Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(9): 105164, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37595871

RESUMEN

We previously reported that the protein-tyrosine phosphatase SHP-1 (PTPN6) negatively regulates insulin signaling, but its impact on hepatic glucose metabolism and systemic glucose control remains poorly understood. Here, we use co-immunoprecipitation assays, chromatin immunoprecipitation sequencing, in silico methods, and gluconeogenesis assay, and found a new mechanism whereby SHP-1 acts as a coactivator for transcription of the phosphoenolpyruvate carboxykinase 1 (PCK1) gene to increase liver gluconeogenesis. SHP-1 is recruited to the regulatory regions of the PCK1 gene and interacts with RNA polymerase II. The recruitment of SHP-1 to chromatin is dependent on its association with the transcription factor signal transducer and activator of transcription 5 (STAT5). Loss of SHP-1 as well as STAT5 decrease RNA polymerase II recruitment to the PCK1 promoter and consequently PCK1 mRNA levels leading to blunted gluconeogenesis. This work highlights a novel nuclear role of SHP-1 as a key transcriptional regulator of hepatic gluconeogenesis adding a new mechanism to the repertoire of SHP-1 functions in metabolic control.

2.
Funct Integr Genomics ; 23(1): 67, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36840800

RESUMEN

Carbohydrates are the most economical source of energy in fish feeds, but most fish have limited ability to utilize carbohydrates. It has been reported that phosphoenolpyruvate carboxykinase 1 (pck1) is involved in carbohydrate metabolism, lipid metabolism, and other metabolic processes. However, direct evidence is lacking to fully understand the relationship between pck1 and glucose and lipid metabolism. Here, we generated a pck1 knockout zebrafish by CRISPR/cas9 system, and a high-carbohydrate diet was provided to 60 days post-fertilization (dpf) for 8 weeks. We found that pck1-deficient zebrafish displayed decreased plasma glucose, elevated mRNA levels of glycolysis-related genes (gck, pfk, pk), and reduced the transcriptional levels of gluconeogenic genes (pck1, fbp1a) in liver. We also found decreased triglyceride, total cholesterol, and lipid accumulation and in pck1-/- zebrafish, along with downregulation of genes for lipolysis (acaca) and lipogenesis (cpt1). In addition, the observation of HE staining revealed that the total muscle area of pck1-/- was substantially less than that of WT zebrafish and real-time PCR suggested that GH/IGF-1 signaling (ulk2, stat1b) may be suppressed in pck1-deficient fish. Taken together, these findings suggested that pck1 may play an important role in the high-carbohydrate diet utilization of fish and significantly affected lipid metabolism and protein synthesis in zebrafish. pck1 knockout mutant line could facilitate a further mechanism study of pck1-associated metabolic regulation and provide new information for improving carbohydrate utilization traits.


Asunto(s)
Glucosa , Fosfoenolpiruvato Carboxiquinasa (GTP) , Pez Cebra , Animales , Glucosa/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Nutrientes , Pez Cebra/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Proteínas de Pez Cebra/metabolismo
3.
J Transl Med ; 21(1): 861, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017546

RESUMEN

BACKGROUND: N6-methyladenosine (m6A) is the most prevalent RNA modification. Although hnRNPA2B1, as a reader of m6A modification, has been reported to promote tumorigenesis in a few types of tumors, its role in hepatocellular carcinoma (HCC) and the underlying molecular mechanism remains unclear. METHODS: Multiple public databases were used to analyze the expression of hnRNPA2B1 in HCC and its correlation with survival prognosis. We employed a CRISPR-Cas9 sgRNA editing strategy to knockout hnRNPA2B1 expression in HCC cells. The biological function of hnRNPA2B1 in vitro in HCC cells was measured by CCK8, colony formation, migration, and invasion assay. The tumorigenic function of hnRNPA2B1 in vivo was determined by a subcutaneous tumor formation experiment and a HCC mouse model via tail injection of several plasmids into the mouse within 5s-7s. RNA binding protein immunoprecipitation (RIP) experiment using hnRNPA2B1 was performed to test the target genes of hnRNPA2B1 and methylated RNA immunoprecipitation (MeRIP) assay was performed to explore the m6A methylated mRNA of target genes. RESULTS: hnRNPA2B1 highly expressed in HCC tissues, correlated with high grades and poor prognosis. Its knockout reduced HCC cell proliferation, migration, and invasion in vitro, while overexpression promoted these processes. hnRNPA2B1-knockout cells inhibited tumor formation in graft experiments. In HCC mice, endogenous knockout attenuated hepatocarcinogenesis. RNA-seq showed downregulated gluconeogenesis with high hnRNPA2B1 expression. hnRNPA2B1 negatively correlated with PCK1, a key enzyme. RIP assay revealed hnRNPA2B1 binding to PCK1 mRNA. hnRNPA2B1 knockout increased m6A-methylation of PCK1 mRNA. Interestingly, PCK1 knockout partially counteracted tumor inhibition by hnRNPA2B1 knockout in mice. CONCLUSION: Our study indicated that hnRNPA2B1 is highly expressed in HCC and correlated with a poor prognosis. hnRNPA2B1 promotes the tumorigenesis and progression of HCC both in vitro and in vivo. Moreover, hnRNPA2B1 downregulates the expression of PCK1 mRNA via a m6A methylation manner. More importantly, the ability of hnRNPA2B1 to induce tumorigenesis and progression in HCC is dependent on its ability to decrease the expression of PCK1. Therefore, this study suggested that hnRNPA2B1 might be a diagnostic marker of poor prognosis of HCC and a potential therapeutic target for HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Hepáticas/patología , Metilación , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , ARN/metabolismo , ARN Guía de Sistemas CRISPR-Cas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética
4.
Cancer Cell Int ; 23(1): 68, 2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37062825

RESUMEN

Phosphoenolpyruvate carboxykinase 1 (PCK1) is the rate-limiting enzyme in gluconeogenesis. PCK1 is considered an anti-oncogene in several human cancers. In this study, we aimed to determine the functions of PCK1 in colorectal cancer (CRC). PCK1 expression in CRC tissues was tested by western blot and immunohistochemistry analyses and associations of PCK1 level with clinicopathological characteristics and disease survival evaluated. Further, we studied the effect of PCK1 on CRC cell proliferation and the underlying mechanisms. Our results show that PCK1 is expressed at significantly lower levels in CRC than in control tissues. High PCK1 expression was correlated with smaller tumor diameter and less bowel wall invasion (T stage). Overexpression and knockdown experiments demonstrated that PCK1 inhibits CRC cell growth both in vitro and in vivo. Mechanistically, PCK1 antagonizes CRC growth via inactivating UBAP2L phosphorylation at serine 454 and enhancing autophagy. Overall, our findings reveal a novel molecular mechanism involving PCK1 and autophagy, and highlight PCK1 as a promising candidate therapeutic target in CRC.

5.
J Biol Chem ; 296: 100205, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33334880

RESUMEN

Acetylation is known to regulate the activity of cytosolic phosphoenolpyruvate carboxykinase (PCK1), a key enzyme in gluconeogenesis, by promoting the reverse reaction of the enzyme (converting phosphoenolpyruvate to oxaloacetate). It is also known that the histone acetyltransferase p300 can induce PCK1 acetylation in cells, but whether that is a direct or indirect function was not known. Here we initially set out to determine whether p300 can acetylate directly PCK1 in vitro. We report that p300 weakly acetylates PCK1, but surprisingly, using several techniques including protein crystallization, mass spectrometry, isothermal titration calorimetry, saturation-transfer difference nuclear magnetic resonance and molecular docking, we found that PCK1 is also able to acetylate itself using acetyl-CoA independently of p300. This reaction yielded an acetylated recombinant PCK1 with a 3-fold decrease in kcat without changes in Km for all substrates. Acetylation stoichiometry was determined for 14 residues, including residues lining the active site. Structural and kinetic analyses determined that site-directed acetylation of K244, located inside the active site, altered this site and rendered the enzyme inactive. In addition, we found that acetyl-CoA binding to the active site is specific and metal dependent. Our findings provide direct evidence for acetyl-CoA binding and chemical reaction with the active site of PCK1 and suggest a newly discovered regulatory mechanism of PCK1 during metabolic stress.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Dominio Catalítico , Activación Enzimática , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Simulación del Acoplamiento Molecular , Fosfoenolpiruvato Carboxiquinasa (GTP)/química
6.
Mol Genet Metab ; 137(1-2): 18-25, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35868242

RESUMEN

OBJECTIVES: Pathogenic biallelic variants in PCK1 coding for the cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) cause PEPCK-C deficiency, a rare disorder of gluconeogenesis presenting with hypoglycemia, lactic acidosis, and hepatopathy. To date, there has been no systematic analysis of its phenotypic, biochemical, and genetic spectrum. METHODS: All currently published individuals and a novel patient with genetically confirmed PEPCK-C deficiency were included. Clinical, biochemical, and genetic findings were analyzed. Protein and in-silico prediction score modeling was applied to analyze potential variant effects. RESULTS: Thirty-two individuals from 25 families were found, including one previously unreported patient. The typical biochemical pattern was hypoglycemia triggered by catabolic situations, elevated urinary concentrations of tricarboxylic acid cycle metabolites, mildly elevated alanine and aspartate aminotransferase and elevated lactate concentrations in serum. Plasma glutamine concentrations were elevated in some patients and may be a suitable marker for newborn screening. With adequate treatment, biochemical abnormalities usually normalized following a hypoglycemic episode. Symptom onset usually occurred in infancy with a broad range from neonatal age to adulthood. Regardless of the genotype, different phenotypes with a broad clinical spectrum were found. To date, eight genotypes with nine different PCK1 variants were identified, of which alleles with the recurrent variant c.925G > A; p.(Gly309Arg) are predominant and appear to be endemic in the Finnish population. Protein modeling suggests altered manganese- and substrate-binding as superordinate pathomechanisms. CONCLUSIONS: Environmental factors appear to be the main determinant for the phenotype in patients with biallelic variants in PCK1. Based on the biochemical pattern, PEPCK-C deficiency is a recognizable cause of childhood hypoglycemia. It is a treatable disease and early diagnosis is important to prevent metabolic derailment and morbidity. Newborn screening can identify at least a sub-cohort of affected individuals through elevated glutamine concentrations in dry blood.


Asunto(s)
Glutamina , Hipoglucemia , Humanos , Glutamina/genética , Manganeso , Fosfoenolpiruvato , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Hipoglucemia/genética , Genotipo , Fenotipo , Hipoglucemiantes , Lactatos , Aspartato Aminotransferasas/genética , Alanina
7.
J Inherit Metab Dis ; 45(2): 223-234, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34622459

RESUMEN

Cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) deficiency due to the homozygous PCK1 variant has recently been associated with childhood-onset hypoglycemia with a recognizable pattern of abnormal urine organic acids. In this study, 21 children and 3 adult patients with genetically confirmed PEPCK-C deficiency were diagnosed during the years 2016 to 2019 and the available biochemical and clinical data were collected. All patients were ethnic Finns. Most patients (22 out of 24) had a previously published homozygous PCK1 variant c.925G>A. Two patients had a novel compound heterozygous PCK1 variant c.925G>A and c.716C>T. The laboratory results showed abnormal urine organic acid profile with increased tricarboxylic acid cycle intermediates and inadequate ketone body production during hypoglycemia. The hypoglycemic episodes manifested predominantly in the morning. Infections, fasting or poor food intake, heavy exercise, alcohol consumption, and breastfeeding were identified as triggering factors. Five patients presented with neonatal hypoglycemia. Hypoglycemic seizures occurred in half of the patients (12 out of 24). The first hypoglycemic episode often occurred at the age of 1-2 years, but it sometimes presented at a later age, and could re-occur during school age or adulthood. This study adds to the laboratory data on PEPCK-C deficiency, confirming the recognizable urine organic acid pattern and identifying deficient ketogenesis as a novel laboratory finding. The phenotype is expanded suggesting that the risk of hypoglycemia may continue into adulthood if predisposing factors are present.


Asunto(s)
Hipoglucemia , Fosfoenolpiruvato Carboxiquinasa (GTP) , Adulto , Errores Innatos del Metabolismo de los Carbohidratos , Niño , Gluconeogénesis , Humanos , Hipoglucemia/genética , Hipoglucemiantes , Cuerpos Cetónicos , Hepatopatías , Fenotipo , Fosfoenolpiruvato Carboxiquinasa (GTP)/deficiencia , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo
8.
J Biol Chem ; 294(48): 18017-18028, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31645433

RESUMEN

Gluconeogenesis (GNG) is de novo production of glucose from endogenous carbon sources. Although it is a commonly studied pathway, particularly in disease, there is a lack of consensus about substrate preference. Moreover, primary hepatocytes are the current gold standard for in vitro liver studies, but no direct comparison of substrate preference at physiological fasting concentrations has been performed. We show that mouse primary hepatocytes prefer glycerol to pyruvate/lactate in glucose production assays and 13C isotope tracing studies at the high concentrations commonly used in the literature, as well as at more relevant fasting, physiological concentrations. In addition, when glycerol, pyruvate/lactate, and glutamine are all present, glycerol is responsible for over 75% of all glucose carbons labeled. We also found that glycerol can induce a rate-limiting enzyme of GNG, glucose-6-phosphatase. Lastly, we suggest that glycerol is a better substrate than pyruvate to test in vivo production of glucose in fasting mice. In conclusion, glycerol is the major carbon source for GNG in vitro and in vivo and should be compared with other substrates when studying GNG in the context of metabolic disease states.


Asunto(s)
Gluconeogénesis/efectos de los fármacos , Glucosa-6-Fosfatasa/biosíntesis , Glicerol/farmacología , Hepatocitos/metabolismo , Animales , Inducción Enzimática/efectos de los fármacos , Hepatocitos/citología , Ácido Láctico/metabolismo , Ratones , Ácido Pirúvico/metabolismo
9.
J Cell Physiol ; 235(1): 166-175, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31180589

RESUMEN

The pancreatic islets of Langerhans, mainly formed by glucagon-producing α-cells and insulin-producing ß-cells, are critical for glucose homeostasis. Insulin and glucagon oppositely modulate blood glucose levels in health, but a combined decline in insulin secretion together with increased glucagon secretion contribute to hyperglycemia in diabetes. Despite this bi-hormonal dysregulation, most studies have focused on insulin secretion and much less is known about glucagon secretion. Therefore, a deeper understanding of α-cell metabolism and glucagon secretion is of great interest. Here, we show that phosphoenolpyruvate carboxykinase (PCK1), an essential cataplerotic enzyme involved in metabolism and long considered to be absent from the pancreatic islet, is expressed in pancreatic α-cells of both murine and human. Furthermore, PCK1 transcription is induced by fasting and diabetes in rat pancreas, which indicates that the PCK1 activity is required for α-cell adaptation to different metabolic states. To our knowledge, this is the first evidence implicating PCK1 expression in α-cell metabolism.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Células Secretoras de Glucagón/enzimología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Animales , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones , Páncreas/enzimología , Páncreas/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Ratas
10.
J Mol Recognit ; 33(3): e2821, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31883179

RESUMEN

Gluconeogenesis, the reverse process of glycolysis, is a favorable mechanism at conditions of glucose deprivation. Pck1 is a rate-limiting gluconeogenic enzyme, where its deficiency or mutation contributes to serious clinical situations as neonatal hypoglycemia and liver failure. A recent report confirms that Pck1 is a target for proteasomal degradation through its proline residue at the penultimate position, recognized by Gid4 E3 ligase, but with a lack of informative structural details. In this study, we delineate the localized sequence motif, degron, that specifically interact with Gid4 ligase and unravel the binding mode of Pck1 to the Gid4 ligase by using molecular docking and molecular dynamics. The peptide/protein docking HPEPDOCK web server along with molecular dynamic simulations are applied to demonstrate the binding mode and interactions of a Pck1 wild type (SPSK) and mutant (K4V) with the recently solved structure of Gid4 ligase. Results unveil a distinct binding mode of the mutated peptide compared with the wild type despite having comparable binding affinities to Gid4. Moreover, the four-residue peptide is found insufficient for Gid4 binding, while the seven-residue peptide suffices for binding to Gid4. The amino acids S134, K135, and N137 in the loop L1 (between ß1 and ß2) of the Gid4 are essential for the stabilization of the seven-residue peptide in the binding site of the ligase. The presence of Val4 instead of Lys4 smashes the H-bonds that are formed between Lys4 and Gid4 in the wild type peptide, making the peptide prone to bind with the other side of the binding pocket (L4 loop of Gid4). The dynamics of Gid4 L3 loop is affected dramatically once K4V mutant Pck1 peptide is introduced. This opens the door to explore the mutation effects on the binding mode and smooth the path to target protein degradation by design competitive and non-competitive inhibitors.


Asunto(s)
Técnicas Biosensibles , Gluconeogénesis/genética , Péptidos y Proteínas de Señalización Intracelular/aislamiento & purificación , Fosfoenolpiruvato Carboxiquinasa (GTP)/aislamiento & purificación , Ubiquitina-Proteína Ligasas/química , Sitios de Unión/genética , Glucosa/química , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Simulación del Acoplamiento Molecular , Fosfoenolpiruvato Carboxiquinasa (GTP)/química , Fosfoenolpiruvato Carboxiquinasa (GTP)/ultraestructura , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Dominios Proteicos/genética , Proteolisis , Ubiquitina-Proteína Ligasas/ultraestructura
11.
Molecules ; 25(22)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182581

RESUMEN

Diabetes mellitus is a disease characterized by persistent high blood glucose levels and accompanied by impaired metabolic pathways. In this study, we used zebrafish to investigate the effect of crocins isolated from Crocus sativus L., on the control of glucose levels and pancreatic ß-cells. Embryos were exposed to an aqueous solution of crocins and whole embryo glucose levels were measured at 48 h post-treatment. We showed that the application of crocins reduces zebrafish embryo glucose levels and enhances insulin expression. We also examined whether crocins are implicated in the metabolic pathway of gluconeogenesis. We showed that following a single application of crocins and glucose level reduction, the expression of phosphoenolpyruvate carboxykinase1 (pck1), a key gene involved in glucose metabolism, is increased. We propose a putative role for the crocins in glucose metabolism and insulin management.


Asunto(s)
Carotenoides/farmacología , Crocus/química , Hiperglucemia/tratamiento farmacológico , Animales , Animales Modificados Genéticamente , Glucemia/metabolismo , Carotenoides/análisis , Gluconeogénesis , Glucosa/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Iones , Páncreas/embriología , Páncreas/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Extractos Vegetales/farmacología , Pez Cebra
12.
J Biol Chem ; 293(9): 3399-3409, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29317502

RESUMEN

Phosphoenolpyruvate carboxykinase (Pck1) is a metabolic enzyme that is integral to the gluconeogenic and glyceroneogenic pathways. However, Pck1's role in macrophage metabolism and function is unknown. Using stable isotopomer MS analysis in a mouse model with a myeloid cell-specific Pck1 deletion, we show here that this deletion increases the proinflammatory phenotype in macrophages. Incubation of LPS-stimulated bone marrow-derived macrophages (BMDM) with [U-13C]glucose revealed reduced 13C labeling of citrate and malate and increased 13C labeling of lactate in Pck1-deleted bone marrow-derived macrophages. We also found that the Pck1 deletion in the myeloid cells increases reactive oxygen species (ROS). Of note, this altered macrophage metabolism increased expression of the M1 cytokines TNFα, IL-1ß, and IL-6. We therefore conclude that Pck1 contributes to M1 polarization in macrophages. Our findings provide important insights into the factors determining the macrophage inflammatory response and indicate that Pck1 activity contributes to metabolic reprogramming and polarization in macrophages.


Asunto(s)
Eliminación de Gen , Macrófagos/enzimología , Fenotipo , Fosfoenolpiruvato Carboxiquinasa (GTP)/deficiencia , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Animales , Polaridad Celular , Glucosa/metabolismo , Glutamina/metabolismo , Inflamación/enzimología , Inflamación/genética , Inflamación/inmunología , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Ácido Palmítico/metabolismo , Células RAW 264.7
13.
Pharmacol Res ; 141: 310-318, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30639375

RESUMEN

REV-ERBα (NR1D1) is a nuclear heme receptor that controls many cellular processes including cell differentiation, lipid metabolism, and inflammatory responses. Although REV-ERBα has been also implicated in regulation of glucose homeostasis, the mechanism for this regulation remains unclear. Here we investigate a potential role of REV-ERBα in regulation of PCK1 (phosphoenolpyruvate carboxykinase 1), a rate-limiting enzyme in gluconeogenesis. Hepatoma cells (Hepa-1c1c7 and HepG2 cells), wild-type mice and streptozotocin-induced diabetic mice were treated with SR9009, a specific REV-ERBα agonist. The relative mRNA and protein levels of enzymes in the cells or mouse livers were determined by qPCR and Western blotting, respectively. The fasting plasma glucose test was performed to determine the effects of Rev-erbα on glucose homeostasis. Transcriptional regulation of Pck1 by Rev-erbα was investigated using a combination of luciferase reporter, mobility shift, and chromatin immunoprecipitation (ChIP) assays. SR9009 treatment significantly decreased the mRNA level of Pck1 in mouse hepatoma Hepa-1c1c7 cells, whereas other major enzymes involved in gluconeogenesis (pyruvate carboxylase, glucose-6-phosphatase, fructose bisphosphatase and Pck2) and in glycolysis (phosphofructokinase and hexokinase-1) were unaffected. Consistent with the mRNA change, the protein level of Pck1 was down-regulated. Similarly, a repressive action of REV-ERBα on PCK1 expression was observed in human HepG2 hepatoma cells. SR9009 administration to wild-type or diabetic mice significantly reduced the level of fasting plasma glucose. This coincided with decreased mRNA and protein levels of Pck1 in the liver. In addition, the diabetic mice showed an improvement in glucose tolerability after SR9009 treatment. Promoter analysis, mobility shift, and ChIP assays revealed that Rev-erbα trans-repressed Pck1 through direct binding to -325 to -320 bp region (a RevRE site) in the gene promoter. In conclusion, Rev-erbα activation down-regulates hepatic Pck1 to lower plasma glucose.


Asunto(s)
Glucemia/análisis , Diabetes Mellitus Experimental/tratamiento farmacológico , Regulación hacia Abajo/efectos de los fármacos , Hipoglucemiantes/uso terapéutico , Péptidos y Proteínas de Señalización Intracelular/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/agonistas , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Pirrolidinas/uso terapéutico , Tiofenos/uso terapéutico , Animales , Línea Celular Tumoral , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Células Hep G2 , Humanos , Hipoglucemiantes/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Pirrolidinas/farmacología , Tiofenos/farmacología
14.
Biochem Biophys Res Commun ; 499(4): 1044-1049, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29608893

RESUMEN

In the recent years, increasing evidences identify circular RNAs (circRNAs) as a class of important regulators in various human cancers. Nevertheless, the functions and mechanisms of most circRNAs in cancer cells remain largely unknown. In this study, we found out a significantly downregulated circRNA circC3P1 in hepatocellular carcinoma (HCC) tissues compared to adjacent normal tissues. And our results indicated that circC3P1 expression level was negatively correlated with TNM stage, tumor size and vascular invasion in HCC. Moreover, we found that circC3P1 overexpression dramatically inhibited the proliferation, migration and invasion of HCC cells in vitro and in vivo. In terms of mechanism, we found that circC3P1 could promote PCK1 expression through sponging miR-4641 in HCC cells. We showed that miR-4641 expression was negatively correlated with that of either circC3P1 or PCK1 in HCC tissues. Finally, by functional experiments, we demonstrated that knockdown of PCK1 significantly attenuated the effects of circC3P1 overexpression on HCC cell proliferation, migration and invasion. In summary, our findings illustrated that circC3P1 acts as a tumor suppressor via enhancing PCK1 expression by sponging miR-4641 in HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , MicroARNs/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , ARN/metabolismo , Transducción de Señal , Secuencia de Bases , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Invasividad Neoplásica , Metástasis de la Neoplasia , ARN/genética , ARN Circular
15.
J Biol Chem ; 291(20): 10635-45, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-27022023

RESUMEN

Methionine is an essential sulfur amino acid that is engaged in key cellular functions such as protein synthesis and is a precursor for critical metabolites involved in maintaining cellular homeostasis. In mammals, in response to nutrient conditions, the liver plays a significant role in regulating methionine concentrations by altering its flux through the transmethylation, transsulfuration, and transamination metabolic pathways. A comprehensive understanding of how hepatic methionine metabolism intersects with other regulatory nutrient signaling and transcriptional events is, however, lacking. Here, we show that methionine and derived-sulfur metabolites in the transamination pathway activate the GCN5 acetyltransferase promoting acetylation of the transcriptional coactivator PGC-1α to control hepatic gluconeogenesis. Methionine was the only essential amino acid that rapidly induced PGC-1α acetylation through activating the GCN5 acetyltransferase. Experiments employing metabolic pathway intermediates revealed that methionine transamination, and not the transmethylation or transsulfuration pathways, contributed to methionine-induced PGC-1α acetylation. Moreover, aminooxyacetic acid, a transaminase inhibitor, was able to potently suppress PGC-1α acetylation stimulated by methionine, which was accompanied by predicted alterations in PGC-1α-mediated gluconeogenic gene expression and glucose production in primary murine hepatocytes. Methionine administration in mice likewise induced hepatic PGC-1α acetylation, suppressed the gluconeogenic gene program, and lowered glycemia, indicating that a similar phenomenon occurs in vivo These results highlight a communication between methionine metabolism and PGC-1α-mediated hepatic gluconeogenesis, suggesting that influencing methionine metabolic flux has the potential to be therapeutically exploited for diabetes treatment.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Gluconeogénesis/efectos de los fármacos , Histona Acetiltransferasas/biosíntesis , Hígado/metabolismo , Metionina/farmacología , Factores de Transcripción/metabolismo , Factores de Transcripción p300-CBP/biosíntesis , Acetilación/efectos de los fármacos , Animales , Gluconeogénesis/genética , Células Hep G2 , Histona Acetiltransferasas/genética , Humanos , Ratones , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Factores de Transcripción/genética , Factores de Transcripción p300-CBP/genética
16.
Biochim Biophys Acta Mol Basis Dis ; 1863(7): 1789-1804, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28457799

RESUMEN

Few studies have assessed the effect of changing ratios of dietary macronutrients on fat accumulation in adipose tissue and organs such as the liver in a 3×n(n≥3) factorial design. We investigated the effects of 7 diets from a single manufacturer containing 11-58en% protein (casein), 0-81en% carbohydrates (CHO; sucrose, maltrodextrin-10 and corn starch), and 8-42en% fat (triheptanoin, olive oil or cocoa butter) in C57BL/6J mice, a good model for diet-induced obesity and fatty liver. The diets were fed for 3weeks to wild-type and hyperlipidemic male and female mice. Caloric intake was mainly determined by dietary fat. Body weight, liver lipid and cholesterol content, NFκB activation, and fat-pad size decreased only in mice fed a high-protein diet. A high dietary protein:CHO ratio reduced plasma FGF21 concentration, and increased liver PCK1 protein content and plasma triglyceride concentration. The dietary protein:CHO ratio determined hepatic expression of Pck1 and Ppargc1a in males, and Fgf21 in females, whereas the dietary CHO:fat ratio determined that of Fasn, Acaca1, and Scd1 in females. Hepatic glycogen content was determined by all three dietary components. Both hepatic PCK1 and plasma FGF21 correlated strongly and inversely with hepatic TG content, suggesting a key role for PCK1 and increased gluconeogenesis in resolving steatosis with a high-protein diet, with FGF21 expression reflecting declining cell stress. We propose that a diet containing ~35en% protein, 5-10en% fat, and 55-60en% carbohydrate will prevent fatty liver in mice without inducing side effects.


Asunto(s)
Proteínas en la Dieta/farmacología , Hígado Graso/dietoterapia , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/metabolismo , Obesidad/dietoterapia , Animales , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Femenino , Hiperlipidemias/dietoterapia , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Transgénicos , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Triglicéridos/metabolismo
17.
Molecules ; 22(7)2017 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-28708105

RESUMEN

Insulin resistance participates in the glycaemic control disruption in type 2 diabetes mellitus (T2DM), by reducing muscle glucose influx and increasing liver glucose efflux. GLUT4 (Slc2a4 gene) and GLUT2 (Slc2a2 gene) proteins play a fundamental role in the muscle and liver glucose fluxes, respectively. Resveratrol is a polyphenol suggested to have an insulin sensitizer effect; however, this effect, and related mechanisms, have not been clearly demonstrated in T2DM. We hypothesized that resveratrol can improve glycaemic control by restoring GLUT4 and GLUT2 expression in muscle and liver. Mice were rendered obese T2DM in adult life by neonatal injection of monosodium glutamate. Then, T2DM mice were treated with resveratrol for 60 days or not. Glycaemic homeostasis, GLUT4, GLUT2, and SIRT1 (sirtuin 1) proteins (Western blotting); Slc2a4, Slc2a2, and Pck1 (key gluconeogenic enzyme codifier) mRNAs (RT-qPCR); and hepatic glucose efflux were analysed. T2DM mice revealed: high plasma concentration of glucose, fructosamine, and insulin; insulin resistance (insulin tolerance test); decreased Slc2a4/GLUT4 content in gastrocnemius and increased Slc2a2/GLUT2 content in liver; and increased Pck1 mRNA and gluconeogenic activity (pyruvate tolerance test) in liver. All alterations were restored by resveratrol treatment. Additionally, in both muscle and liver, resveratrol increased SIRT1 nuclear content, which must participate in gene expression regulations. In sum, the results indisputably reveals that resveratrol improves glycaemic control in T2DM, and that involves an increase in muscle Slc2a4/GLUT4 and a decrease in liver Slc2a2/GLUT2 expression. This study contributes to our understanding how resveratrol might be prescribed for T2DM according to the principles of evidence-based medicine.


Asunto(s)
Glucemia/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Estilbenos/metabolismo , Estilbenos/farmacología , Animales , Glucosa/metabolismo , Transportador de Glucosa de Tipo 2/efectos de los fármacos , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 4/efectos de los fármacos , Transportador de Glucosa de Tipo 4/genética , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Masculino , Ratones , Ratones Obesos , Músculo Esquelético/metabolismo , ARN Mensajero/efectos de los fármacos , Resveratrol , Sirtuina 1
18.
Mol Genet Metab ; 118(1): 21-7, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26971250

RESUMEN

We report a patient from a consanguineous family who presented with transient acute liver failure and biochemical patterns suggestive of disturbed urea cycle and mitochondrial function, for whom conventional genetic and metabolic investigations for acute liver failure failed to yield a diagnosis. Whole exome sequencing revealed a homozygous 12-bp deletion in PCK1 (MIM 614168) encoding cytosolic phosphoenolpyruvate carboxykinase (PEPCK); enzymatic studies subsequently confirmed its pathogenic nature. We propose that PEPCK deficiency should be considered in the young child with unexplained liver failure, especially where there are marked, accumulations of TCA cycle metabolites on urine organic acid analysis and/or an amino acid profile with hyperammonaemia suggestive of a proximal urea cycle defect during the acute episode. If suspected, intravenous administration of dextrose should be initiated. Long-term management comprising avoidance of fasting with the provision of a glucose polymer emergency regimen for illness management may be sufficient to prevent future episodes of liver failure. This case report provides further insights into the (patho-)physiology of energy metabolism, confirming the power of genomic analysis of unexplained biochemical phenotypes.


Asunto(s)
Secuencia de Bases , Errores Innatos del Metabolismo de los Carbohidratos/diagnóstico , Gastroenteritis/etiología , Péptidos y Proteínas de Señalización Intracelular/genética , Hepatopatías/diagnóstico , Fallo Hepático Agudo/etiología , Fosfoenolpiruvato Carboxiquinasa (GTP)/deficiencia , Eliminación de Secuencia , Errores Innatos del Metabolismo de los Carbohidratos/tratamiento farmacológico , Errores Innatos del Metabolismo de los Carbohidratos/genética , Consanguinidad , Exoma , Gastroenteritis/genética , Glucosa/administración & dosificación , Glucosa/uso terapéutico , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Hepatopatías/tratamiento farmacológico , Hepatopatías/genética , Fallo Hepático Agudo/genética , Masculino , Linaje , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética
19.
Appl Microbiol Biotechnol ; 100(18): 8147-57, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27311564

RESUMEN

We previously created an oleaginous Saccharomyces cerevisiae transformant as a dga1 mutant overexpressing Dga1p lacking 29 amino acids at the N-terminal (Dga1∆Np). Because we have already shown that dga1 disruption decreases the expression of ESA1, which encodes histone acetyltransferase, the present study was aimed at exploring how Esa1p was involved in lipid accumulation. We based our work on the previous observation that Esa1p acetylates and activates phosphoenolpyruvate carboxykinase (PEPCK) encoded by PCK1, a rate-limiting enzyme in gluconeogenesis, and subsequently evaluated the activation of Pck1p by yeast growth with non-fermentable carbon sources, thus dependent on gluconeogenesis. This assay revealed that the ∆dga1 mutant overexpressing Dga1∆Np had much lower growth in a glycerol-lactate (GL) medium than the wild-type strain overexpressing Dga1∆Np. Moreover, overexpression of Esa1p or Pck1p in mutants improved the growth, indicating that the ∆dga1 mutant overexpressing Dga1∆Np had lower activities of Pck1p and gluconeogenesis due to lower expression of ESA1. In vitro PEPCK assay showed the same trend in the culture of the ∆dga1 mutant overexpressing Dga1∆Np with 10 % glucose medium, indicating that Pck1p-mediated gluconeogenesis decreased in this oleaginous transformant under the lipid-accumulating conditions introduced by the glucose medium. The growth of the ∆dga1 mutant overexpressing Dga1∆Np in the GL medium was also improved by overexpression of acetyl-CoA synthetase, Acs1p or Acs2p, indicating that supply of acetyl-CoA was crucial for Pck1p acetylation by Esa1p. In addition, the ∆dga1 mutant without Dga1∆Np also showed better growth in the GL medium, indicating that decreased lipid accumulation was enhancing Pck1p-mediated gluconeogenesis. Finally, we found that overexpression of Ole1p, a fatty acid ∆9-desaturase, in the ∆dga1 mutant overexpressing Dga1∆Np improved its growth in the GL medium. Although the exact mechanisms leading to the effects of Ole1p were not clearly defined, changes of palmitoleic and oleic acid contents appeared to be critical. This observation was supported by experiments using exogenous palmitoleic and oleic acids or overexpression of elongases. Our findings provide new insights on lipid accumulation mechanisms and metabolic engineering approaches for lipid production.


Asunto(s)
Gluconeogénesis , Histona Acetiltransferasas/metabolismo , Metabolismo de los Lípidos , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Medios de Cultivo/química , Histona Acetiltransferasas/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
20.
J Dairy Sci ; 99(5): 3908-3915, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26947295

RESUMEN

Hepatocytes monolayers from neonatal calves were used to determine the responses of the cytosolic phosphoenolpyruvate carboxykinase (PCK1) mRNA expression to propionate and direct hormonal cues including cyclic AMP (cAMP), dexamethasone, and insulin. The responses of other key gluconeogenic genes, including mitochondrial phosphoenolpyruvate carboxykinase (PCK2), pyruvate carboxylase (PC), and glucose-6-phosphotase (G6PC), were also measured. Expression of PCK1 was linearly induced with increasing propionate concentrations in media and 2.5 mM propionate increased PCK1 mRNA at 3 and 6h of incubation; however, the induction disappeared at 12 and 24 h. The induction of PCK1 mRNA by propionate was mimicked by 1 mM cAMP, or in combination with 5 µM dexamethasone, but not by dexamethasone alone. The induction of PCK1 mRNA by propionate or cAMP was eliminated by addition of 100 nM insulin. Additionally, expression of PCK2 and PC mRNA was also induced by propionate in a concentration-dependent manner. Consistent with PCK1, propionate-stimulated PCK2 and PC mRNA expression was inhibited by insulin. Expression of G6PC mRNA was neither affected by propionate nor cAMP, dexamethasone, insulin, or their combinations. These findings demonstrate that propionate can directly regulate its own metabolism in bovine calf hepatocytes through upregulation of PCK1, PCK2, and PC mRNA expression.


Asunto(s)
Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Propionatos/metabolismo , Animales , Bovinos , Gluconeogénesis/genética , Hepatocitos/metabolismo , Hígado/metabolismo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA