normal portion of LC, and analyzed 41 single nucleotide polymorphisms (SNPs) chosen from a database of SNPs (dbSNPs). We found genotype frequencies for 2 non-synonymous SNPs [rs34409118 (Thr(131) â†’ Ala) and rs1416840 (Ile(219) â†’ Thr)] and 1 synonymous SNP [rs16822954 (Ser(193) â†’ Ser)] to be statistically significant when compared with dbSNPs. No statistical significance was observed in rs2275477 (Gly(307) â†’ Arg) in the hOSCP1 gene. With respect to the allele frequency, we also observed rs34409118 to be statistically significant. Interestingly, we found that non-viral LC patients do not carry heterozygous mutations in rs1416840 (A/G) and rs16822954 (A/G), suggesting that a non-carrier of heterozygous mutations in these two SNPs might be a biomarker for susceptibility for non-viral LC in Japanese. Further analyses of patients with hOSCP1 variants may elucidate the relationship between the hOSCP1 gene and susceptibility of non-viral LC in Japanese patients.

9.
J Clin Exp Hepatol ; 2(4): 315-22, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25755453

RESUMEN

BACKGROUND: Primary human hepatocytes are a useful in vitro model system to examine hepatic biochemical pathways, liver disorders and/or pharmacotherapies. This system can also be used for transport studies to investigate uptake and excretion of bile acids. Proper modeling of hepatic function requires careful attention to media components, and culture substrates and conditions. OBJECTIVES: To examine the effects of different culture media and conditions on bile acid transport in cultured human hepatocytes. METHODS AND RESULTS: Hepatocytes cultured in Williams' medium E showed an increase in both uptake and excretion of taurocholate compared to cells cultured in Dulbecco's Modified Eagle Medium (DMEM). Supplementation of DMEM with glutathione or ascorbic acid did not compensate for the lower transport. The difference can be explained by lower mRNA expression of the transporter proteins sodium taurocholate cotransporting polypeptide (NTCP) and bile salt export pump (BSEP; ABCB11) when cultured in DMEM. Hepatocytes cultured in DMEM also display fewer and smaller bile canaliculi. Following extended time in culture supplementation of Williams' medium E with dexamethasone increased the expression of NTCP and BSEP. CONCLUSION: Williams' medium E is superior to DMEM for transport studies in primary human hepatocytes. Supplementation with dexamethasone increase mRNA levels of NTCP and BSEP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA