Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 72(6): 985-998.e7, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30415949

RESUMEN

Current models of SIRT1 enzymatic regulation primarily consider the effects of fluctuating levels of its co-substrate NAD+, which binds to the stably folded catalytic domain. By contrast, the roles of the sizeable disordered N- and C-terminal regions of SIRT1 are largely unexplored. Here we identify an insulin-responsive sensor in the SIRT1 N-terminal region (NTR), comprising an acidic cluster (AC) and a 3-helix bundle (3HB), controlling deacetylase activity. The allosteric assistor DBC1 removes a distal N-terminal shield from the 3-helix bundle, permitting PACS-2 to engage the acidic cluster and the transiently exposed helix 3 of the 3-helix bundle, disrupting its structure and inhibiting catalysis. The SIRT1 activator (STAC) SRT1720 binds and stabilizes the 3-helix bundle, protecting SIRT1 from inhibition by PACS-2. Identification of the SIRT1 insulin-responsive sensor and its engagement by the DBC1 and PACS-2 regulatory hub provides important insight into the roles of disordered regions in enzyme regulation and the mode by which STACs promote metabolic fitness.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Hepatocitos/enzimología , Insulina/metabolismo , Sirtuina 1/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Regulación Alostérica , Animales , Sitios de Unión , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Células HCT116 , Hepatocitos/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Resistencia a la Insulina , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/enzimología , Obesidad/genética , Obesidad/prevención & control , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Sirtuina 1/genética , Proteínas de Transporte Vesicular/deficiencia , Proteínas de Transporte Vesicular/genética
2.
Pak J Med Sci ; 40(4): 782-784, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545008

RESUMEN

We identified the PACS2 gene responsible for the multifunctional sorting protein that play a role in nuclear gene expression as well as pathway traffic regulation. Diseases associated with PACS2 include early infantile epileptic encephalopathy (EIEE66), alacrima, achalasia, and mental retardation syndrome. Whole exome sequencing (WES) technique was used for the identification of variants that may lead to the disease. We identified a consanguineous Saudi family segregating developmental delay, mental retardation and epilepsy. Our results showed a heterozygous missense variant PACS2 gene leading to intellectual disability, epilepsy and cause epileptic encephalopathies (EIEE66) disorder. WES data was analyzed and identified variants were further confirmed by Sanger sequencing validation technique. We identified a heterozygous missense c.625G>A p.Glu209Lys in exon-6 of PACS2. The detected heterozygous mutation in the exon-6 region of PACS2 gene change the protein features and may cause disease. Further, explain the possibility that PACS2 gene play important role to cause intellectual disability, epilepsy and epileptic encephalopathies in this Saudi family.

3.
Mol Med ; 28(1): 117, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36138342

RESUMEN

BACKGROUND: Lipid accumulation in tubular cells plays a key role in diabetic kidney disease (DKD). Targeting lipid metabolism disorders has clinical value in delaying the progression of DKD, but the precise mechanism by which molecules mediate lipid-related kidney injury remains unclear. Phosphofurin acidic cluster sorting protein 2 (PACS-2) is a multifunctional sorting protein that plays a role in lipid metabolism. This study determined the role of PACS-2 in lipid-related kidney injury in DKD. METHODS: Diabetes was induced by a high-fat diet combined with intraperitoneal injections of streptozotocin (HFD/STZ) in proximal tubule-specific knockout of Pacs-2 mice (PT-Pacs-2-/- mice) and the control mice (Pacs-2fl/fl mice). Transcriptomic analysis was performed between Pacs-2fl/fl mice and PT-Pacs-2-/- mice. RESULTS: Diabetic PT-Pacs-2-/- mice developed more severe tubule injury and proteinuria compared to diabetic Pacs-2fl/fl mice, which accompanied with increasing lipid synthesis, uptake and decreasing cholesterol efflux as well as lipid accumulation in tubules of the kidney. Furthermore, transcriptome analysis showed that the mRNA level of sterol O-acyltransferase 1 (Soat1) was up-regulated in the kidney of control PT-Pacs-2-/- mice. Transfection of HK2 cells with PACS-2 siRNA under high glucose plus palmitic acid (HGPA) condition aggravated lipid deposition and increased the expression of SOAT1 and sterol regulatory element-binding proteins (SREBPs), while the effect was blocked partially in that of co-transfection of SOAT1 siRNA. CONCLUSIONS: PACS-2 has a protective role against lipid-related kidney injury in DKD through SOAT1/SREBPs signaling.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Hipercolesterolemia , Animales , Colesterol/metabolismo , Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/etiología , Glucosa/metabolismo , Hipercolesterolemia/metabolismo , Riñón/metabolismo , Ratones , Ácido Palmítico , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Esteroles/metabolismo , Estreptozocina/metabolismo
4.
Am J Med Genet A ; 188(3): 991-995, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34894068

RESUMEN

The PACS2 gene encodes a multifunctional sorting protein involved in nuclear gene expression and pathway traffic regulation that has been shown to be highly expressed during human prenatal brain development. Pathogenic variants in PACS2 have been recently shown to be implicated in a phenotype with global developmental delay/intellectual disability, seizures, autistic traits, facial dysmorphic features, and cerebellar dysgenesis. Here, we report a 25-year-old male with intellectual disability, epileptic encephalopathy, cerebellar dysgenesis, facial dysmorphism, and a previously reported pathogenic variant in PACS2. To our knowledge, this is the oldest patient reported who, in addition to the known phenotype described in PACS2 patients, presented with a vein of Galen malformation and dilated cardiomyopathy as previously unreported findings.


Asunto(s)
Aneurisma , Cardiomiopatía Dilatada , Enfermedades Cerebelosas , Epilepsia Generalizada , Discapacidad Intelectual , Malformaciones de la Vena de Galeno , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Masculino , Proteínas de Transporte Vesicular/genética
5.
Medicina (Kaunas) ; 58(9)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36143929

RESUMEN

(1) Background: In this paper, we report on three cases of hypoacusis as part of a complex phenotype and some rare gene variants. An extensive review of literature completes the newly reported clinical and genetic information. (2) Methods: The cases range from 2- to 11-year-old boys, all with a complex clinical picture and hearing impairment. In all cases, whole exome sequencing (WES) was performed, in the first case in association with mitochondrial DNA study. (3) Results: The detected variants were: two heterozygous variants in the TWNK gene, one likely pathogenic and another of uncertain clinical significance (autosomal recessive mitochondrial DNA depletion syndrome type 7-hepatocerebral type); heterozygous variants of uncertain significance PACS2 and SYT2 genes (autosomal dominant early infantile epileptic encephalopathy) and a homozygous variant of uncertain significance in SUCLG1 gene (mitochondrial DNA depletion syndrome 9). Some of these genes have never been previously reported as associated with hearing problems. (4) Conclusions: Our cases bring new insights into some rare genetic syndromes. Although the role of TWNK gene in hearing impairment is clear and accordingly reflected in published literature as well as in the present article, for the presented gene variants, a correlation to hearing problems could not yet be established and requires more scientific data. We consider that further studies are necessary for a better understanding of the role of these variants.


Asunto(s)
ADN Helicasas , Pérdida Auditiva , ADN Helicasas/genética , ADN Mitocondrial/genética , Pérdida Auditiva/genética , Humanos , Proteínas Mitocondriales , Mutación/genética , Rumanía
6.
Am J Hum Genet ; 102(5): 995-1007, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29656858

RESUMEN

Developmental and epileptic encephalopathies (DEEs) represent a large clinical and genetic heterogeneous group of neurodevelopmental diseases. The identification of pathogenic genetic variants in DEEs remains crucial for deciphering this complex group and for accurately caring for affected individuals (clinical diagnosis, genetic counseling, impacting medical, precision therapy, clinical trials, etc.). Whole-exome sequencing and intensive data sharing identified a recurrent de novo PACS2 heterozygous missense variant in 14 unrelated individuals. Their phenotype was characterized by epilepsy, global developmental delay with or without autism, common cerebellar dysgenesis, and facial dysmorphism. Mixed focal and generalized epilepsy occurred in the neonatal period, controlled with difficulty in the first year, but many improved in early childhood. PACS2 is an important PACS1 paralog and encodes a multifunctional sorting protein involved in nuclear gene expression and pathway traffic regulation. Both proteins harbor cargo(furin)-binding regions (FBRs) that bind cargo proteins, sorting adaptors, and cellular kinase. Compared to the defined PACS1 recurrent variant series, individuals with PACS2 variant have more consistently neonatal/early-infantile-onset epilepsy that can be challenging to control. Cerebellar abnormalities may be similar but PACS2 individuals exhibit a pattern of clear dysgenesis ranging from mild to severe. Functional studies demonstrated that the PACS2 recurrent variant reduces the ability of the predicted autoregulatory domain to modulate the interaction between the PACS2 FBR and client proteins, which may disturb cellular function. These findings support the causality of this recurrent de novo PACS2 heterozygous missense in DEEs with facial dysmorphim and cerebellar dysgenesis.


Asunto(s)
Enfermedades Cerebelosas/genética , Epilepsia Generalizada/genética , Facies , Mutación Missense/genética , Proteínas de Transporte Vesicular/genética , Edad de Inicio , Preescolar , Femenino , Heterocigoto , Humanos , Lactante , Recién Nacido , Masculino , Fenotipo
7.
Am J Med Genet A ; 185(3): 884-888, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33369122

RESUMEN

We report a male adult with early infantile-onset epilepsy, facial dysmorphism, and iridal and choroidal coloboma who had a de novo heterozygous mutation in PACS2, that is, c.625G > A p.(Glu209Lys). This specific mutation was previously reported in a patient with PACS2-related disorder (early infantile epileptic encephalopathy 66). De novo heterozygous mutations in WDR37 have been shown to cause a novel human disorder, neurooculocardiogenitourinary syndrome (NOCGUS syndrome) (OMIM #618652), characterized by intellectual disability, facial dysmorphism, and coloboma. According to large-scale interactome data, WDR37 interacts most strongly, by far, with PACS1 and PACS2. Clinically, coloboma has been described as a feature in a WDR37-related disorder and a PACS1-related disorder (Schuurs-Hoeijmakers syndrome), but not in a PACS2-related disorder. Our review of the phenotypes of three human disorders caused by WDR37, PACS1, and PACS2 mutations showed a significant overlap of epilepsy, intellectual disability, cerebellar atrophy, and facial features. The present observation of coloboma as a shared feature among these three disorders suggests that this group of genes may be involved in ocular development. We propose that dysregulation of the WDR37-PACS1-PACS2 axis results in a spectrum that is recognizable by intellectual disability, distinctive facial features, and coloboma.


Asunto(s)
Anomalías Múltiples/genética , Coroides/anomalías , Coloboma/genética , Iris/anomalías , Proteínas Nucleares/genética , Proteínas de Transporte Vesicular/genética , Sustitución de Aminoácidos , Cerebelo/anomalías , Anomalías Craneofaciales/genética , Criptorquidismo/genética , Cara/anomalías , Estudios de Asociación Genética , Pérdida Auditiva Sensorineural/genética , Cardiopatías Congénitas/genética , Heterocigoto , Humanos , Discapacidad Intelectual/genética , Masculino , Mutación Missense , Proteínas Nucleares/deficiencia , Mutación Puntual , Convulsiones/genética , Síndrome , Proteínas de Transporte Vesicular/deficiencia , Adulto Joven
8.
Pharmacol Res ; 160: 105080, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32673704

RESUMEN

Mitochondria-associated membranes (MAMs) are the organellar contact sites between mitochondria and the endoplasmic reticulum (ER), and recent studies demonstrated that MAMs, which serve as multiple scaffolds of proteins, are involved in Ca2+ signaling, lipid metabolism, mitochondrial morphology and functions, and autophagy. Importantly, several pathological conditions, such as obesity, diabetes mellitus and neurodegenerative diseases, indicate the significant role of MAMs in cellular homeostasis. Phosphofurin acidic cluster sorting protein 2(PACS-2), a multifunctional sorting protein at MAMs, plays a critical role in mitochondria, ER and lysosome homeostasis. In this review, we summarize the current understanding of the role of PACS-2 as a key regulator of MAMs and present the structure and other functions of PACS-2. Moreover, we describe the relationship between PACS-2 and diseases to reveal its potential as a novel therapeutic target that can be applied for the treatment of diseases.


Asunto(s)
Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Transducción de Señal , Proteínas de Transporte Vesicular/metabolismo , Animales , Enfermedad , Retículo Endoplásmico/patología , Humanos , Mitocondrias/patología , Membranas Mitocondriales/patología , Conformación Proteica , Relación Estructura-Actividad , Proteínas de Transporte Vesicular/química
9.
Exp Cell Res ; 379(2): 191-202, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30970236

RESUMEN

Oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell (EC) apoptosis is the initial step of atherogenesis and associated with Ca2+ overload. Mitochondria-associated endoplasmic reticulum (ER) membrane (MAM), regulated by tethering proteins such as phosphofurin acidic cluster sorting protein 2 (PACS2), is essential for mitochondrial Ca2+ overload by mediating ER-mitochondria Ca2+ transfer. In our study, we aimed to investigate the role of PACS2 in ox-LDL-induced apoptosis in human umbilical vein endothelial cells (HUVECs) and the underlying mechanisms. Ox-LDL dose- and time-dependently increased cell apoptosis concomitant with mitochondrial Ca2+ elevation, mitochondrial membrane potential (MMP) loss, reactive oxygen species (ROS) production, and cytochrome c release. Silencing PACS2 significantly inhibited ox-LDL-induced cell apoptosis at 24 h in addition to the effects of ox-LDL on mitochondrial Ca2+, MMP, and ROS at 2 h. Besides, ox-LDL promoted PACS2 localization at mitochondria as well as ER-mitochondria contacts at 2 h. Not only that, ox-LDL upregulated PACS2 expression at 24 h. Furthermore, silencing PACS2 inhibited ox-LDL-induced mitochondrial localization of PACS2 and MAM formation at 24 h. Altogether, our findings suggest that PACS2 plays an important role in ox-LDL-induced EC apoptosis by regulating MAM formation and mitochondrial Ca2+ elevation, implicating that PACS2 may be a promising therapeutic target for atherosclerosis.


Asunto(s)
Apoptosis/fisiología , Retículo Endoplásmico/metabolismo , Lipoproteínas LDL/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Calcio/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/metabolismo
10.
Clin Genet ; 95(4): 525-531, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30684285

RESUMEN

Whole exome sequencing (WES) has led to the understanding of the molecular events affecting neurodevelopment in an extremely diverse clinical context, including diseases with intellectual disability (ID) associated with variable central nervous system (CNS) malformations, and developmental and epileptic encephalopathies (DEEs). Recently, PACS2 mutations have been causally linked to a DEE with cerebellar dysgenesis and facial dysmorphism. All known patients presented with a recurrent de novo missense mutation, c.625G>A (p.Glu209Lys). Here, we report on a 7-year-old boy with DEE, cerebellar dysgenesis, facial dysmorphism and postnatal growth delay, apparently not fitting with any recognized disorder. WES disclosed a de novo novel missense PACS2 variant, c.631G>A (p.Glu211Lys), as the molecular cause of this complex phenotype. We provide a detailed clinical characterization of this patient, and analyse the available clinical data of individuals with PACS2 mutations to delineate more accurately the clinical spectrum associated with this recently described syndrome. Our study expands the clinical and molecular spectrum of PACS2 mutations. Overview of the available clinical data allow to delineate the condition associated with PACS2 mutations as a variable trait, in which the key features are represented by moderate to severe ID, cerebellar dysgenesis and other CNS malformations, reduced growth, and facial dysmorphism.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación , Fenotipo , Proteínas de Transporte Vesicular/genética , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Niño , Facies , Estudios de Asociación Genética/métodos , Sitios Genéticos , Humanos , Imagen por Resonancia Magnética , Masculino , Secuenciación del Exoma
11.
Reprod Biomed Online ; 39(3): 357-371, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30952494

RESUMEN

RESEARCH QUESTION: Do low doses of dietary nitrate help to attenuate the progression of diabetic reproductive disorders in streptozotocin-induced diabetic male rats? DESIGN: Fifty male Wistar rats were divided into five groups: controls receiving distilled water; controls receiving 100 mg/l nitrate in distilled water; diabetic rats receiving distilled water; diabetic rats receiving insulin 2-4 U/day of neutral protamine hagedorn insulin; and diabetic rats receiving 100 mg/l nitrate in distilled water. Diabetes was induced by 45 mg/kg streptozotocin. Nitrate and insulin treatment were started 4 weeks after diabetes induction for 8 weeks. Serum insulin, nitrogen oxide, stereology of testis, apoptosis, sperm parameters, and mRNA expression of Pdcd4, Pacs2, p53 and miR-449a were assessed at the end of the study. RESULTS: Blood glucose, apoptotic index of seminiferous tubules and expression of p53, Pdcd4, and Pacs2 mRNA were significantly higher in the diabetic rats (P < 0.001). Decreased body weight, serum insulin and nitrogen oxide level, and miR-449a were observed in the diabetic group (P < 0.01 for insulin; P < 0.001 for others). Most sperm parameters and stereological results differed between diabetic and control rats; nitrate recovered almost all these alterations, including dead spermatozoa, sperm motility grade, sperm deformity index, spermatozoa with damaged DNA, malformations in abnormal spermatozoa, total volume of seminiferous tubule, germinal epithelium, capsule, lumen, interstitial tissue, seminiferous tubule diameter, germinal epithelium height, the number of spermatogenic, Sertoli and Leydig cells. CONCLUSIONS: Treatment with sodium nitrate could modulate apoptosis, which is a major cause of diabetic testicular disorder. These experiments suggest that nitric oxide plays an important role in the function of the reproductive system.


Asunto(s)
Apoptosis/efectos de los fármacos , Diabetes Mellitus Experimental/dietoterapia , Nitratos/uso terapéutico , Motilidad Espermática/efectos de los fármacos , Enfermedades Testiculares/dietoterapia , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/complicaciones , Suplementos Dietéticos , Masculino , MicroARNs/metabolismo , Nitratos/farmacología , Distribución Aleatoria , Ratas Wistar , Enfermedades Testiculares/etiología , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de Transporte Vesicular/metabolismo
12.
RNA Biol ; 11(4): 339-50, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24646523

RESUMEN

Background microRNAs (miRNAs) are a class of small, non-coding endogenous RNAs that post-transcriptionally regulate some protein-coding genes. miRNAs play an important role in many cardiac pathophysiological processes, including myocardial infarction, cardiac hypertrophy, and heart failure. miR-499, specifically expressed in skeletal muscle and cardiac cells, is differentially regulated and functions in heart development. However, the function of miR-499 in mature heart is poorly understood. Results We report that cardiac-abundant miR-499 could protect neonatal rat cardiomyocytes against H 2O 2-induced apoptosis. Increased miR-499 level favored survival, while decreased miR-499 level favored apoptosis. We identified three proapoptotic protein-coding genes-Pdcd4, Pacs2, and Dyrk2-as targets of miR-499. miR-499 inhibited cardiomyocyte apoptosis through its suppressive effect on Pdcd4 and Pacs2 expression, thereby blocking Bid expression and BID mitochondrial translocation. We also found that H 2O 2-induced phosphorylation of c-Jun transcriptionally upregulated miR-499 expression via binding of phosphorylated c-Jun to the Myh7b promoter. Conclusions Our results revealed that miR-499 played an inhibiting role in the mitochondrial apoptosis pathway, and had protective effects against H 2O 2-induced injury in cardiomyocytes.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Apoptosis/genética , MicroARNs/genética , Miocitos Cardíacos/metabolismo , Proteínas de Transporte Vesicular/genética , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Peróxido de Hidrógeno/farmacología , Masculino , Miocitos Cardíacos/efectos de los fármacos , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Interferencia de ARN , ARN Mensajero , Ratas , Especies Reactivas de Oxígeno , Quinasas DyrK
13.
Epileptic Disord ; 26(2): 215-218, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38031819

RESUMEN

PACS2 pathogenic variants are associated with an autosomal dominant syndrome (OMIM DEE66), associating developmental and epileptic encephalopathy, facial dysmorphism, and cerebellar dysgenesis. However, no malformation of cortical development has been reported yet. We report here a seven-year-old child with a history of infantile epileptic spasm syndrome and a right insular polymicrogyria and pachygyria due to de novo PACS2 recurrent mutation c.625G>A (p.Glu209Lys). Our observation raises the question of the role of PACS2 in the cortical development. It also reminds the importance of cerebellar anomalies in the recognition of PACS-related DEE.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Polimicrogiria , Niño , Humanos , Epilepsia/genética , Síndrome , Fenotipo , Mutación , Proteínas de Transporte Vesicular/genética
14.
World J Pediatr ; 20(1): 82-91, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36645641

RESUMEN

BACKGROUND: The PACS gene family has been demonstrated to be related to intracellular vesicular trafficking. The phenotypic manifestations caused by the pathogenic variants of PACS include epilepsy, intellectual disability/developmental delay, and malformations, such as facial abnormalities. METHODS: We identified seven new cases with pathogenic or likely pathogenic PACS variants using next-generation sequencing. Detailed information obtained from these patients was analyzed along with that obtained from previously reported patients. RESULTS: With the inclusion of the newly diagnosed cases in this study, 103 cases with PACS gene family-related neurological diseases were reported, of which 43 were PACS2-related cases and the remaining were PACS1-related cases. Most patients had seizures, which have been reported to be effectively controlled by several types of anti-seizure medications (ASMs). The most efficacious and frequently prescribed ASMs included sodium valproate (43.3%, 13/30), oxcarbazepine/carbamazepine (26.7%, 8/30), and levetiracetam (20%, 6/30). Almost all patients had intellectual disability/developmental delay. The most common pathogenic missense variants were PACS1 p. Arg203Trp and PACS2 p.Glu209Lys. In addition, we report a patient carrying a likely pathogenic copy number variation (CNV) (de novo heterozygous deletion of chr14:105821380-106107443, 286 kilobase, destroyed part of the furin-binding region domain and the protein structure after it) with more severe and refractory late-onset epilepsy. CONCLUSIONS: The clinical phenotypes of the different PACS heterozygous missense variants were similar. The pathogenic variant sites of PACS1 and PACS2 were quite limited but located in different regions. A CNV destroying part of the PACS2 gene might also be pathogenic. These findings may provide an important clue for further functional studies on the pathogenic mechanism of neurological disorders related to the PACS gene family. Video Abstract (MP4 65767 kb).


Asunto(s)
Epilepsia , Discapacidad Intelectual , Humanos , Discapacidad Intelectual/genética , Variaciones en el Número de Copia de ADN , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Fenotipo , Genotipo , Proteínas de Transporte Vesicular/genética
15.
Protein Sci ; 33(4): e4938, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38533551

RESUMEN

Regulation of SIRT1 activity is vital to energy homeostasis and plays important roles in many diseases. We previously showed that insulin triggers the epigenetic regulator DBC1 to prime SIRT1 for repression by the multifunctional trafficking protein PACS-2. Here, we show that liver DBC1/PACS-2 regulates the diurnal inhibition of SIRT1, which is critically important for insulin-dependent switch in fuel metabolism from fat to glucose oxidation. We present the x-ray structure of the DBC1 S1-like domain that binds SIRT1 and an NMR characterization of how the SIRT1 N-terminal region engages DBC1. This interaction is inhibited by acetylation of K112 of DBC1 and stimulated by the insulin-dependent phosphorylation of human SIRT1 at S162 and S172, catalyzed sequentially by CK2 and GSK3, resulting in the PACS-2-dependent inhibition of nuclear SIRT1 enzymatic activity and translocation of the deacetylase in the cytoplasm. Finally, we discuss how defects in the DBC1/PACS-2-controlled SIRT1 inhibitory pathway are associated with disease, including obesity and non-alcoholic fatty liver disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Sirtuina 1 , Humanos , Sirtuina 1/genética , Sirtuina 1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Procesamiento Proteico-Postraduccional , Insulina/metabolismo
16.
Biomolecules ; 14(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38540691

RESUMEN

BACKGROUND: Developmental and epileptic encephalopathies (DEE) encompass a group of rare diseases with hereditary and genetic causes as well as acquired causes such as brain injuries or metabolic abnormalities. The phosphofurin acidic cluster sorting protein 2 (PACS2) is a multifunctional protein with nuclear gene expression. The first cases of the recurrent c.625G>A pathogenic variant of PACS2 gene were reported in 2018 by Olson et al. Since then, several case reports and case series have been published. METHODS: We performed a systematic review of the PUBMED and SCOPUS databases using Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Our search parameters included DEE66 with a pathogenic PACS2 gene p.Glu209Lys mutation published cases to which we added our own clinical experience regarding this pathology. RESULTS: A total of 11 articles and 29 patients were included in this review, to which we added our own experience for a total of 30 patients. There was not a significant difference between sexes regarding the incidence of this pathology (M/F: 16/14). The most common neurological and psychiatric symptoms presented by the patients were: early onset epileptic seizures, delayed global development (including motor and speech delays), behavioral disturbances, limited intellectual capacity, nystagmus, hypotonia, and a wide-based gait. Facial dysmorphism and other organs' involvement were also frequently reported. Brain MRIs evidenced anomalies of the posterior cerebellar fossa, foliar distortion of the cerebellum, vermis hypoplasia, white matter reduction, and lateral ventricles enlargement. Genetic testing is more frequent in children. Only 4 cases have been reported in adults to date. CONCLUSIONS: It is important to maintain a high suspicion of new pathogenic gene variants in adult patients presenting with a characteristic clinical picture correlated with radiologic changes. The neurologist must gradually recognize the distinct evolving phenotype of DEE66 in adult patients, and genetic testing must become a scenario with which the neurologist attending adult patients should be familiar. Accurate diagnosis is required for adequate treatment, genetic counseling, and an improved long-term prognosis.


Asunto(s)
Lesiones Encefálicas , Epilepsia , Niño , Adulto , Humanos , Epilepsia/genética , Mutación , Cerebelo , Fenotipo , Proteínas de Transporte Vesicular
17.
Int Immunopharmacol ; 141: 112778, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39173402

RESUMEN

BACKGROUND: Renal denervation (RDN) has been proved to relieve cardiac hypertrophy; however, its detailed mechanisms remain obscure. This study investigated the detailed protective mechanisms of RDN against cardiac hypertrophy during hypertensive heart failure (HF). METHODS: Male 5-month-old spontaneously hypertension (SHR) rats were used in a HF rat model, and male Wistar-Kyoto (WKY) rats of the same age were used as the baseline control. Myocardial hypertrophy and fibrosis were evaluated by hematoxylin-eosin (HE) staining and Masson staining. The expression of target molecule was analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Western blot, immunohistochemical and immunofluorescence, respectively. Cardiomyocyte hypertrophy was induced by norepinephrine (NE) in H9c2 cells in vitro and evaluated by brain natriuretic peptide (BNP), atrial natriuretic peptide (ANP), ß-myosin heavy chain (ß-MHC), and α-myosin heavy chain (α-MHC) levels. Oxidative stress was determined by malondialdehyde (MDA) level, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) enzyme activities. Mitochondrial function was measured by mitochondrial membrane potential, adenosine triphosphate (ATP) production, mitochondrial DNA (mtDNA) number, and mitochondrial complex I-IV activities. Molecular mechanism was assessed by dual luciferase reporter and chromatin immunoprecipitation (ChIP) assays. RESULTS: RDN decreased sympathetic nerve activity, attenuated myocardial hypertrophy and fibrosis, and improved cardiac function in the rat model of HF. In addition, RDN ameliorated mitochondrial oxidative stress in myocardial tissues as evidenced by reducing MDA and mitochondrial reactive oxygen species (ROS) levels, and enhancing SOD and GSH-Px activities. Moreover, phosphofurin acid cluster sorting protein 2 (PACS-2) and broad-complex, tramtrak and bric à brac (BTB) domain and cap'n'collar (CNC) homolog 1 (BACH1) were down-regulated by RDN. In NE-stimulated H9c2 cells, PACS-2 and BACH1 levels were markedly elevated, and knockdown of them could suppress NE-induced oxidative stress, cardiomyocyte hypertrophy, fibrosis, as well as mitochondrial dysfunction. Transforming growth factor beta1(TGFß1)/SMADs signaling pathway was inactivated by RDN in the HF rats, which sequentially inhibited specificity protein 1 (SP1)-mediated transcription of PACS2 and BACH1. CONCLUSION: Collectively, these data demonstrated that RDN improved cardiac hypertrophy and sympathetic nerve activity of HF rats via repressing BACH1 and PACS-2-mediated mitochondrial oxidative stress by inactivating TGF-ß1/SMADs/SP1 pathway, which shed lights on the cardioprotective mechanism of RDN in HF.


Asunto(s)
Cardiomegalia , Desnervación , Riñón , Estrés Oxidativo , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Transducción de Señal , Animales , Masculino , Ratas , Cardiomegalia/metabolismo , Riñón/patología , Riñón/inervación , Riñón/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Línea Celular , Hipertensión/metabolismo , Mitocondrias/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Modelos Animales de Enfermedad
18.
Int J Biol Sci ; 20(2): 569-584, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169625

RESUMEN

Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease (ESRD). Mitochondrial dysfunction in renal tubules, occurring early in the disease, is linked to the development of DKD, although the underlying pathways remain unclear. Here, we examine diabetic human and mouse kidneys, and HK-2 cells exposed to high glucose, to show that high glucose disrupts mitochondria-associated endoplasmic reticulum membrane (MAM) and causes mitochondrial fragmentation. We find that high glucose conditions increase mitogen-activated protein kinase 1(MAPK1), a member of the MAP kinase signal transduction pathway, which in turn lowers the level of phosphofurin acidic cluster sorting protein 2 (PACS-2), a key component of MAM that tethers mitochondria to the ER. MAPK1-induced disruption of MAM leads to mitochondrial fragmentation but this can be rescued in HK-2 cells by increasing PACS-2 levels. Functional studies in diabetic mice show that inhibition of MAPK1 increases PACS-2 and protects against the loss of MAM and the mitochondrial fragmentation. Taken together, these results identify the MAPK1-PACS-2 axis as a key pathway to therapeutically target as well as provide new insights into the pathogenesis of DKD.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Enfermedades Mitocondriales , Ratones , Humanos , Animales , Diabetes Mellitus Experimental/complicaciones , Proteína Quinasa 1 Activada por Mitógenos , Glucosa
19.
Mol Syndromol ; 14(2): 143-151, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37064331

RESUMEN

Introduction: PACS1-related neurodevelopmental disorder (PACS1-related NDD) is caused by pathogenic variants in the PACS1 gene and is characterized by a distinctive facial appearance, intellectual disability, speech delay, seizures, feeding difficulties, cryptorchidism, hernias, and structural anomalies of the brain, heart, eye, and kidney. There is a marked facial resemblance and a common multisystem affectation with patients carrying pathogenic variants in the WDR37 and PACS2 genes, although they vary in terms of severity and eye involvement. Case Presentation: Here, we describe 4 individuals with PACS1-related NDD from Mexico, all of them carrying a de novo PACS1 variant c.607C>T; p.(Arg203Trp) identified by exome sequencing. In addition to eye colobomata, this report identified corneal leukoma, cataracts, and tortuosity of retinal vessels as ophthalmic manifestations not previously reported in patients with PACS1-related NDD. Discussion: We reviewed the ocular phenotypes reported in 74 individuals with PACS1-related NDD and the overlaps with WDR37- and PACS2-related syndromes. We found that the 3 syndromes have in common the presence of colobomata, ptosis, nystagmus, strabismus, and refractive errors, whereas microphthalmia, microcornea, and Peters anomaly are found only among individuals with PACS1-related NDD and WDR37 syndrome, being more severe in the latter. This supports the previous statement that the so-called WDR37-PACS1-PACS2 axis might have an important role in ocular development and also that the specific ocular findings could be useful in the clinical differentiation between these related syndromes.

20.
Children (Basel) ; 10(4)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37189870

RESUMEN

Phosphofurin Acidic Cluster Sorting Protein 2 (PACS2)-related early infantile developmental and epileptic encephalopathy (EIDEE) is a rare neurodevelopmental disorder. EIDEE is characterized by seizures that begin during the first three months of life and are accompanied by developmental impairment over time. In this article, we present three patients with EIDEE who experienced neonatal-onset seizures that developed into intractable seizures during infancy. Whole exome sequencing revealed a de novo heterozygous missense variant in all three patients in the p.Glu209Lys variant of the PACS2 gene. We conducted a literature review and found 29 cases to characterize the seizure patterns, neuroimaging features, the usage of anticonvulsants, and the clinical neurodevelopmental outcomes of PACS2-related EIDEE. The seizures were characterized by brief, recurring tonic seizures in the upper limbs, sometimes accompanied by autonomic features. Neuroimaging abnormalities were observed in the posterior fossa region, including mega cisterna magna, cerebellar dysplasia, and vermian hypoplasia. The long-term prognosis ranges from low-average intelligence to severe developmental retardation, emphasizing the importance of early recognition and accurate diagnosis by pediatric neurologists to provide personalized patient management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA