Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 157, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331722

RESUMEN

Passionfruit (Passiflora edulis) is a significant fruit crop in the commercial sector, owing to its high nutritional and medicinal value. The advent of high-throughput genomics sequencing technology has led to the publication of a vast amount of passionfruit omics data, encompassing complete genome sequences and transcriptome data under diverse stress conditions. To facilitate the efficient integration, storage, and analysis of these large-scale datasets, and to enable researchers to effectively utilize these omics data, we developed the first passionfruit genome database (PGD). The PGD platform comprises a diverse range of functional modules, including a genome browser, search function, heatmap, gene expression patterns, various tools, sequence alignment, and batch download, thereby providing a user-friendly interface. Additionally, supplementary practical tools have been developed for the PGD, such as gene family analysis tools, gene ontology (GO) terms, a pathway enrichment analysis, and other data analysis and mining tools, which enhance the data's utilization value. By leveraging the database's robust scalability, the intention is to continue to collect and integrate passionfruit omics data in the PGD, providing comprehensive and in-depth support for passionfruit research. The PGD is freely accessible via http://passionfruit.com.cn .


Asunto(s)
Passiflora , Diagnóstico Preimplantación , Femenino , Embarazo , Humanos , Passiflora/genética , Genómica , Genoma , Análisis de Secuencia , Bases de Datos Genéticas
2.
Biosci Biotechnol Biochem ; 88(4): 412-419, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38412471

RESUMEN

The regeneration of shoots from endosperm tissue is a highly effective method to obtain triploid plants. In this study, we elucidated the establishment of an in vitro regeneration system from endosperm culture for the production of Passiflora edulis "Mantianxing." The highest callus induction rate (83.33%) was obtained on the media supplemented with 1.0 mg/L TDZ. Meanwhile, the MS medium containing 1.0 mg/L 6-BA and 0.4 mg/L IBA gave the optimum 75% shoot bud induction. Chromosome analysis revealed that the chromosomal count of P. edulis "Mantianxing" regenerated from endosperm tissues was 27 (2n = 3x = 27), which indicated that shoots regenerated from endosperm tissues were triploids. Triploid P. edulis had more drought resistance than diploid plants. Our study provided a method for breeding of passion fruit by means of a stable and reproducible regeneration system from endosperm culture, leading to the generation of triploid plants.


Asunto(s)
Passiflora , Triploidía , Brotes de la Planta , Endospermo , Fitomejoramiento , Regeneración/genética
3.
Mol Biol Rep ; 50(5): 4133-4144, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36877350

RESUMEN

BACKGROUND: Genetic variability is the most important parameter in plant breeding based on selection. There is a need for morpho-agronomic and molecular characterization of Passiflora species, to exploit their genetic resources more efficiently. No study has yet been carried out to compare half-sib and full-sib families in relation to the magnitude of the genetic variability obtained in them, and then to elucidate the advantages or disadvantages of each one. METHODS AND RESULTS: In the present study, SSR markers were used to evaluate the genetic structure and diversity of half-sib and full-sib progenies of sour passion fruit. Two full-sib progenies (PSA and PSB), and a half-sib progeny (PHS), together with their parents, were genotyped with a set of eight pairs of SSR markers. Discriminant Analysis of Principal Components (DAPC) and Structure software were used to study the genetic structure of the progenies. The results indicate that the half-sib progeny has lower genetic variability, although it has higher allele richness. By the AMOVA most of the genetic variability was found within the progenies. Three groups were clearly observed in the DAPC analysis, while two hypothetical groups (k = 2) were observed in the Bayesian approach. The PSB progeny showed a high genetic mixture between the PSA and PHS progenies. CONCLUSION: Lower genetic variability is found in half-sib progenies. The results obtained here allow us to suppose that the selection within full-sib progenies will possibly provide better estimates of genetic variance in sour passion fruit breeding programs, since they provide greater genetic diversity.


Asunto(s)
Passiflora , Humanos , Masculino , Passiflora/genética , Frutas/genética , Teorema de Bayes , Antígeno Prostático Específico , Fitomejoramiento , Variación Genética
4.
Chem Biodivers ; 20(5): e202201051, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37032441

RESUMEN

The stilbene-rich acetone fraction in high yield (6.6 %, PEAS) of Passiflora edulis Sims was prepared and evaluated for neuroprotective activity in murine Alzheimer's disease model induced by aluminum chloride and D-galactose. The phytochemical and HPLC-DAD-MS analysis of the polyphenolic stilbene-rich acetone fraction showed that it contained different stilbenes including trans-piceatannol, scirpusins A-B and cassigarol E. The total phenolic content (TPC) of PEAS was 413.87±1.71 mg GAE eqv/g. The neuroprotective activity of PEAS is typically presented in the Morris water maze-reference Spatial Memory test, where the Alzheimer's mice treated at 100 mg/kg (Alz-ED1) and 200 mg/kg (Alz-ED2) spent less than 47 % and 66 % of the time, respectively, than the Alzheimer's model mice (Alz). Two simple stilbenes, trans-piceatannol and trans-resveratrol, showed selectively inhibitory activity in silico against acetylcholinesterase (AChE). Two stilbene dimers, cassigarol E and scirpusin A, exhibited low nanomolar inhibitory potential against AChE and butyrylcholinesterase (BChE), significantly lower than those of the positive control, donepezil and tacrine. These findings suggest that the stilbenes from P. edulis seeds, particularly the stilbene dimers, warrant further investigation as potential neuroprotective candidates in the prevention of cognitive deficits associated with Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Passiflora , Estilbenos , Animales , Ratones , Acetona/análisis , Acetilcolinesterasa/química , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Passiflora/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/análisis , Semillas/química , Estilbenos/farmacología , Estilbenos/uso terapéutico
5.
Molecules ; 28(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37764487

RESUMEN

A polyphenolic preparation in the form of the passion fruit epicarp extract was analyzed to identify and quantify the polyphenolic compounds using LC QTOF/ESI-MS and UPLC-PDA-FL. The analyzed parameters included antidiabetic activity (α-amylase, α-glucosidase, and pancreatic lipase), inhibitory activity toward cholinesterase (AChE, BuChE), anti-inflammatory activity (COX-1, COX-2, 15-LOX) and antioxidant activity based on ORAC and ABTS. The polyphenolic preparation of the passion fruit epicarp extract contained 51 polyphenolic compounds representing five groups-flavones (25 compounds; 52% of total polyphenolic), flavonols (8; 16%), flavan-3-ols (6; 7%), phenolic acids (4; 3%), and anthocyanins (7; 21%), with derivatives of luteolin (13 derivatives) and apigenin (8 derivatives) as dominant compounds. The preparation was characterized by an antioxidant activity of 160.7 (ORAC) and 1004.4 mmol Trolox/100 mL (ABTS+o). The inhibitory activity toward α-amylase, α-glucosidase, and pancreatic lipase reached IC50 of 7.99, 12.80, and 0.42, respectively. The inhibition of cholinesterases (IC50) was 18.29 for AChE and 14.22 for BuChE. Anti-inflammatory activity as IC50 was 6.0 for COX-1, 0.9 for COX-2, and 4.9 for 15-LOX. Food enriched with passion fruit epicarp extract has a potentially therapeutic effect.


Asunto(s)
Antioxidantes , Polifenoles , Polifenoles/farmacología , Polifenoles/análisis , Antioxidantes/farmacología , Frutas/química , alfa-Glucosidasas , Antocianinas , Ciclooxigenasa 2 , Extractos Vegetales/farmacología , alfa-Amilasas
6.
Mol Biol Rep ; 49(7): 5985-5995, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35357624

RESUMEN

BACKGROUND: Passiflora edulis is a tropical fruit with high nutrient and medicinal values that is widely planted in southern China. However, the molecular biology of P. edulis has not been well studied. There are few reports regarding the choice of reference genes for gene expression studies of passion fruit. METHODS AND RESULTS: By using three algorithms, implemented in geNorm, NormFinder and BestKeeper, we have selected ten candidate reference genes to explore their transcriptional expression stability in various tissues and under cold stress conditions. EF1 and HIS were stably expressed in five tissues. Ts and OTU were stably in vegetative organs. 50 S and Liom were stably in reproductive organs. The transcriptional abundance of EF1 and UBQ was stable in cold-treated and recovery treated leaf samples of P. edulis. In all samples, EF1 and Ts exhibited the highest expression stability. Evaluation of selected genes using simple statistical methods (ANOVA and post hoc analysis). Overall, EF1 emerged as the optimum reference gene for qRT-PCR normalize in P. edulis. In addition, the qRT-PCR analysis revealed that expression of ICE1 increases with the duration of cold treatment. CONCLUSIONS: In this study, we successfully screened stable reference genes from 10 candidates in P. edulis and verified the results by analyzing the expression level of ICE1. The results provide reliable and effective reference genes for future research on gene expression analysis in P. edulis, and lay a foundation for follow-up research on functional genes in P. edulis.


Asunto(s)
Passiflora , Frutas/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Passiflora/genética , Hojas de la Planta/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estándares de Referencia
7.
J Nematol ; 54(1): 20220023, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35937922

RESUMEN

For decades there have been anecdotal claims of synergistic interactions between plant-parasitic nematodes and soil-borne fungi causing decline of productivity of passion fruit (Passiflora edulis) orchards. An empirical confirmation of these disease complexes would impact disease management and plant breeding for resistance. To test those claims, we subjected passion fruit plants to single or concomitant parasitism by Meloidogyne javanica or M. incognita and Fusarium nirenbergiae or Neocosmospora sp. under controlled conditions. Non-inoculated plants served as control for the assays. The severity of shoot symptoms and variables related to plant growth, the extent of fungal lesions, and nematode reproduction were assessed to characterize the interactions. The shoot symptoms and effect on plant growth induced by the pathogens varied, but no synergy between the pathogens was observed. Moreover, the volume of tissue lesioned by the fungi was not affected by co-parasitism of the nematodes. Conversely, plant resistance to the nematodes was not affected by co-parasitism of the fungi. The interactions M. incognita-F. nirenbergiae, M. incognita-Neocosmospora sp., M. javanica-F. nirenbergiae, and M. javanica-Neocosmospora sp. were not synergistic as previously claimed, but instead neutral.

8.
Plant Dis ; 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34213963

RESUMEN

Passion fruit (Passiflora edulis Sims) is a widely cultivated dicotyledonous perennial plant with woody vines (Asande et al. 2020). In November 2020, leaf blight was observed on leaves of P. edulis (cultivar: 'Panama Red') newly planted in Wangyou, Huishui county, Guizhou province, China (25°82'57" N, 106°50'49" E). The leaf blight occurred on both young and old leaves, starting from the margins, and then extended to the entire leaves. The color of the affected tissue was brown with a yellow hallo in the early period, and then gradually turned to grey. The disease incidence was 60%-70% on a 0.08-ha field. Following isolation of the potential pathogen from 12 diseased leaves, nine isolates were obtained. The colonies were white with a regular round shape at the early stage and became black with fluffy hyphae after eight days on potato dextrose agar (PDA) medium, incubated at 25°C in the dark for 10 days. The single cell conidia were solitary, spherical or slightly ellipsoidal, black, shiny, smooth, aseptate, spherical, and 8.1-13.5 µm (n=50) in diameter. Conidiophores (5.2-9.9 × 4.4-7.2 µm) were mostly reduced to conidiogenous cells and aggregated in clusters on hyphae. Conidiogenous cells were hyaline to pale brown or black, globose to ampulliform or clavate. Morphological characteristics of the isolates matched the description of the genus Nigrospora Mei Wang & L. Cai (Wang et al. 2017). For molecular identification, DNA was extracted, and PCRs were performed with primers ITS1/ITS4 for the ITS region (White et al. 1990), primers Bt2a/Bt2b for the ß-tubulin gene (TUB) (Glass and Donaldson 1995), and primers EF1-728F/EF1-986R for the translation elongation factor 1-alpha gene (EF1-α) (Carbone and Kohn 1999). Representative sequences of the ITS region, EF1-α, and TUB sequences (from isolate WYR007) were deposited in GenBank (accession numbers: MW561355; MZ053463; MZ032030) and are included in the supplementary materials. BLAST analysis against sequences from previously published studies showed 99.58% (ITS region), 99.54% (EF1-α), and 99.45% (TUB) identity to Nigrospora sphaerica sequences (accession numbers: MN215808.1; MN864137.1; KY019606.1). In addition, homology was confirmed with a phylogenetic tree using concatenated sequences from ITS, EF1-α and TUB constructed with MEGA 7 for which the maximum likelihood method was used with 1,000 bootstrapping iterations. To complete Koch's postulates, conidia suspensions of isolate WYR007 (prepared from 1-month-old colonies in 0.05% Tween 20 buffer and adjusted to a concentration of 1 × 103 conidia/mL) were sprayed on 15 leaves (200 µL per leaf) of 5 one-year-old healthy P. edulis plants (cultivar: 'Panama Red'). The same number of leaves from control group plants was only treated with 0.05% Tween buffer. All plants were incubated at 26°C ± 2°C under a 16 h/8 h photoperiod and 70%-75% relative humidity (RH) after inoculation. After 14 days, symptomatic blight appeared on all inoculated leaves. In contrast, no symptoms appeared on leaves in the control group. The disease assays were repeated three times. Pure cultures were re-isolated from diseased leaves and confirmed to be N. sphaerica based on the morphological and molecular methods mentioned above (ITS region, the TUB, and the EF1-α sequences). To our knowledge, this study is the first report of N. sphaerica as a pathogen on P. edulis causing leaf blight. The identification of the pathogen could provide relevant background for its future management.s Sims) is a widely cultivated dicotyledonous perennial plant with woody vines (Asande et al. 2020). In November 2020, leaf blight was observed on leaves of P. edulis (cultivar: 'Panama Red') newly planted in Wangyou, Huishui county, Guizhou province, China (25°82'57" N, 106°50'49" E). The leaf blight occurred on both young and old leaves, starting from the margins, and then extended to the entire leaves. The color of the affected tissue was brown with a yellow hallo in the early period, and then gradually turned to grey. The disease incidence was 60%-70% on a 0.08-ha field. Following isolation of the potential pathogen from 12 diseased leaves, nine isolates were obtained. The colonies were white with a regular round shape at the early stage and became black with fluffy hyphae after eight days on potato dextrose agar (PDA) medium, incubated at 25°C in the dark for 10 days. The single cell conidia were solitary, spherical or slightly ellipsoidal, black, shiny, smooth, aseptate, spherical, and 8.1-13.5 µm (n=50) in diameter. Conidiophores (5.2-9.9 × 4.4-7.2 µm) were mostly reduced to conidiogenous cells and aggregated in clusters on hyphae. Conidiogenous cells were hyaline to pale brown or black, globose to ampulliform or clavate. Morphological characteristics of the isolates matched the description of the genus Nigrospora Mei Wang & L. Cai (Wang et al. 2017). For molecular identification, DNA was extracted, and PCRs were performed with primers ITS1/ITS4 for the ITS region (White et al. 1990), primers Bt2a/Bt2b for the ß-tubulin gene (TUB) (Glass and Donaldson 1995), and primers EF1-728F/EF1-986R for the translation elongation factor 1-alpha gene (EF1-α) (Carbone and Kohn 1999). Representative sequences of the ITS region, EF1-α, and TUB sequences (from isolate WYR007) were deposited in GenBank (accession numbers: MW561355; MZ053463; MZ032030) and are included in the supplementary materials. BLAST analysis against sequences from previously published studies showed 99.58% (ITS region), 99.54% (EF1-α), and 99.45% (TUB) identity to Nigrospora sphaerica sequences (accession numbers: MN215808.1; MN864137.1; KY019606.1). In addition, homology was confirmed with a phylogenetic tree using concatenated sequences from ITS, EF1-α and TUB constructed with MEGA 7 for which the maximum likelihood method was used with 1,000 bootstrapping iterations. To complete Koch's postulates, conidia suspensions of isolate WYR007 (prepared from 1-month-old colonies in 0.05% Tween 20 buffer and adjusted to a concentration of 1 × 103 conidia/mL) were sprayed on 15 leaves (200 µL per leaf) of 5 one-year-old healthy P. edulis plants (cultivar: 'Panama Red'). The same number of leaves from control group plants was only treated with 0.05% Tween buffer. All plants were incubated at 26°C ± 2°C under a 16 h/8 h photoperiod and 70%-75% relative humidity (RH) after inoculation. After 14 days, symptomatic blight appeared on all inoculated leaves. In contrast, no symptoms appeared on leaves in the control group. The disease assays were repeated three times. Pure cultures were re-isolated from diseased leaves and confirmed to be N. sphaerica based on the morphological and molecular methods mentioned above (ITS region, the TUB, and the EF1-α sequences). To our knowledge, this study is the first report of N. sphaerica as a pathogen on P. edulis causing leaf blight. The identification of the pathogen could provide relevant background for its future management.

9.
Plant Dis ; 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34156268

RESUMEN

Passion fruit (Passiflora edulis) is widely cultivated in tropic and subtropic regions. Because of its unique and intense flavour and high acidity, passion fruit juice concentrate is used in making delectable sauces, desserts, candy, ice cream, sherbet, or blending with other fruit juices. Anthracnose of passion fruit is favored by frequent rainfall and average temperatures above 27°C. In August 2018, anthracnose on passion fruit was observed in commercial plantings in Lincang, Yunnan, China (23.88 N, 100.08 E). Symptoms included lesions of oval to irregular shapes with brown to dark brown borders. Infection covered most of the fruit surface with pink-to-dark sporulation as reported by Tarnowski and Ploetz (2010). A conidial mass from an individual sorus observed on an infected fruit was isolated and cultured on potato dextrose agar (PDA) supplemented with 50 µg ml-1 of streptomycin. From a single microscopic field, two monospore isolates were dissected using a sterile needle, subcultured, and referred to as BXG-1 and BXG-2. Morphological characters including conidia colour, size, and shape were similar between the two isolates. Conidia were aseptate and cylindrical with apex and rounded base. Conidial length ranged from 12.3 to 16.1 µm (avg. 13.5) and width ranged from 5.5 to 6.2 µm (avg. 5.7). Morphologic data were consistent with Colletotrichum constrictum (Damm et al., 2012). To further confirm the fungal species, the ribosomal internal transcribed spacer (ITS), partial sequences of actin (ACT), chitin synthase (CHS-1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and ß-tubulin 2 (TUB2) were amplified and sequenced. Primers and PCR amplification were described by Damm et al. (2012). The sequences were compared to type sequences in GenBank. The results showed the ITS (GenBank accession MW828148 and MW828149), ACT (MW855882 and MW855883), CHS-1 (MW855884 and MW855885), GAPDH (MW855886 and MW855887), and TUB2 (MW855888 and MW855889) sequences of the isolates BXG-1 and BXG-2 were 98% identical with sequence data from strain CBS:128504 of C. constrictum. A maximum likelihood tree was constructed using MEGA-X version 10.1.6 (Kumar et al., 2018) based on a combined dataset of the ITS, ACT, CHS-1, GAPDH, and TUB2 sequences of BXG-1 and BXG-2, and those of 18 Colletotrichum spp. previously deposited in GenBank (Damm et al., 2012). The phylogenetic analysis showed that BXG-1 and BXG-2 belong to the C. constrictum clade. Based on morphology and DNA sequencing, BXG-1 and BXG-2 were identified as C. constrictum. To verify pathogenicity, passion fruit were sprayed with a suspension of 1 × 105 conidia ml-1. Control fruit were sprayed with sterilized water. After inoculation, fruit were incubated in an Artificial Climate Box at 27°C and 80% RH. Necrotic symptoms appeared 8 days after inoculation and were similar to those observed on fruit form the field. The pathogen was reisolated from lesions thus fulfilling Koch's postulates. C. constrictum has been reported to cause anthracnose of citrus from Australia (Wang et al., 2021) and mango from Italy (Ismail et al., 2015). To our knowledge, this is the first report of C. constrictum causing anthracnose on passion fruit worldwide, and these data will provide useful information for developing effective control strategies.

10.
Plant Dis ; 105(7): 1967-1975, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33289411

RESUMEN

Passiflora edulis Sims (passion fruit) is an economically important fruit crop. However, a new flower dry rot has occurred in orchards located in Zhanjiang, China, and has led to serious production loss. Its disease incidence is approximately 30 to 40%. A total of 221 isolates of Fusarium sp. were obtained from samples of three types of symptomatic flowers. Three representative single-spore isolates (PaB-1, PaB-2, and PaB-3) from each type were used for pathogenicity tests, multilocus phylogenetic analyses, and morphological descriptions. Pathogenicity tests of buds of 5-month-old P. edulis plants showed symptoms similar to those observed in nature, and Koch's postulates were achieved. By comparing 36 typical species from the FUSARIUM-ID database, multilocus phylogenetic analyses showed that the sequences of TEF1, RPB2, and ITS of these isolates belong to the Incarnatum clade of the F. incarnatum-equiseti species complex (FIESC-17-a) with an independent branch. Therefore, the pathogenic isolates were identified as F. pernambucanum (FIESC-17-a). Moreover, in this study, the conidial anastomosis tubes were first observed in the FIESC. This is the first report of flower dry rot on P. edulis caused by F. pernambucanum. Further studies should be performed to determine effective disease management strategies.


Asunto(s)
Fusarium , Passiflora , Enfermedades de las Plantas/microbiología , China , Flores , Fusarium/clasificación , Fusarium/patogenicidad , Passiflora/microbiología , Filogenia , Esporas Fúngicas
11.
Plant Dis ; 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-33999713

RESUMEN

Purple passion fruit (Passiflora edulis Sims) is a perennial climbing vine native to South America that is grown worldwide as an edible tropical fruit with excellent nutritional value and high economic value (Zibadi et al. 2007). With the increasing expansion of the plantation area in China, considerable economic loss caused by collar rot has attracted wide attention. From 2018-2020, collar rot resulted in the death of many plants of P. edulis 'Mantianxing', a commercial cultivar in China, in southwest China's Yunnan province. The disease spread quickly, and field incidence reached more than 50%. Stem rot symptoms were observed at the base of the stem, about 5-10 cm from the ground, resulting in wilting, defoliation, and death of plants. Representative symptomatic samples were collected from the base of five plants, surface disinfested for 30 seconds with 75% ethanol and 15 min with 10% hypochlorite, washed three times with sterile distilled water, then transferred to potato dextrose agar (PDA) dishes. After 2 days in the dark at 28℃, emerging fungal colonies were purified on new PDA dishes cultured at 28℃ for 7 days. The mycelia were flocculent. The color of the surface and the reverse colony was white and cream, respectively. On synthetic nutrient agar (SNA) medium, microconidia were oval, ellipsoidal or reniform, 0- or 1-septate, and 6.7-23.1 µm in length (n>30); macroconidia were straight to slightly curved, 3- or 5-septate, and 30.8-53.9 µm in length (n>30). Genomic DNA, extracted from six isolates, was amplified with three pairs of primers, ITS1 and ITS4 (White et al. 1990) , EF1-728F and EF1-986R (Carbone and Kohn 1999), and fRPB2-5F and fRPB2-7cR (Liu et al. 1999). The amplicons from all six isolates were sequenced and identical sequences obtained. The sequence of one representative isolate was uploaded to NCBI (National Center for Biotechnology Information) and analyzed with BLASTn in the Fusarium MLST database (https://fusarium.mycobank.org). The sequence of the internal transcribed spacer 1 (ITS1) region (GenBank MN944550) showed 99.1% (449/453 bp) identity to Fusarium solani strain NRRL 53667 (syn: Neocosmospora solani, GenBank MH582405). The sequence of the translation elongation factor-1 (EF-1) gene (GenBank MN938933) showed 97.8% identity (263/269 bp) to F. solani strain NRRL 32828 (GenBank DQ247135). The sequence of the second largest subunit of RNA polymerase Ⅱ (RPB2) gene (GenBank MW002686) showed 98.7% identity (810/821 bp) to F. solani strain NRRL 43441 (GenBank MH582407). Based on a multilocus phylogenetic analysis of the ITS1, EF-1 and RPB2 sequences, coupled with the morphological characteristics, the isolate (designated as NsPed1) was considered to be Neocosmospora solani (syn: Fusarium solani) (Crespo et al. 2019). Subsequently, three-month-old healthy seedlings and 45-day-old cuttings of P. edulis 'Mantianxing' plants were inoculated with the isolate NsPed1 to test its pathogenicity. Stems were wounded, approximately 1-2 mm deep, in the collar region of plants at 2 cm above the soil. A disk (9 mm in diameter) of NsPed1-colonized PDA was placed on the wound. Sterile PDA served as controls. All plants were kept in a growth chamber with 28-30°C, 60% relative humidity, and 16/8-h light/dark photoperiod. Fifteen plants were used for each treatment and replicated three times. Two weeks after inoculation, the stems of the inoculated plants turned brown with a lesion, 2-5 cm in length, and the leaves wilted. These symptoms were similar to those of the diseased plants in the field. The control plants were asymptomatic. N. solani NsPed1 was re-isolated from the infected plants, satisfying Koch's postulates. Taken together, N. solani NsPed1 was identified as the causal pathogen of collar rot in P. edulis 'Mantianxing'. Knowledge of the causal organism of collar rot in purple passion fruit will lead to improved measures to prevent and control the disease in China and other countries.

12.
Int J Mol Sci ; 22(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071242

RESUMEN

Organic acids are key components that determine the taste and flavor of fruits and play a vital role in maintaining fruit quality and nutritive value. In this study, the fruits of two cultivars of passion fruit Yellow (Passiflora edulis f. flavicarpa) and purple (Passiflora edulis f. edulis) were harvested at five different developmental stages (i.e., fruitlet, green, veraison, near-mature and mature stage) from an orchard located in subtropical region of Fujian Province, China. The contents of six organic acids were quantified using ultra-performance liquid chromatography (UPLC), activities of citric acid related enzymes were determined, and expression levels of genes involved in citric acid metabolism were measured by quantitative real-time PCR (qRT-PCR). The results revealed that citric acid was the predominant organic acid in both cultivars during fruit development. The highest citric acid contents were observed in both cultivars at green stage, which were reduced with fruit maturity. Correlation analysis showed that citrate synthase (CS), cytosolic aconitase (Cyt-ACO) and cytosolic isocitrate dehydrogenase (Cyt-IDH) may be involved in regulating citric acid biosynthesis. Meanwhile, the PeCS2, PeACO4, PeACO5 and PeIDH1 genes may play an important role in regulating the accumulation of citric acid. This study provides new insights for future elucidation of key mechanisms regulating organic acid biosynthesis in passion fruit.


Asunto(s)
Ácido Cítrico/análisis , Frutas/química , Frutas/genética , Compuestos Orgánicos/análisis , Passiflora/química , Passiflora/genética , China , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Isocitrato Deshidrogenasa , Valor Nutritivo , Passiflora/crecimiento & desarrollo , Extractos Vegetales
13.
Plant Foods Hum Nutr ; 76(2): 189-195, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33825089

RESUMEN

The common reason for mortality globally is myocardial infarction. The study aimed to evaluate Passiflora edulis (PE) fruit juice potential in the experimental isoproterenol (ISO) treated rat model to manage myocardial injury. ISO (20 mg/100 g body weight) treated rats showed a significant increment in serum marker enzymes lactate dehydrogenase (LDH) and creatinine kinase (CK), serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT), serum alkaline phosphatase (ALP) and serum acid phosphatase (ACP) activity. Besides, phosphorus and calcium, serum cholesterol, and triglyceride levels (TG) were high in ISO groups. A significant decline in antioxidant activity and histopathological alteration was observed in ISO treated groups. PE juice pre-treatment (2 ml/kg) for 28 days and ISO treatment on the 29th and 30th days showed a protective effect on distorted biochemical and histopathologic parameters compared with reference drug metoprolol. These findings indicate the cardioprotective effect of PE juice on ISO-induced myocardial infracted rats.


Asunto(s)
Infarto del Miocardio , Passiflora , Animales , Antioxidantes , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Suplementos Dietéticos , Isoproterenol/toxicidad , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/tratamiento farmacológico , Ratas , Ratas Wistar
14.
Microb Pathog ; 138: 103828, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31682997

RESUMEN

Cucumber mosaic virus (CMV) caused huge agricultural impact on Passiflora edulis. However, the interactions between CMV and P. edulis are poorly unknown, which lead to lack of prevention and control measures. In this study, we identified the infection of CMV in P. edulis through modern small RNA sequencing (sRNA-seq) technology combined with traditional electron microscope and polymerase chain reaction (PCR) methods. We also confirmed CMV infection adversely affected or modulated the contents of phytochemicals and further injured the development of P. edulis; inversely, P. edulis modulated its resistance to CMV stress by increasing the levels of secondary metabolites and the activities of antioxidant enzymes components. This is of significant importance to understand the interaction between virus infection and plant host.


Asunto(s)
Cucumovirus/fisiología , Interacciones Huésped-Patógeno , Passiflora/química , Passiflora/virología , Fitoquímicos/química , Enfermedades de las Plantas/virología , Antioxidantes/química , Antioxidantes/metabolismo , Frutas/virología , Fenotipo , Fitoquímicos/análisis , Hojas de la Planta/virología , Análisis de Secuencia de ARN
15.
Mol Biol Rep ; 47(4): 2951-2962, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32215779

RESUMEN

Passion fruit (Passiflora edulis), an important tropical and subtropical fruit, has a high edible and medicinal value. Stem rot disease is one of the most important diseases of passion fruit. An effective way for control and prevention of this disease is to identify the genes associated with resistance to this disease. Quantitative real-time PCR (RT-qPCR) has mainly been widely applied to detect gene expression because of its simplicity, fastness, low cost and high sensitivity. One of the requirements for RT-qPCR is the availability of suitable reference genes for normalization of gene expression. However, currently, no Passiflora edulis reference genes have been identified andthus it has hindered the gene expression studies in this plant. The present study aimed to address this issue. We analyzed sixteen candidate reference genes, including nine common (GAPDH, UBQ, ACT1, ACT2, EF-1α-1, EF-1α-2, TUA, NADP, and GBP) and seven novel genes (C13615, C24590, C27182, C10445, C21209, C22199, and C22526), in different tissues (stem, leaf, flower and fruit) of two accessions under stem rot condition. We calculated the expression stability in twenty-four samples using the ΔCt, GeNorm, NormFinder, BestKeeper and RefFinder. The results showed that both C21209 and EF-1α-2 were sufficient to normalize gene expression under stem rot, whereas the commonly used reference genes, GAPDH and UBQ, were the least stable ones. The expression patterns of PeUFC under stem rot condition normalized by stable and unstable reference genes indicated the suitability of using the optimal reference genes. To our knowledge, this is the first systematic study of reference genes in Passiflora edulis, which identified a number of reliable reference genes suitable for gene expression studies in Passiflora edulis by RT-qPCR.


Asunto(s)
Passiflora/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Flores/genética , Frutas , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/normas , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Factor 1 de Elongación Peptídica/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estándares de Referencia
16.
Biol Pharm Bull ; 43(1): 169-174, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31645529

RESUMEN

Different Passiflora species have been appointed as a promising herbal medicine due to antioxidant properties; however, their effect on oxidative process induced by diabetes is still controversial. We aimed to evaluate effects of hydroethanolic extract 70% from P. edulis leaf on biochemical blood markers, collagen glycation, production of oxidant species and platelet aggregation in diabetic rats. The phytochemical analysis of the extract was performed by dereplication using LC coupled to the Photodiode Array Detector and Mass Spectrometer detector. Male Wistar rats were assigned to the control group and groups treated with alloxan (150 mg/kg) intraperitoneally, extract (200 mg/kg/d, for 90 d) and combination of alloxan and extract. The phytochemical analysis suggested the presence of flavonoids C-glycosides in the extract. The diabetic animals treated with the extract presented improvement in glycaemic control, reduced glycation collagen, levels of non-high density lipoprotein (non-HDL) cholesterol, total cholesterol and creatinine, production of oxidant species and aggregation in platelet in relation to diabetic animals non-treated. Our results showed that P. edulis leaf extract presents a health benefit to the diabetic state, preventing the appearance of its complications. Its effect can be associated with flavonoids, among which is the flavonoid C-glycoside isoorientin.


Asunto(s)
Hipoglucemiantes/farmacología , Passiflora/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Inhibidores de Agregación Plaquetaria/farmacología , Aloxano/farmacología , Animales , Complicaciones de la Diabetes/sangre , Complicaciones de la Diabetes/tratamiento farmacológico , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/aislamiento & purificación , Hipoglucemiantes/uso terapéutico , Masculino , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/uso terapéutico , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/aislamiento & purificación , Inhibidores de Agregación Plaquetaria/uso terapéutico , Ratas Wistar
17.
Mikrochim Acta ; 187(7): 405, 2020 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-32594256

RESUMEN

Carbon quantum dots co-doped with iron and nitrogen (Fe@NCDs) were synthesized by using Passiflora edulis Sims (P. edulis) as a precursor. The Fe@NCDs exhibit outstanding peroxidase-mimetic activity owing to successful doping with iron resulting in a behavior similar to that of iron porphyrins. In the presence of H2O2, the Fe@NCDs catalyze the oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) with a color change from colorless to blue. The blue oxidation product has a characteristic absorption peaking at 652 nm. A colorimetric assay was worked out for uric acid (UA) that measures the hydrogen peroxide produced during oxidation of UA by uricase. Response is linear in the 2-150 µM UA concentration range, and the limit of detection is 0.64 µM. The method was applied to the determination of UA in (spiked) urine, and recoveries ranged from 92.0 to 103.4%. Graphical abstract Schematic representation of the fabrication of iron and nitrogen co-doped carbon dots (Fe@NCDs) using Passiflora edulis Sims as carbon-based materials. First, uric acid (UA) was oxidized to generate H2O2 by uricase. Then, the Fe@NCDs catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to form blue-colored oxidized TMB (oxTMB) in the presence of H2O2. UA can be quantified based on the theory.


Asunto(s)
Colorimetría/métodos , Passiflora/química , Puntos Cuánticos/química , Ácido Úrico/orina , Bencidinas/química , Carbono/química , Catálisis , Compuestos Cromogénicos/química , Humanos , Peróxido de Hidrógeno/química , Hierro/química , Límite de Detección , Nitrógeno/química , Oxidación-Reducción , Urato Oxidasa/química , Ácido Úrico/química
18.
Molecules ; 25(14)2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32674320

RESUMEN

The potential of passion fruit (Passiflora edulis Sims) epicarp to produce anthocyanin-based colorants with bioactive properties was evaluated. First, a five-level three-factor factorial design coupled with response surface methodology was implemented to optimize the extraction of anthocyanins from dark purple epicarps. The extraction yield and cyanidin-3-O-glucoside content were used as response criteria. The constructed models were fitted to the experimental data and used to calculate the optimal processing conditions (t = 38 min, T = 20 °C, S = 0% ethanol/water (v/v) acidified with citric acid to pH 3, and RS/L = 50 g/L) that lead to maximum responses (3.4 mg/g dried epicarp and 9 mg/g extract). Then, the antioxidant, antimicrobial, and cytotoxic activities of anthocyanin extracts obtained using the optimized method and a conventional extraction method were evaluated in vitro. The extract obtained by the optimized method revealed a higher bioactivity, in agreement with the higher cyanidin-3-O-glucoside content. This study highlighted the coloring and bioactive potential of a bio-based ingredient recycled from a bio-waste, which promotes a sustainable bioeconomy in the agri-food sector.


Asunto(s)
Antocianinas/química , Antocianinas/farmacología , Colorantes de Alimentos/química , Colorantes de Alimentos/farmacología , Frutas/química , Passiflora/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antocianinas/aislamiento & purificación , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Fraccionamiento Químico/métodos , Colorantes de Alimentos/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación
19.
BMC Plant Biol ; 19(1): 185, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31060504

RESUMEN

BACKGROUND: Passiflora edulis, known as passion fruit and native to South America, is now widely cultivated throughout southern China for its edible value, medicinal efficacy and ornamental properties. We have developed a cold-tolerant variety of P. edulis ('Pingtang 1') that can survive subzero temperatures and is highly adaptable in Karst areas. In this study, cuttings of 'Pingtang 1' were cultivated in a limestone (L) rocky desertification area and a sandy dolomite (D) rock desertification area. Changes in nutrient elements in both the soils and plants were revealed in the two plots. Moreover, RNA sequencing (RNA-Seq) was performed to profile the root transcriptomes for further exploration of nutrient adaptative mechanism of Passiflora edulis in Karst regions. RESULTS: In this study, a total of, 244,705,162 clean reads were generated from four cDNA libraries and assembled into 84,198 unigenes, of which 56,962 were annotated by publicly available databases. Transcriptome profiles were generated, and 1314 unigenes (531 upregulated and 801 downregulated) were significantly differentially expressed between the L and D root cDNA libraries (L_R and D_R, respectively); these profiles provide a global overview of the gene expression patterns associated with P. edulis adaptability to Karst soils. Most unigenes including a number of differentially expressed genes (DEGs) were involved in nutrient element uptake, utilization, signal regulation. And DEGs enriched in KEGG pathways of plant hormone signal transduction, phenylpropanoid biosynthesis, and biosynthesis of unsaturated fatty acids were significantly expressed. CONCLUSION: These results could contribute to better understanding the adaptation of this species to environmental stress and thus enhance the potential for successfully introducing and commercially deploying P. edulis.


Asunto(s)
Adaptación Fisiológica , Ecosistema , Nitrógeno/análisis , Passiflora/genética , Passiflora/fisiología , Fósforo/análisis , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Anotación de Secuencia Molecular , Reproducibilidad de los Resultados , Suelo/química
20.
Ann Bot ; 123(7): 1191-1203, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-30861065

RESUMEN

BACKGROUND AND AIMS: Juvenile-to-adult phase transition is marked by changes in leaf morphology, mostly due to the temporal development of the shoot apical meristem, a phenomenon known as heteroblasty. Sugars and microRNA-controlled modules are components of the heteroblastic process in Arabidopsis thaliana leaves. However, our understanding about their roles during phase-changing in other species, such as Passiflora edulis, remains limited. Unlike Arabidopsis, P. edulis (a semi-woody perennial climbing vine) undergoes remarkable changes in leaf morphology throughout juvenile-to-adult transition. Nonetheless, the underlying molecular mechanisms are unknown. METHODS: Here we evaluated the molecular mechanisms underlying the heteroblastic process by analysing the temporal expression of microRNAs and targets in leaves as well as the leaf metabolome during P. edulis development. KEY RESULTS: Metabolic profiling revealed a unique composition of metabolites associated with leaf heteroblasty. Increasing levels of glucose and α-trehalose were observed during juvenile-to-adult phase transition. Accumulation of microRNA156 (miR156) correlated with juvenile leaf traits, whilst miR172 transcript accumulation was associated with leaf adult traits. Importantly, glucose may mediate adult leaf characteristics during de novo shoot organogenesis by modulating miR156-targeted PeSPL9 expression levels at early stages of shoot development. CONCLUSIONS: Altogether, our results suggest that specific sugars may act as co-regulators, along with two microRNAs, leading to leaf morphological modifications throughout juvenile-to-adult phase transition in P. edulis.


Asunto(s)
Arabidopsis , MicroARNs , Passiflora , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA