Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37836705

RESUMEN

Peanut meal (PM) is a by-product of extracting oil from peanut kernels. Although peanut meal contains protein, carbohydrates, minerals, vitamins, and small amounts of polyphenols and fiber, it has long been used as a feed in the poultry and livestock industries due to its coarse texture and unpleasant taste. It is less commonly utilized in the food processing industry. In recent years, there has been an increasing amount of research conducted on the deep processing of by-products from oil crops, resulting in the high-value processing and utilization of by-products from various oil crops. These include peanut meal, which undergoes treatments such as enzymatic hydrolysis in industries like food, chemical, and aquaculture. The proteins, lipids, polyphenols, fibers, and other components present in these by-products and hydrolysates can be incorporated into products for further utilization. This review focuses on the research progress in various fields, such as the food processing, breeding, and industrial fields, regarding the high-value utilization of peanut meal and its hydrolysates. The aim is to provide valuable insights and strategies for maximizing the utilization of peanut meal resources.


Asunto(s)
Arachis , Fitomejoramiento , Manipulación de Alimentos , Hidrolisados de Proteína , Industria de Procesamiento de Alimentos , Polifenoles
2.
Plant Foods Hum Nutr ; 78(1): 13-24, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36650319

RESUMEN

Environmental costs associated with meat production have necessitated researchers and food manufacturers to explore alternative sources of high-quality protein, especially from plant origin. Proteins from peanuts and peanut-by products are high-quality, matching industrial standards and nutritional requirements. This review contributes to recent developments in the production of proteins from peanut and peanut meal. Conventional processing techniques such as hot-pressing kernels, use of solvents in oil removal, and employing harsh acids and alkalis denature the protein and damage its functional properties, limiting its use in food formulations. Controlled hydrolysis (degree of hydrolysis between 1 and 10%) using neutral and alkaline proteases can extract proteins and improve peanut proteins' functional properties, including solubility, emulsification, and foaming activity. Peanut proteins can potentially be incorporated into meat analogues, bread, soups, confectionery, frozen desserts, and cakes. Recently, pretreatment techniques (microwave, ultrasound, high pressure, and atmospheric cold plasma) have been explored to enhance protein extraction and improve protein functionalities. However, most of the literature on physicochemical pretreatment techniques has been limited to the lab scale and has not been analysed at the pilot scale. Peanut-derived peptides also exhibit antioxidant, anti-hypertensive, and anti-thrombotic properties. There exists a potential to incorporate these peptides into high-fat foods to retard oxidation. These peptides can also be consumed as dietary supplements for regulating blood pressure. Further research is required to analyse the sensory attributes and shelf lives of these novel products. In addition, animal models or clinical trials need to be conducted to validate these results on a larger scale.


Asunto(s)
Arachis , Péptidos , Animales , Arachis/química , Hidrólisis , Hidrolisados de Proteína/química , Antioxidantes
3.
Molecules ; 27(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35956827

RESUMEN

Plant protein-based adhesives could fundamentally solve the problem of formaldehyde-based adhesive releasing formaldehyde, but enhancing bonding strength and water resistance is a necessary measure to realize practical applications. In this study, the effects of different denaturants on the properties of a hot-pressed peanut meal (HPM)-based adhesive before and after crosslinking were studied. Papain, sodium dodecyl sulfate (SDS), urea and crosslinker-polyamide epichlorohydrin (PAE) were used to prepare HPM-based adhesives. The functional groups, bonding strength, thermal behaviors, mass loss, moisture uptake value, viscosity and fracture surface of adhesive samples were analyzed. As a result, (1) papain was used to break HPM protein (HPMP) into polypeptide chains and to reduce the water resistance. (2) SDS and urea unfold the HPMP molecule and expose internal hydrophobic groups to improve the water resistance of the adhesive. (3) A denser network structure was formed by PAE and HPMP molecules, which significantly improved the bonding strength and water resistance of adhesives. In particular, after SDS denaturation and PAE crosslinking, compared with pure HPM adhesive, the wet shear strength increased by 96.4%, the mass loss and moisture uptake value reduced by 41.4% and 69.4%, and viscosity increased by 30.4%. This work provided an essential guide to design and prepare HPM-based adhesives.


Asunto(s)
Adhesivos , Arachis , Adhesivos/química , Formaldehído , Papaína , Urea , Agua
4.
Br J Nutr ; : 1-28, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34776018

RESUMEN

Our previous studies have shown that the nutritional properties of peanut meal after fermentation are markedly improved. In this study, in order to facilitate the further utilization of peanut meal, we investigated the effects of its fermentation extract by Bacillus natto (FE) on cognitive ability, antioxidant activity of brain, and protein expression of hippocampus of aging rats induced by D-galactose. Seventy-two female SD rats aged 4-5 months were randomly divided into six groups: normal control group (N), aging model group (M), FE low-dose group (FL), FE medium-dose group (FM), FE high-dose group (FH) and vitamin E positive control group (Y). Morris water maze (MWM) test was performed to evaluate their effects on learning and memory ability in aging rats. SOD activity and malondialdehyde (MDA) content of brain, HE staining and the expression of γ-aminobutyric acid receptor 1 (GABABR1) and N-methyl-D-aspartic acid 2B receptor (NMDAR2B) in the hippocampus of rats were measured. The results show that FE supplementation can effectively alleviate the decrease of thymus index induced by aging, decrease the escape latency of MWM by 66.06%, brain MDA by 28.04%, hippocampus GABABR1 expression by 7.98%, and increase brain SOD by 63.54% in aging model rats. This study provides evidence for its anti-aging effects and is a research basis for potential nutritional benefits of underutilized food by-products.

5.
J Sci Food Agric ; 101(6): 2561-2569, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33063356

RESUMEN

BACKGROUND: Hyperlipidemia is one of the metabolic disorders that poses a great threat to human health. This study is aimed at investigating the potential hypolipidemic properties of extract from peanut meal fermented with Bacillus natto and Monascus in mice fed with a high-fat diet. Herein, 60 male C57BL/6J mice were randomly divided into six groups: four control groups, comprised of a normal group, a model (M) group, a positive control group (atorvastatin 10 mg kg-1 ), and a nonfermented peanut meal extract group (150 mg kg-1 ), and two experimental groups, comprised of a fermented peanut meal extract low-dose group (50 mg kg-1 ) and a fermented peanut meal extract high-dose group (FH, 150 mg kg-1 ). RESULTS: Body weight (P = 0.001) and levels of serum total cholesterol (P = 0.007), triacylglycerol (P = 0.040), low-density lipoprotein cholesterol (P < 0.001), and leptin (P < 0.001) were remarkably decreased in the FH group, whereas the serum high-density lipoprotein cholesterol levels were increased (P < 0.001) by 78.3% compared with the M group. Ileum tissue stained with hematoxylin and eosin showed that the ileal villus detachments in mice were improved, and the villus height was increased by supplementation with extract from fermented peanut meal. Moreover, the expressions of intestinal ZO-1 (P = 0.003) and occludin (P = 0.013) were elevated in the FH group, compared with the M group. CONCLUSION: Extract of peanut meal fermented by B. natto and Monascus can effectively improve hyperlipidemia caused by a high-fat diet in mice, via regulating leptin and blood lipid levels, and protect the intestinal mucosal barrier, which provides evidence for its anti-hyperlipidemia effects and is a research basis for potential industrial development. © 2020 Society of Chemical Industry.


Asunto(s)
Arachis/metabolismo , Bacillus/metabolismo , Hiperlipidemias/dietoterapia , Hipolipemiantes/metabolismo , Metabolismo de los Lípidos , Monascus/metabolismo , Extractos Vegetales/metabolismo , Animales , Arachis/microbiología , HDL-Colesterol , LDL-Colesterol , Dieta Alta en Grasa/efectos adversos , Fermentación , Humanos , Hiperlipidemias/etiología , Hiperlipidemias/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Alimentos de Soja/análisis , Alimentos de Soja/microbiología , Triglicéridos/metabolismo
6.
Br J Nutr ; 123(4): 383-393, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31769373

RESUMEN

Recent studies have demonstrated that the nutritional properties of peanut meal (PM) can be improved after being fermented. The assessment of fermented PM has been reported to be limited to various physical and chemical evaluations in vitro. In the present study, PM was fermented by Bacillus natto to explore the effects of fermented PM extract (FE) on growth performance, learning and memory ability and intestinal microflora in mice. Ninety newly weaned male Kunming (KM) mice were randomly divided into seven groups: normal group (n 20), low-dose FE group (n 10), middle-dose FE group (MFE) (n 10), high-dose FE group (HFE) (n 20), unfermented extraction group (n 10), model group (10) and natural recovery group (10). Learning and memory skills were performed by the Morris water maze (MWM) test, and the variation in gut microbiota (GM) composition was assessed by 16S rDNA amplicon sequencing. The results show that HFE remarkably improved the growth performance in mice. In the MWM test, escape latency was shortened in both MFE and HFE groups, while the percentage of time, distance in target quadrant and the number crossing over the platform were significantly increased in the HFE group. Moreover, the FE played a preventive role in the dysbacteriosis of mice induced by antibiotic and increased the richness and species evenness of GM in mice.


Asunto(s)
Arachis , Microbioma Gastrointestinal/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Bacillus , Fermentación , Ratones
7.
Trop Anim Health Prod ; 50(1): 155-160, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28940096

RESUMEN

The aim of this study was to evaluate the animal performance, commercial cuts, and their yields within the production system, and economics of sheep production, of lambs finished in feedlots and fed with or without biodiesel co-products. A total of 40 lambs were divided into four biodiesel co-product treatment groups: a no-treatment control; peanut meal; crude glycerin; and peanut meal + crude glycerin. Animal performance did not differ (P > 0.05) among the treatment groups, where the average daily gain was close to 0.26 kg/day. Likewise, the quantitative carcass characteristics did not differ (P > 0.05) and the biological mean yield was 54.92%. Similarly, the commercial cuts and their yields did not differ (P ≥ 0.09) among the treatments. These results took into consideration the standard, age, and slaughter body weight of the animals. The economic evaluation determined that peanut meal was the best co-product for use in finishing lambs in a feedlot. Hence, all the biodiesel co-products evaluated can be used at feedlots to finish lambs without changing the variables measured.


Asunto(s)
Alimentación Animal/análisis , Biocombustibles , Dieta/veterinaria , Carne/normas , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Composición Corporal , Peso Corporal , Análisis Costo-Beneficio , Masculino , Ovinos/fisiología
8.
Lett Appl Microbiol ; 60(6): 544-51, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25647487

RESUMEN

The potential of using corn steep liquor powder (CSLP), peanut meal (PM), soybean meal (SM), cotton meal (CM) and urea as the substitute of yeast extract (YE) as the nitrogen source was investigated for producing succinic acid (SA). Actinobacillus succinogenes GXAS137 was used as the fermenting bacterium and sugarcane molasses was used as the main substrate. None of these materials were able to produce SA as high as YE did. The CSLP could still be considered as a feasible and inexpensive alternate for YE as the yield of SA produced using CSLP was second only to the yield of SA obtained by YE. The use of CSLP-PM mixed formulation (CSLP to PM ratio = 2·6) as nitrogen source produced SA up to 59·2 g l(-1) with a productivity of 1·2 g l(-1) h(-1). A batch fermentation using a stirred bioreactor produced up to 60·7 g l(-1) of SA at the same formulation. Fed-batch fermentation that minimized the substrate inhibition produced 64·7 g l(-1) SA. These results suggest that sugarcane molasses supplemented with a mixture of CSLP and PM as the nitrogen source could be used to produce SA more economically using A. succinogenes. Significance and impact of the study: Succinic acid (SA) is commonly used as a platform chemical to produce a number of high value derivatives. Yeast extract (YE) is used as a nitrogen source to produce SA. The high cost of YE is currently the limiting factor for industrial production of SA. This study reports the use of a mixture of corn steep liquor powder (CSLP) and peanut meal (PM) as an inexpensive nitrogen source to substitute YE. The results showed that this CSLP-PM mixed formulation can be used as an effective and economic nitrogen source for the production of SA.


Asunto(s)
Actinobacillus/metabolismo , Arachis/metabolismo , Reactores Biológicos/microbiología , Ácido Succínico/metabolismo , Zea mays/metabolismo , Fermentación/fisiología , Melaza , Nitrógeno/metabolismo , Saccharum/metabolismo , Glycine max/metabolismo
9.
Sensors (Basel) ; 15(5): 11169-88, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25985162

RESUMEN

Peanut meal is the byproduct of high-temperature peanut oil extraction; it is mainly composed of proteins, which have complex tastes after enzymatic hydrolysis to free amino acids and small peptides. The enzymatic hydrolysis method was adopted by using two compound proteases of trypsin and flavorzyme to hydrolyze peanut meal aiming to provide a flavor base. Hence, it is necessary to assess the taste attributes and assign definite taste scores of peanut meal double enzymatic hydrolysis hydrolysates (DEH). Conventionally, sensory analysis is used to assess taste intensity in DEH. However, it has disadvantages because it is expensive and laborious. Hence, in this study, both taste attributes and taste scores of peanut meal DEH were evaluated using an electronic tongue. In this regard, the response characteristics of the electronic tongue to the DEH samples and standard five taste samples were researched to qualitatively assess the taste attributes using PCA and DFA. PLS and RBF neural network (RBFNN) quantitative prediction models were employed to compare predictive abilities and to correlate results obtained from the electronic tongue and sensory analysis, respectively. The results showed that all prediction models had good correlations between the predicted scores from electronic tongue and those obtained from sensory analysis. The PLS and RBFNN prediction models constructed using the voltage response values from the sensors exhibited higher correlation and prediction ability than that of principal components. As compared with the taste performance by PLS model, that of RBFNN models was better. This study exhibits potential advantages and a concise objective taste assessment tool using the electronic tongue in the assessment of DEH taste attributes in the food industry.


Asunto(s)
Arachis/química , Arachis/clasificación , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Nariz Electrónica , Nueces/química , Algoritmos , Análisis por Conglomerados , Hidrólisis , Modelos Lineales
10.
J Anim Physiol Anim Nutr (Berl) ; 98(5): 830-7, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24164258

RESUMEN

To improve the functional properties of peanut meal protein for wide utilization, hydrolysis was conducted by alcalase. Compared with saline and peanut meal protein, intragastric administration of low molecular weight (<1 kD) peanut meal peptide (PPH I) could significantly prolong swimming time, increase levels of blood sugar, non-esterified fatty acids (NEFA) and liver glycogen and decrease blood lactate content in mice. Levels of Pro, Leu, Val and His in low molecular weight peanut meal peptides were higher significantly than those in other peanut meal protein hydrolysates. Hydrophobic amino acids, such as Pro, Tyr and His, could perhaps capture free radical and increase antioxidant capacity of peanut peptide and retard fatigue induced by free radical. After separation by HPLC, a primary peptide P1, Pro-Glu-Ile-Glu-Val, was sequenced. Its N-terminal was Val, and it was rich in antioxidant amino acid, Pro and Ile. Levels of plasma glucose, NEFA and liver glycogen in PPH I group were higher than those in mice intragastric administration with peptide P1, and the swimming time is longer in PPH I group than in P1 group. So, the high content of P1 was one of the reason why PPH I had high endurance-enhancing capacity.


Asunto(s)
Arachis/química , Resistencia Física/efectos de los fármacos , Proteínas de Plantas/farmacología , Hidrolisados de Proteína/farmacología , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta , Masculino , Ratones , Proteínas de Plantas/química , Hidrolisados de Proteína/química , Natación
11.
Foods ; 13(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38928828

RESUMEN

Aflatoxin B1 (AFB1) contamination in food and feed is a global health and economic threat, necessitating the immediate development of effective strategies to mitigate its negative effects. This study focuses on the isolation and characterization of Enterococcus faecium HB2-2 (E. faecium HB2-2) as a potent AFB1-degrading microorganism, using morphological observation, biochemical profiling, and 16S rRNA sequence analysis. An incubation of E. faecium HB2-2 at 32 °C for 96 h in a pH 10 nutrient broth (NB) medium resulted in a remarkable degradation rate of 90.0% for AFB1. Furthermore, E. faecium HB2-2 demonstrated 82.9% AFB1 degradation rate in the peanut meal, reducing AFB1 levels from 105.1 to 17.9 µg/kg. The AFB1 degradation ability of E. faecium HB2-2 was found to be dependent on the fermentation supernatant. The products of AFB1 degradation by E. faecium HB2-2 were analyzed by liquid chromatography-mass spectrometry (LC-MS), and a possible degradation mechanism was proposed based on the identified degradation products. Additionally, cytotoxicity assays revealed a significant reduction in the toxicity of the degradation products compared to the parent AFB1. These findings highlight the potential of E. faecium HB2-2 as a safe and effective method for mitigating AFB1 contamination in food and feed.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124394, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38723467

RESUMEN

A fast, simple and reagent-free detection method for aflatoxin B1 (AFB1) is of great significance to food safety and human health. Visible and near-infrared (Vis-NIR) spectroscopy was applied to the discriminant analysis of AFB1 excessive standard of peanut meal as feedstuff materials. Two types of excessive standard discriminant models based on spectral quantitative analysis with partial least squares (PLS) and direct pattern recognition with partial least squares-discrimination analysis (PLS-DA) were established, respectively. Multi-parameter optimization of Norris derivative filtering (NDF) was used for spectral preprocessing; the two-stage wavelength screening method based on equidistant combination-wavelength step-by-step phase-out (EC-WSP) was used for wavelength optimization. A rigorous sample experimental design of calibration-prediction-validation was utilized. The calibration and prediction samples were used for modeling and parameter optimization, and the selected model was validated using the independent validation samples. For quantitative analysis-based, the positive, negative and total recognition-accuracy rates in validation (RARV+, RARV-, and RARV) were 84.8 %, 74.6 % and 79.8 %, respectively; but, the relative root mean square error of prediction was as high as 51.0 %. For pattern recognition-based, the RARV+, RARV-, and RARV were 93.3 %, 90.5 % and 91.9 %, respectively. Moreover, the number of wavelengths N was drastically reduced to 17, and the discrete wavelength combination was in NIR overtone frequency region. The results indicated that, the EC-WSP-PLS-DA model achieved significantly better discrimination effect. Thus demonstrated that Vis-NIR spectroscopy has feasibility for the excessive standard discrimination of aflatoxin B1 in feedstuff materials.


Asunto(s)
Aflatoxina B1 , Arachis , Espectroscopía Infrarroja Corta , Aflatoxina B1/análisis , Arachis/química , Espectroscopía Infrarroja Corta/métodos , Análisis Discriminante , Análisis de los Mínimos Cuadrados , Contaminación de Alimentos/análisis , Calibración , Reproducibilidad de los Resultados
13.
Bioresour Technol ; 369: 128426, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36462764

RESUMEN

The high cost and severe foam in rhamnolipid fermentation are still bottlenecks for its industrial production and application. Non-foaming production of rhamnolipid by Pseudomonas aeruginosa FA1 was explored in solid-state fermentation using the agro-processing waste (peanut meal) as low-cost substrate. An environmental-friendly extraction method was developed to harvest rhamnolipid from solid-state culture. Strain FA1 produced 265.4 ± 8.2 mg rhamnolipid using 10 g peanut meal. HPLC-MS results revealed that 7 rhamnolipid homologues were produced, mainly including Rha-C8-C10 and Rha-Rha-C10-C10. Nitrate was the optimal nitrogen source. Peanut meal, MgSO4 and CaCl2 were significant factors for rhamnolipid production in solid-state fermentation. Rhamnolipid production was enhanced 31 % using the solid-state medium optimized by response surface method. The produced rhamnolipid reduced water surface tension to 28.1 ± 0.2 mN/m with a critical micelle concentration of 70 mg/L. The crude oil was emulsified with an emulsification index of 75.56 ± 1.29 %. The growth of tested bacteria and fungi was inhibited.


Asunto(s)
Arachis , Petróleo , Fermentación , Pseudomonas aeruginosa , Glucolípidos , Tensoactivos
14.
Foods ; 12(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36766195

RESUMEN

Hot-pressed peanut meal protein hydrolysates are rich in Arg residue, but there is a lack of research on their α-glucosidase inhibitory activity. In this study, different proteases were used to produce hot-pressed peanut meal protein hydrolysates (PMHs) to evaluate the α-glucosidase inhibitory activity. All PMHs showed good α-glucosidase inhibitory activity with the best inhibition effect coming from the dual enzyme system of Alcalase and Neutrase with an IC50 of 5.63 ± 0.19 mg/mL. The fractions with the highest inhibition effect were separated and purified using ultrafiltration and cation exchange chromatography. Four novel α-glucosidase inhibitory peptides (FYNPAAGR, PGVLPVAS, FFVPPSQQ, and FSYNPQAG) were identified by nano-HPLC-MS/MS and molecular docking. Molecular docking showed that peptides could occupy the active pocket of α-glucosidase through hydrogen bonding, hydrophobic interaction, salt bridges, and π-stacking, thus preventing the formation of complexes between α-glucosidase and the substrate. In addition, the α-glucosidase inhibitory activity of PMHs was stable against hot, pH treatment and in vitro gastrointestinal digestion. The study demonstrated that PMHs might be used as a natural anti-diabetic material with the potential to inhibit α-glucosidase.

15.
J Agric Food Chem ; 71(20): 7812-7819, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37170549

RESUMEN

Defatted peanut meal protein hydrolysates (DPMHs) usually have a bitter taste. γ-Glutamylation by Bacillus amyloliquefaciens l-glutaminase was introduced to DPMH to reduce its bitterness and generated a γ-glutamylated product (DPMH-G). Extra l-glutamine (l-Gln) (5% w/w) was added to DPMH, and the mixture was then γ-glutamylated (DPMH-G-Q). Results showed that γ-glutamylation decreased the bitterness of the products and also enhanced their kokumi, umami, and salty taste, especially for DPMH-G-Q. Bitter amino acids and bitter peptides were found to be substrates (acceptors) of the synthesized γ-[Glu](1,2)-AAs and γ-Glu-AA-AAs, respectively. The production yield of γ-[Glu](1,2)-AAs was only 0.69/100 g for DPMH-G and 2.30/100 g for DPMH-G-Q, which was much lower than that of γ-Glu-AA-AAs (5.73/100 g for DPMH-G and 18.72/100 g for DPMH-G-Q). The improvement in taste attributes of DPMH might mainly be due to the consumption of bitter dipeptides and the production of γ-Glu-AA-AAs. In DPMH-G-Q, eight γ-Glu-AA-AAs were identified, including γ-Glu-Ile-Lys, γ-Glu-Ala-Ile, γ-Glu-Leu-Leu, γ-Glu-Phe-Leu, γ-Glu-Thr-Leu, γ-Glu-Ile-Met, γ-Glu-Val-Leu, and γ-Glu-Ser-Tyr, which were first time reported. They all can enhance umami, salty, and kokumi taste with a threshold value between 1.61 ± 0.21-2.16 ± 0.19, 1.65 ± 0.19-2.23 ± 0.20, and 0.67 ± 0.21-1.00 ± 0.22 mM, respectively. Insufficient l-Gln restricted the formation of γ-glutamyl peptides, and this was why DPMH-G had a lower yield and variety than DPMH-G-Q. This also suggested that l-glutaminase is selective to different substrates. Overall, this study provides a new method to reduce the bitterness of protein hydrolysates and also improve the taste by synthesizing γ-glutamyl tripeptides.


Asunto(s)
Fabaceae , Gusto , Arachis/metabolismo , Hidrolisados de Proteína , Glutaminasa , Dipéptidos/metabolismo , Péptidos , Glutamina/metabolismo , Fabaceae/metabolismo
16.
J Food Sci Technol ; 49(5): 521-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24082262

RESUMEN

Peanut is one of the most important oil and protein producing crops in the world. Yet the amounts of peanut processing by-products containing proteins, fiber and polyphenolics are staggering. With the environmental awareness and scarcity of space for landfilling, wastes/by-product utilization has become an attractive alternative to disposal. Several peanut by-products are produced from crush peanut processes and harvested peanut, including peanut meal, peanut skin, peanut hull and peanut vine. Some of peanut by-products/waste materials could possibility be used in food processing industry, The by-products of peanut contain many functional compounds, such as protein, fiber and polyphenolics, which can be incorporated into processed foods to serve as functional ingredients. This paper briefly describes various peanut by-products produced, as well as current best recovering and recycling use options for these peanut byproducts. Materials, productions, properties, potential applications in food manufacture of emerging materials, as well as environmental impact are also briefly discussed.

17.
Saudi J Biol Sci ; 29(6): 103291, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35521356

RESUMEN

The present study aimed to evaluate the impact of feeding peanut meal and linseed meal (LSM) with or without enzyme mixture on growth, plasma metabolites, muscle amino acid (AA) profile, nutrient digestibility, and expression of nutrient absorption-related genes in broilers. A total of 560 one-day-old Cobb-500 male broiler chicks were distributed into eight experimental treatments (7 replications of 10 chicks each) as follows: This study was designed by using 560 one-day-old Cobb-500 male broiler chicks were distributed into eight experimental groups (7 replications of 10 chicks each) to evaluate the differences in body weight, body weight gain, feed intake, feed conversion rate, carcass parts, blood biochemical and mRNA expression genes. Group 1 (C) control fed the basal diet without supplements, Group 2 (C + E) is control group fed on 350 g/ton enzyme mixture, Group 3 (C + PNM100) is control group fed 100 kg/ton peanut meal, Group 4 (C + E + PNM100) is a control group fed on 350 g/ton enzyme mixture and 100 kg/ton peanut meal, Group 5 (C + LSM100) is a control group fed on 100 kg/ton linseed meal, Group 6 (C + E + LSM100) is a control group fed on 350 g/ton enzyme mixture and 100 kg/ton linseed meal, Group 7 (C + PNM50 + LSM50) is control group fed on 50 kg/ton peanut meal and 50 kg/ton linseed meal. Group 8 (C + E + PNM50 + LSM50) is the control group fed on 50 kg/ton peanut meal and 50 kg/ton linseed meal. Each gram of the enzyme mixture contains 11,000 U Xylanase, 6000 U Cellulase, 700 U ß-Mannanase, 1500 U Phytase, 5 mg α-Amylase, and 2 mg Protease. No differences in Bodyweight, Bodyweight gain, Feed intake, and carcass parts were noticed among experimental groups, while abdominal fat (%) and FCR were reduced (P < 0.05) in PNM50 + LSM50 + E and LSM100 groups. Plasma metabolites were not altered except total cholesterol, triglyceride, and LDL, reduced (P < 0.01) in treated birds. Dietary inclusion of 100 kg PNM or LSM reduced (P < 0.05) methionine concentration in muscle, while all remaining AA and ammonia concentrations were unaffected. Hepatic MDA contents were reduced (P < 0.001) in treated groups. Nutrient digestibility was not altered among groups except for protein digestibility, which was elevated (P < 0.05) in PNM50 + LSM50 + E, E, and PNM100 + E groups. The highest mRNA expressions of PepT1, APN, SGLT1, HMGCR, GHr, and IGF-1 genes were noticed in PNM50 + LSM50 + E. Conclusively, PNM and LSM can efficiently substitute corn and soybean meal in broiler diets, particularly when fortified with exogenous enzymes, without negative impacts on broiler performance.

18.
Foods ; 11(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35681294

RESUMEN

Instant flavor peanut powder is a nutritional additive that can be added to foods to impart nutritional value and functional properties. Sensory acceptability is the premise of its development. Flavor is the most critical factor in sensory evaluation. The heat treatment involved in peanut processing is the main way to produce flavor substances and involves chemical reactions: Maillard reaction, caramelization reaction, and lipid oxidation reaction. Peanut is rich in protein, fat, amino acids, fatty acids, and unsaturated fatty acids, which participate in these reactions as volatile precursors. N-heterocyclic compounds, such as the pyrazine, are considered to be the key odorants of the "baking aroma". However, heat treatment also affects the functional properties of peanut protein (especially solubility) and changes the nutritional value of the final product. In contrast, functional properties affect the behavior of proteins during processing and storage. Peanut protein modification is the current research hotspot in the field of deep processing of plant protein, which is an effective method to solve the protein denaturation caused by heat treatment. The review briefly describes the characterization and mechanism of peanut flavor during heat treatment combined with solubilization modification technology, proposing the possibility of using peanut meal as material to produce IFPP.

19.
Heliyon ; 7(5): e06874, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34027147

RESUMEN

Healthful tasty high protein, vegetable, gluten-free snacks are needed for all as well as those sensitive to gluten for in between meals and for after school events. Peanut meal a low value farm by-product was used to increase protein content and to add value for growers. Bile acid binding okra with cholesterol lowering potential and jalapeno, turmeric and ginger with healthy phytonutrients were included to increase vegetable consumption. The objective was to have healthy tasty snacks with ≥24% protein content. Gluten-free, whole grain, high protein, Sorghum-Peanut meal-Okra (SPO) and SPO-Jalapeno, SPO-Turmeric root and SPO-Ginger root snacks were sensory evaluated by 73 volunteers. Physical testing of the snacks included water activity, true and bulk density, texture and proximate analyses. Taste and Odor of the SPO and SPO-Jalapeno snacks were similar and significantly (p ≤ 0.05) higher than SPO-Turmeric root and SPO-Ginger root. Acceptability of SPO and SPO-Jalapeno snacks were both 88%; this value is quite desirable. Acceptability of SPO-Turmeric and SPO-Ginger were only 56 and 51% respectively. Turmeric and ginger have been reported with many health benefits; however these snacks were not preferred by the tasters. Water activity (Aw) of the snacks tested was SPO (0.42) < SPO-Turmeric (0.52) < SPO-Jalapeno (0.54) < SPO-Ginger (0.62). Water activity indicates that all the snacks were crispy and had longer shelf life. Expansion of these snacks was SPO-Ginger root 84%, SPO-Turmeric root 76%, SPO-Jalapeno 42% and SPO only 14%. Data suggest snacks containing spices were fluffy and would give good presentation in packaging. The objective of attaining protein level was clearly attained, as values ranged 24-26%. These snacks are easy to make in house kitchens or by food companies. These healthy snacks offer a gluten-free, high protein, tasty choice for all, including vegetarians and individuals hypersensitive to gluten.

20.
Foods ; 10(10)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681543

RESUMEN

Dietary acrylamide formed during baking and frying of plant-based foods such as bread and other cereal products, coffee, fried potatoes, and olives is reported to induce genotoxic, carcinogenic, neurotoxic, and antifertility properties in vivo, suggesting the need to keep the acrylamide content low with respect to widely consumed heat-processed food including flatbreads. Due to the fact that pigmented corn flours contain biologically active and health-promoting phenolic and anthocyanin compounds, the objective of this study was to potentially define beneficial properties of flatbread by evaluating the acrylamide content determined by high-performance liquid chromatography/mass spectrometry (HPLC/MS) with a detection limit of 1.8 µg/kg and proximate composition by standard methods of six experimental flatbreads made from two white, two blue, one red, and one yellow corn flours obtained by milling commercial seeds. Acrylamide content was also determined in experimental flatbreads made from combinations in quinoa flour, wheat flour, and peanut meal with added broccoli or beet vegetables and of commercial flatbreads including tortillas and wraps. Proximate analysis of flatbreads showed significant differences in protein and fat but not in carbohydrate, mineral, and water content. The acrylamide content of 16 evaluated flatbreads ranged from 0 to 49.1 µg/kg, suggesting that these flatbreads have the potential to serve as low-acrylamide functional foods. The dietary significance of the results is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA