Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Development ; 149(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35451016

RESUMEN

It has been established in the mouse model that during embryogenesis joint cartilage is generated from a specialized progenitor cell type, distinct from that responsible for the formation of growth plate cartilage. We recently found that mesodermal progeny of human pluripotent stem cells gave rise to two types of chondrogenic mesenchymal cells in culture: SOX9+ and GDF5+ cells. The fast-growing SOX9+ cells formed in vitro cartilage that expressed chondrocyte hypertrophy markers and readily underwent mineralization after ectopic transplantation. In contrast, the slowly growing GDF5+ cells derived from SOX9+ cells formed cartilage that tended to express low to undetectable levels of chondrocyte hypertrophy markers, but expressed PRG4, a marker of embryonic articular chondrocytes. The GDF5+-derived cartilage remained largely unmineralized in vivo. Interestingly, chondrocytes derived from the GDF5+ cells seemed to elicit these activities via non-cell-autonomous mechanisms. Genome-wide transcriptomic analyses suggested that GDF5+ cells might contain a teno/ligamento-genic potential, whereas SOX9+ cells resembled neural crest-like progeny-derived chondroprogenitors. Thus, human pluripotent stem cell-derived GDF5+ cells specified to generate permanent-like cartilage seem to emerge coincidentally with the commitment of the SOX9+ progeny to the tendon/ligament lineage.


Asunto(s)
Cartílago Articular , Condrocitos , Células Madre Pluripotentes , Animales , Cartílago Articular/citología , Cartílago Articular/metabolismo , Diferenciación Celular , Condrocitos/citología , Condrocitos/metabolismo , Condrocitos/patología , Condrogénesis , Factor 5 de Diferenciación de Crecimiento/metabolismo , Humanos , Hipertrofia , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
2.
Dev Biol ; 490: 37-49, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35820658

RESUMEN

The vertebrate peripheral nervous system (PNS) is an intricate network that conveys sensory and motor information throughout the body. During development, extracellular cues direct the migration of axons and glia through peripheral tissues. Currently, the suite of molecules that govern PNS axon-glial patterning is incompletely understood. To elucidate factors that are critical for peripheral nerve development, we characterized the novel zebrafish mutant, stl159, that exhibits abnormalities in PNS patterning. In these mutants, motor and sensory nerves that develop adjacent to axial muscle fail to extend normally, and neuromasts in the posterior lateral line system, as well as neural crest-derived melanocytes, are incorrectly positioned. The stl159 genetic lesion lies in the basic helix-loop-helix (bHLH) transcription factor tcf15, which has been previously implicated in proper development of axial muscles. We find that targeted loss of tcf15 via CRISPR-Cas9 genome editing results in the PNS patterning abnormalities observed in stl159 mutants. Because tcf15 is expressed in developing muscle prior to nerve extension, rather than in neurons or glia, we predict that tcf15 non-cell-autonomously promotes peripheral nerve patterning in zebrafish through regulation of extracellular patterning cues. Our work underscores the importance of muscle-derived factors in PNS development.


Asunto(s)
Nervios Periféricos , Pez Cebra , Animales , Axones/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Músculos , Sistema Nervioso Periférico , Pez Cebra/genética
3.
Development ; 147(10)2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32345743

RESUMEN

Sonic hedgehog (Shh), produced in the notochord and floor plate, is necessary for both neural and mesodermal development. To reach the myotome, Shh has to traverse the sclerotome and a reduction of sclerotomal Shh affects myotome differentiation. By investigating loss and gain of Shh function, and floor-plate deletions, we report that sclerotomal Shh is also necessary for neural tube development. Reducing the amount of Shh in the sclerotome using a membrane-tethered hedgehog-interacting protein or Patched1, but not dominant active Patched, decreased the number of Olig2+ motoneuron progenitors and Hb9+ motoneurons without a significant effect on cell survival or proliferation. These effects were a specific and direct consequence of Shh reduction in the mesoderm. In addition, grafting notochords in a basal but not apical location, vis-à-vis the tube, profoundly affected motoneuron development, suggesting that initial ligand presentation occurs at the basal side of epithelia corresponding to the sclerotome-neural tube interface. Collectively, our results reveal that the sclerotome is a potential site of a Shh gradient that coordinates the development of mesodermal and neural progenitors.


Asunto(s)
Proteínas Hedgehog/metabolismo , Tubo Neural/embriología , Neurulación/genética , Notocorda/metabolismo , Codorniz/embriología , Animales , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Mesodermo/metabolismo , Neuronas Motoras/metabolismo , Placa Neural/metabolismo , Tubo Neural/metabolismo , Neurogénesis/genética , Receptor Patched-1/metabolismo , Transducción de Señal/genética , Transfección
4.
Development ; 146(1)2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30559277

RESUMEN

The elongating mouse anteroposterior axis is supplied by progenitors with distinct tissue fates. It is not known whether these progenitors confer anteroposterior pattern to the embryo. We have analysed the progenitor population transcriptomes in the mouse primitive streak and tail bud throughout axial elongation. Transcriptomic signatures distinguish three known progenitor types (neuromesodermal, lateral/paraxial mesoderm and notochord progenitors; NMPs, LPMPs and NotoPs). Both NMP and LPMP transcriptomes change extensively over time. In particular, NMPs upregulate Wnt, Fgf and Notch signalling components, and many Hox genes as progenitors transit from production of the trunk to the tail and expand in number. In contrast, the transcriptome of NotoPs is stable throughout axial elongation and they are required for normal axis elongation. These results suggest that NotoPs act as a progenitor niche whereas anteroposterior patterning originates within NMPs and LPMPs.


Asunto(s)
Tipificación del Cuerpo/fisiología , Embrión de Mamíferos/embriología , Mesodermo/embriología , Notocorda/embriología , Transducción de Señal/fisiología , Animales , Embrión de Mamíferos/citología , Mesodermo/citología , Ratones , Ratones Transgénicos , Notocorda/citología , Línea Primitiva/citología , Línea Primitiva/embriología , Receptores Notch/genética , Receptores Notch/metabolismo
5.
Development ; 145(6)2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29555813

RESUMEN

Body skeletal muscles derive from the paraxial mesoderm, which forms in the posterior region of the embryo. Using microarrays, we characterize novel mouse presomitic mesoderm (PSM) markers and show that, unlike the abrupt transcriptome reorganization of the PSM, neural tube differentiation is accompanied by progressive transcriptome changes. The early paraxial mesoderm differentiation stages can be efficiently recapitulated in vitro using mouse and human pluripotent stem cells. While Wnt activation alone can induce posterior PSM markers, acquisition of a committed PSM fate and efficient differentiation into anterior PSM Pax3+ identity further requires BMP inhibition to prevent progenitors from drifting to a lateral plate mesoderm fate. When transplanted into injured adult muscle, these precursors generated large numbers of immature muscle fibers. Furthermore, exposing these mouse PSM-like cells to a brief FGF inhibition step followed by culture in horse serum-containing medium allows efficient recapitulation of the myogenic program to generate myotubes and associated Pax7+ cells. This protocol results in improved in vitro differentiation and maturation of mouse muscle fibers over serum-free protocols and enables the study of myogenic cell fusion and satellite cell differentiation.


Asunto(s)
Diferenciación Celular/genética , Mesodermo/citología , Desarrollo de Músculos/genética , Músculo Esquelético/citología , Células Madre Pluripotentes/citología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/fisiología , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Inmunohistoquímica , Inmunofenotipificación , Hibridación in Situ , Técnicas In Vitro , Mesodermo/metabolismo , Mesodermo/fisiología , Ratones , Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Matrices Tisulares , Vía de Señalización Wnt/genética
6.
Development ; 145(16)2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30139810

RESUMEN

Somites (SMs) comprise a transient stem cell population that gives rise to multiple cell types, including dermatome (D), myotome (MYO), sclerotome (SCL) and syndetome (SYN) cells. Although several groups have reported induction protocols for MYO and SCL from pluripotent stem cells, no studies have demonstrated the induction of SYN and D from SMs. Here, we report systematic induction of these cells from human induced pluripotent stem cells (iPSCs) under chemically defined conditions. We also successfully induced cells with differentiation capacities similar to those of multipotent mesenchymal stromal cells (MSC-like cells) from SMs. To evaluate the usefulness of these protocols, we conducted disease modeling of fibrodysplasia ossificans progressiva (FOP), an inherited disease that is characterized by heterotopic endochondral ossification in soft tissues after birth. Importantly, FOP-iPSC-derived MSC-like cells showed enhanced chondrogenesis, whereas FOP-iPSC-derived SCL did not, possibly recapitulating normal embryonic skeletogenesis in FOP and cell-type specificity of FOP phenotypes. These results demonstrate the usefulness of multipotent SMs for disease modeling and future cell-based therapies.


Asunto(s)
Desarrollo Óseo , Condrogénesis , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Biológicos , Miositis Osificante/metabolismo , Somitos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/patología , Miositis Osificante/patología , Somitos/patología
7.
Dev Growth Differ ; 63(2): 140-153, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33460448

RESUMEN

Segmental organization of the vertebrate body plan is established by the segmentation clock, a molecular oscillator that controls the periodicity of somite formation. Given the dynamic nature of the segmentation clock, in vivo studies in vertebrate embryos pose technical challenges. As an alternative, simpler models of the segmentation clock based on primary explants and pluripotent stem cells have recently been developed. These ex vivo and in vitro systems enable more quantitative analysis of oscillatory properties and expand the experimental repertoire applicable to the segmentation clock. Crucially, by eliminating the need for model organisms, in vitro models allow us to study the segmentation clock in new species, including our own. The human oscillator was recently recapitulated using induced pluripotent stem cells, providing a window into human development. Certainly, a combination of in vivo and in vitro work holds the most promising potential to unravel the mechanisms behind vertebrate segmentation.


Asunto(s)
Relojes Biológicos , Células Madre Pluripotentes/citología , Diferenciación Celular , Humanos
8.
Dev Growth Differ ; 63(1): 38-46, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33270251

RESUMEN

Human pluripotent stem cells (PSCs) are used as a platform for therapeutic purposes such as cell transplantation therapy and drug discovery. Another motivation for studying PSCs is to understand human embryogenesis and development. All cell types that make up the body tissues develop through defined trajectories during embryogenesis. For example, paraxial mesoderm is considered to differentiate into several cell types including skeletal muscle cells, chondrocytes, osteocytes, dermal fibroblasts, and tenocytes. Tenocytes are fibroblast cells that constitute the tendon. The step-wise narrowing fate decisions of paraxial mesoderm in the embryo have been modeled in vitro using PSCs; however, deriving tenocytes from human-induced PSCs and their application in cell therapy have long been challenging. PSC-derived tenocytes can be used for a source of cell transplantation to treat a damaged or ruptured tendon due to injury, disorder, or aging. In this review, we discuss the latest research findings on the use of PSCs for studying the biology of tenocyte development and their application in therapeutic settings.


Asunto(s)
Células Madre Pluripotentes/citología , Tenocitos/citología , Diferenciación Celular , Humanos
9.
Development ; 144(4): 664-676, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28087631

RESUMEN

Vertebrate segmentation is characterized by the periodic formation of epithelial somites from the mesenchymal presomitic mesoderm (PSM). How the rhythmic signaling pulse delivered by the segmentation clock is translated into the periodic morphogenesis of somites remains poorly understood. Here, we focused on the role of paraxial protocadherin (PAPC/Pcdh8) in this process. We showed that in chicken and mouse embryos, PAPC expression is tightly regulated by the clock and wavefront system in the posterior PSM. We observed that PAPC exhibits a striking complementary pattern to N-cadherin (CDH2), marking the interface of the future somite boundary in the anterior PSM. Gain and loss of function of PAPC in chicken embryos disrupted somite segmentation by altering the CDH2-dependent epithelialization of PSM cells. Our data suggest that clathrin-mediated endocytosis is increased in PAPC-expressing cells, subsequently affecting CDH2 internalization in the anterior compartment of the future somite. This in turn generates a differential adhesion interface, allowing formation of the acellular fissure that defines the somite boundary. Thus, periodic expression of PAPC in the anterior PSM triggers rhythmic endocytosis of CDH2, allowing for segmental de-adhesion and individualization of somites.


Asunto(s)
Cadherinas/metabolismo , Endocitosis , Morfogénesis , Somitos/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tipificación del Cuerpo/fisiología , Adhesión Celular , Membrana Celular/metabolismo , Embrión de Pollo , Clatrina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Ratones , Ratones Transgénicos , Fenotipo , Dominios Proteicos , Protocadherinas , Receptores Notch/metabolismo , Transducción de Señal
10.
Development ; 144(20): 3808-3818, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28893950

RESUMEN

During development, tightly regulated gene expression programs control cell fate and patterning. A key regulatory step in eukaryotic transcription is the assembly of the pre-initiation complex (PIC) at promoters. PIC assembly has mainly been studied in vitro, and little is known about its composition during development. In vitro data suggest that TFIID is the general transcription factor that nucleates PIC formation at promoters. Here we show that TAF10, a subunit of TFIID and of the transcriptional co-activator SAGA, is required for the assembly of these complexes in the mouse embryo. We performed Taf10 conditional deletions during mesoderm development and show that Taf10 loss in the presomitic mesoderm (PSM) does not prevent cyclic gene transcription or PSM segmental patterning, whereas lateral plate differentiation is profoundly altered. During this period, global mRNA levels are unchanged in the PSM, with only a minor subset of genes dysregulated. Together, our data strongly suggest that the TAF10-containing canonical TFIID and SAGA complexes are dispensable for early paraxial mesoderm development, arguing against the generic role in transcription proposed for these fully assembled holo-complexes.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Transactivadores/genética , Factor de Transcripción TFIID/genética , Transcripción Genética , Animales , Tipificación del Cuerpo , Diferenciación Celular , Núcleo Celular/metabolismo , Eliminación de Gen , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Regiones Promotoras Genéticas , Unión Proteica , Dominios Proteicos , ARN Mensajero/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Transactivadores/metabolismo , Factor de Transcripción TFIID/metabolismo
11.
Development ; 144(12): 2104-2122, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28634270

RESUMEN

Skeletal muscle is the largest tissue in the body and loss of its function or its regenerative properties results in debilitating musculoskeletal disorders. Understanding the mechanisms that drive skeletal muscle formation will not only help to unravel the molecular basis of skeletal muscle diseases, but also provide a roadmap for recapitulating skeletal myogenesis in vitro from pluripotent stem cells (PSCs). PSCs have become an important tool for probing developmental questions, while differentiated cell types allow the development of novel therapeutic strategies. In this Review, we provide a comprehensive overview of skeletal myogenesis from the earliest premyogenic progenitor stage to terminally differentiated myofibers, and discuss how this knowledge has been applied to differentiate PSCs into muscle fibers and their progenitors in vitro.


Asunto(s)
Desarrollo de Músculos/fisiología , Músculo Esquelético/crecimiento & desarrollo , Animales , Diferenciación Celular , Reprogramación Celular , Humanos , Mesodermo/citología , Mesodermo/embriología , Ratones , Modelos Biológicos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/fisiología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Somitos/citología , Somitos/embriología
12.
Semin Cell Dev Biol ; 72: 87-98, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29107681

RESUMEN

Pluripotent stem cells represent important tools for both basic and translational science as they enable to study mechanisms of development, model diseases in vitro and provide a potential source of tissue-specific progenitors for cell therapy. Concomitantly with the increasing knowledge of the molecular mechanisms behind activation of the skeletal myogenic program during embryonic development, novel findings in the stem cell field provided the opportunity to begin recapitulating in vitro the events occurring during specification of the myogenic lineage. In this review, we will provide a perspective of the molecular mechanisms responsible for skeletal myogenic commitment in the embryo and how this knowledge was instrumental for specifying this lineage from pluripotent stem cells. In addition, we will discuss the current limitations for properly recapitulating skeletal myogenesis in the petri dish, and we will provide insights about future applications of pluripotent stem cell-derived myogenic cells.


Asunto(s)
Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Linaje de la Célula/genética , Humanos , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/citología , Músculo Esquelético/embriología , Células Madre Pluripotentes/citología
13.
Development ; 142(9): 1628-38, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25922526

RESUMEN

In the development of the vertebrate body plan, Wnt3a is thought to promote the formation of paraxial mesodermal progenitors (PMPs) of the trunk region while suppressing neural specification. Recent lineage-tracing experiments have demonstrated that these trunk neural progenitors and PMPs derive from a common multipotent progenitor called the neuromesodermal progenitor (NMP). NMPs are known to reside in the anterior primitive streak (PS) region; however, the extent to which NMPs populate the PS and contribute to the vertebrate body plan, and the precise role that Wnt3a plays in regulating NMP self-renewal and differentiation are unclear. To address this, we used cell-specific markers (Sox2 and T) and tamoxifen-induced Cre recombinase-based lineage tracing to locate putative NMPs in vivo. We provide functional evidence for NMP location primarily in the epithelial PS, and to a lesser degree in the ingressed PS. Lineage-tracing studies in Wnt3a/ß-catenin signaling pathway mutants provide genetic evidence that trunk progenitors normally fated to enter the mesodermal germ layer can be redirected towards the neural lineage. These data, combined with previous PS lineage-tracing studies, support a model that epithelial anterior PS cells are Sox2(+)T(+) multipotent NMPs and form the bulk of neural progenitors and PMPs of the posterior trunk region. Finally, we find that Wnt3a/ß-catenin signaling directs trunk progenitors towards PMP fates; however, our data also suggest that Wnt3a positively supports a progenitor state for both mesodermal and neural progenitors.


Asunto(s)
Tipificación del Cuerpo/fisiología , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Mesodermo/embriología , Células-Madre Neurales/fisiología , Línea Primitiva/citología , Transducción de Señal/fisiología , Animales , Técnicas Histológicas , Inmunohistoquímica , Hibridación in Situ , Mesodermo/citología , Ratones , Ratones Noqueados , Modelos Biológicos , Proteína Wnt3A/metabolismo
14.
Childs Nerv Syst ; 34(12): 2353-2359, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30128838

RESUMEN

BACKGROUND: The association between mid-facial clefts and Chiari malformation in the medical literature has been restricted to patients with syndromic craniofacial abnormalities. A common shared developmental pathway including causative factors for facial clefts and "complex" Chiari malformations, both midline skull base pathologies, seems logical but has not been reported. The coincident presentation of these findings in a single patient, and our subsequent discovery of other patients harboring these mutual findings prompted further investigation. CASE ILLUSTRATION: We describe the case of a patient born with a cleft palate which was repaired during his first year of life, subsequently presenting as a teenager to our hospital with a severe and symptomatic complex Chiari malformation. We discuss his treatment strategy, suboccipital decompression with occipitocervical fusion and endoscopic anterior decompression surgeries, as well as his favorable radiological and clinical outcome, demonstrated at long-interval follow-up. Furthermore, we review his two pathologies, cleft palate and Chiari malformation, and posit a common embryological linkage. CONCLUSIONS: The embryologic interaction between the paraxial mesoderm and ectoderm may explain the co-occurrence of cleft palate and complex Chiari malformation in a single patient. Complete radiological, clinical, and genetic evaluation and counseling is advised in this situation and raises the question of whether the presence of a cleft palate independently increases the risk for other skull base developmental abnormalities.


Asunto(s)
Anomalías Múltiples , Malformación de Arnold-Chiari/complicaciones , Fisura del Paladar/complicaciones , Adolescente , Humanos , Lactante , Masculino
15.
Acta Neurochir Suppl ; 129: 121-126, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30171324

RESUMEN

The topographical distribution of dural arteriovenous fistulas (DAVFs) was analyzed based on the embryological anatomy of the dural membrane. Sixty-six consecutive cases of intracranial and spinal DAVFs were analyzed based on the angiography, and each shunt point was identified according to the embryological bony structures. The area of dural membranes was categorized into three different groups: a ventral group located on the endochondral bone (VE group), a dorsal group on the membranous bone (DM group), and a falcotentorial group (FT group) in the falx cerebri, tentorium cerebelli, falx cerebelli, and diaphragma sellae. The FT group was derived from the neural crest and designated when the dural membrane was formed only with the dura propria (meningeal layer of the dura mater) and not from the endosteal dura. Olfactory groove, falx, tent of the cerebellum, and nerve sleeve of spinal cord were categorized in the FT group, which presented later in life and which had a male predominance, more aggressive clinical presentations, and significant cortical and spinal venous reflux. The FT group was formed only with the dura propria that was considered as an independent risk factor for aggressive clinical course and hemorrhage of DAVFs.


Asunto(s)
Malformaciones Vasculares del Sistema Nervioso Central/clasificación , Malformaciones Vasculares del Sistema Nervioso Central/patología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Cresta Neural , Factores de Riesgo
16.
Development ; 141(20): 3848-58, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25294938

RESUMEN

Pluripotent embryonic stem cells (ESCs) generate rostral paraxial mesoderm-like progeny in 5-6 days of differentiation induced by Wnt3a and Noggin (Nog). We report that canonical Wnt signaling introduced either by forced expression of activated ß-catenin, or the small-molecule inhibitor of Gsk3, CHIR99021, satisfied the need for Wnt3a signaling, and that the small-molecule inhibitor of BMP type I receptors, LDN193189, was able to replace Nog. Mesodermal progeny generated using such small molecules were chondrogenic in vitro, and expressed trunk paraxial mesoderm markers such as Tcf15 and Meox1, and somite markers such as Uncx, but failed to express sclerotome markers such as Pax1. Induction of the osteochondrogenically committed sclerotome from somite requires sonic hedgehog and Nog. Consistently, Pax1 and Bapx1 expression was induced when the isolated paraxial mesodermal progeny were treated with SAG1 (a hedgehog receptor agonist) and LDN193189, then Sox9 expression was induced, leading to cartilaginous nodules and particles in the presence of BMP, indicative of chondrogenesis via sclerotome specification. By contrast, treatment with TGFß also supported chondrogenesis and stimulated Sox9 expression, but failed to induce the expression of Pax1 and Bapx1. On ectopic transplantation to immunocompromised mice, the cartilage particles developed under either condition became similarly mineralized and formed pieces of bone with marrow. Thus, the use of small molecules led to the effective generation from ESCs of paraxial mesodermal progeny, and to their further differentiation in vitro through sclerotome specification into growth plate-like chondrocytes, a mechanism resembling in vivo somitic chondrogenesis that is not recapitulated with TGFß.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Condrocitos/citología , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Pluripotentes/citología , Animales , Células de la Médula Ósea/citología , Proteínas Morfogenéticas Óseas/metabolismo , Cartílago/fisiología , Separación Celular , Condrogénesis , Medios de Cultivo/química , Citometría de Flujo , Perfilación de la Expresión Génica , Mesodermo/citología , Mesodermo/fisiología , Ratones , Pirazoles/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo
17.
Development ; 141(22): 4285-97, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25371364

RESUMEN

Neuromesodermal (NM) stem cells generate neural and paraxial presomitic mesoderm (PSM) cells, which are the respective progenitors of the spinal cord and musculoskeleton of the trunk and tail. The Wnt-regulated basic helix-loop-helix (bHLH) transcription factor mesogenin 1 (Msgn1) has been implicated as a cooperative regulator working in concert with T-box genes to control PSM formation in zebrafish, although the mechanism is unknown. We show here that, in mice, Msgn1 alone controls PSM differentiation by directly activating the transcriptional programs that define PSM identity, epithelial-mesenchymal transition, motility and segmentation. Forced expression of Msgn1 in NM stem cells in vivo reduced the contribution of their progeny to the neural tube, and dramatically expanded the unsegmented mesenchymal PSM while blocking somitogenesis and notochord differentiation. Expression of Msgn1 was sufficient to partially rescue PSM differentiation in Wnt3a(-/-) embryos, demonstrating that Msgn1 functions downstream of Wnt3a as the master regulator of PSM differentiation. Our data provide new insights into how cell fate decisions are imposed by the expression of a single transcriptional regulator.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Mesodermo/embriología , Músculo Esquelético/embriología , Sistema Nervioso/embriología , Animales , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Inmunohistoquímica , Hibridación in Situ , Luciferasas , Mesodermo/citología , Ratones , Ratones Noqueados , Análisis por Micromatrices , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína Wnt3A/genética
18.
Stem Cells ; 34(7): 1790-800, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27038343

RESUMEN

Presomitic mesoderm (PSM) cells are the precursors of the somites, which flank both sides of the neural tube and give rise to the musculo-skeletal system shaping the vertebrate body. WNT and FGF signaling control the formation of both the PSM and the somites and show a graded distribution with highest levels in the posterior PSM. We have used reporters for the mesoderm/PSM control genes T, Tbx6, and Msgn1 to investigate the differentiation of mouse ESCs from the naïve state via EpiSCs to PSM cells. Here we show that the activation of WNT signaling by CHIR99021 (CH) in combination with FGF ligand induces embryo-like PSM at high efficiency. By varying the FGF ligand concentration, the state of PSM cells formed can be altered. High FGF concentration supports posterior PSM formation, whereas low FGF generates anterior/differentiating PSM, in line with in vivo data. Furthermore, the level of Msgn1 expression depends on the FGF ligand concentration. We also show that Activin/Nodal signaling inhibits CH-mediated PSM induction in EpiSCs, without affecting T-expression. Inversely, Activin/Nodal inhibition enhances PSM induction by WNT/high FGF signaling. The ability to generate PSM cells of either posterior or anterior PSM identity with high efficiency in vitro will promote the investigation of the gene regulatory networks controlling the formation of nascent PSM cells and their switch to differentiating/somitic paraxial mesoderm. Stem Cells 2016;34:1790-1800.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Mesodermo/embriología , Somitos/embriología , Proteínas Wnt/metabolismo , Activinas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Ligandos , Mesodermo/citología , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Somitos/citología
19.
J Biol Chem ; 290(16): 10216-28, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25724646

RESUMEN

Foxc1a is a member of the forkhead transcription factors. It plays an essential role in zebrafish somitogenesis. However, little is known about the molecular mechanisms underlying its controlling somitogenesis. To uncover how foxc1a regulates zebrafish somitogenesis, we generated foxc1a knock-out zebrafish using TALEN (transcription activator-like effector nuclease) technology. The foxc1a null embryos exhibited defective somites at early development. Analyses on the expressions of the key genes that control processes of somitogenesis revealed that foxc1a controlled early somitogenesis by regulating the expression of myod1. In the somites of foxc1a knock-out embryos, expressions of fgf8a and deltaC were abolished, whereas the expression of aldh1a2 (responsible for providing retinoic acid signaling) was significantly increased. Once the increased retinoic acid level in the foxc1a null embryos was reduced by knocking down aldh1a2, the reduced expression of myod1 was partially rescued by resuming expressions of fgf8a and deltaC in the somites of the mutant embryos. Moreover, a chromatin immunoprecipitation assay on zebrafish embryos revealed that Foxc1a bound aldh1a2 promoter directly. On the other hand, neither knocking down fgf8a nor inhibiting Notch signaling affected the expression of aldh1a2, although knocking down fgf8a reduced expression of deltaC in the somites of zebrafish embryos at early somitogenesis and vice versa. Taken together, our results demonstrate that foxc1a plays an essential role in early somitogenesis by controlling Fgf and Notch signaling through restricting the expression of aldh1a2 in paraxial mesoderm directly.


Asunto(s)
Tipificación del Cuerpo/genética , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Retinal-Deshidrogenasa/genética , Somitos/metabolismo , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Embrión no Mamífero , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción Forkhead/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Regiones Promotoras Genéticas , Receptores Notch/genética , Receptores Notch/metabolismo , Retinal-Deshidrogenasa/metabolismo , Transducción de Señal , Somitos/crecimiento & desarrollo , Tretinoina/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/metabolismo
20.
Dev Biol ; 386(1): 216-26, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24370450

RESUMEN

During organogenesis, Sonic hedgehog (Shh) possesses dual functions: Shh emanating from midline structures regulates the positioning of bilateral structures at early stages, whereas organ-specific Shh locally regulates organ morphogenesis at later stages. The mesonephros is a transient embryonic kidney in amniote, whereas it becomes definitive adult kidney in some anamniotes. Thus, elucidating the regulation of mesonephros formation has important implications for our understanding of kidney development and evolution. In Shh knockout (KO) mutant mice, the mesonephros was displaced towards the midline and ectopic mesonephric tubules (MTs) were present in the caudal mesonephros. Mesonephros-specific ablation of Shh in Hoxb7-Cre;Shh(flox/-) and Sall1(CreERT2/+);Shh(flox/-) mice embryos indicated that Shh expressed in the mesonephros was not required for either the development of the mesonephros or the differentiation of the male reproductive tract. Moreover, stage-specific ablation of Shh in Shh(CreERT2/flox) mice showed that notochord- and/or floor plate-derived Shh were essential for the regulation of the number and position of MTs. Lineage analysis of hedgehog (Hh)-responsive cells, and analysis of gene expression in Shh KO embryos suggested that Shh regulated nephrogenic gene expression indirectly, possibly through effects on the paraxial mesoderm. These data demonstrate the essential role of midline-derived Shh in local tissue morphogenesis and differentiation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/fisiología , Mesodermo/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Cruzamientos Genéticos , Femenino , Factores de Transcripción Forkhead/metabolismo , Proteínas Hedgehog/genética , Hibridación in Situ , Riñón/fisiología , Masculino , Mesonefro/metabolismo , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Notocorda/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA