Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 368
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell Biochem Funct ; 42(4): e4060, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38816947

RESUMEN

Perfluorooctane sulfonate (PFOS) is a pervasive organic toxicant that damages body organs, including heart. Isosakuranetin (ISN) is a plant-based flavonoid that exhibits a broad range of pharmacological potentials. The current investigation was conducted to evaluate the potential role of ISN to counteract PFOS-induced cardiac damage in rats. Twenty-four albino rats (Rattus norvegicus) were distributed into four groups, including control, PFOS (10 mg/kg) intoxicated, PFOS + ISN (10 mg/kg + 20 mg/kg) treated, and ISN (20 mg/kg) alone supplemented group. It was revealed that PFOS intoxication reduced the expressions of Nrf-2 and its antioxidant genes while escalating the expression of Keap-1. Furthermore, PFOS exposure reduced the activities of glutathione reductase (GSR), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), Heme oxygenase-1 (HO-1) and glutathione (GSH) contents while upregulating the levels of reactive oxygen species (ROS) and malondialdehyde (MDA). Besides, PFOS administration upregulated the levels of creatine kinase-MB (CK-MB), troponin I, creatine phosphokinase (CPK), and lactate dehydrogenase (LDH). Moreover, the levels of tumor necrosis factor-alpha (TNF-α), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) were increased after PFOS intoxication. Additionally, PFOS exposure downregulated the expression of Bcl-2 while upregulating the expressions of Bax and Caspase-3. Furthermore, PFOS administration disrupted the normal architecture of cardiac tissues. Nonetheless, ISN treatment remarkably protected the cardiac tissues via regulating aforementioned dysregulations owing to its antioxidative, anti-inflammatory, and antiapoptotic properties.


Asunto(s)
Ácidos Alcanesulfónicos , Apoptosis , Cardiotoxicidad , Flavonoides , Fluorocarburos , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Animales , Ratas , Ácidos Alcanesulfónicos/farmacología , Ácidos Alcanesulfónicos/toxicidad , Apoptosis/efectos de los fármacos , Flavonas/farmacología , Fluorocarburos/farmacología , Fluorocarburos/toxicidad , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/inducido químicamente , Inflamación/patología , Proteína 1 Asociada A ECH Tipo Kelch/efectos de los fármacos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Cardiotoxicidad/metabolismo , Flavonoides/farmacología
2.
Arch Toxicol ; 98(1): 207-221, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37955688

RESUMEN

Perfluorooctane sulfonate (PFOS) is widely used in industry and consumer products. Previous studies have showed that PFOS gestational exposure is associated with offspring lung damage in rat. However, the underlying mechanisms remain poorly understood. In this study, we investigated the role of gasdermin E (GSDME) in lung injury of offspring and its underlying mechanisms using in vivo and in vitro approaches. Pregnant SD rats were exposed to PFOS (1 mg/kg BW/d) between gestational day 12-18, and the lung tissue of the offspring was evaluated on postnatal day 7. PFOS treated animals exhibited alveolar septal thickening and inflammation-related damages, with an increased expression of GSDME in alveolar type II epithelial cells (AECII). Furthermore, in vitro experiments demonstrated that PFOS exposure (with 225 µM and up) upregulated the caspase-3/GSDME signaling pathway in AECII. Also, ultrastructure analysis revealed significant changes in the endoplasmic reticulum (ER) structure in PFOS-induced pyroptotic cells, which is consistent with the ER stress detected in these cells. Additionally, PFOS exposure led to increased expression of ER stress-related proteins, including p-PERK, p-eIF2α, ATF4, and CHOP. Subsequently, using specific inhibitors, we found that the PERK/ATF4 pathway acted as an upstream signal regulating GSDME-dependent pyroptosis. Overall, our findings show that GSDME-dependent pyroptosis plays a crucial role in the lung injury induced by gestational PFOS exposure, and the PERK/ATF4 pathway may function as a possible mediator of this process.


Asunto(s)
Lesión Pulmonar , Piroptosis , Animales , Ratas , Factor de Transcripción Activador 4/metabolismo , Caspasa 3/metabolismo , Estrés del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/metabolismo , Lesión Pulmonar/inducido químicamente , Ratas Sprague-Dawley , Transducción de Señal , Factor de Transcripción CHOP/metabolismo
3.
Ecotoxicol Environ Saf ; 270: 115862, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157801

RESUMEN

Epidemiological and experimental research has indicated an association between perfluorooctane sulfonate (PFOS) exposure and liver disease. However, the potential hepatotoxic effects and mechanisms of low-level prenatal PFOS exposure in offspring remain ambiguous. The objective of this research was to examine the alterations in liver transcriptomic and metabolomic profiles in offspring rats at postnatal day (PND) 30 following gestational and lactational exposure to PFOS (from gestational day 1 to 20 and PND 1 to 21). Pregnant Sprague-Dawley rats were separated into a control group (3% starch gel solution, oral gavage) and a PFOS exposure group (0.03 mg/kg body weight per day, oral gavage). Histopathological changes in liver sections were observed by hematoxylin and eosin staining. Biochemical analysis was conducted to evaluate changes in glucose and lipid metabolism. Transcriptomic and metabolomic analyses were utilized to identify significant genes and metabolites associated with alterations of liver glucose and lipid metabolism through an integrated multi-omics analysis. No significant differences were found in the measured biochemical parameters. In total, 167 significant differentially expressed genes (DEGs) related to processes such as steroid biosynthesis, PPAR signaling pathway, and fat digestion and absorption were identified in offspring rats in the PFOS exposure group. Ninety-five altered metabolites were exhibited in the PFOS exposure group, such as heptaethylene glycol, lysoPE (0:0/18:0), lucidenic acid K, and p-Cresol sulfate. DEGs associated with steroid biosynthesis, PPAR signaling pathway, fat digestion and absorption were significantly upregulated in the PFOS exposure group (P < 0.05). The analysis of correlations indicated that there was a significant inverse correlation between all identified differential metabolites and the levels of fasting blood glucose, high-density lipoprotein, and triglycerides in the PFOS exposure group (P < 0.05). Our findings demystify that early-life PFOS exposure can lead to alterations in transcriptomic and metabolomic profiles in the offspring's liver, which provided mechanistic insights into the potential hepatotoxicity and developmental toxicity associated with environmentally relevant levels of PFOS exposure.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Efectos Tardíos de la Exposición Prenatal , Embarazo , Humanos , Femenino , Ratas , Animales , Ratas Sprague-Dawley , Efectos Tardíos de la Exposición Prenatal/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Animales Recién Nacidos , Exposición Materna/efectos adversos , Lactancia , Hígado , Glucosa/metabolismo , Perfilación de la Expresión Génica , Esteroides/metabolismo , Fluorocarburos/toxicidad
4.
Ecotoxicol Environ Saf ; 280: 116553, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850699

RESUMEN

The incidence of nonalcoholic steatohepatitis (NASH) is related with perfluorooctane sulfonate (PFOS), yet the mechanism remains ill-defined. Mounting evidence suggests that ferroptosis plays a crucial role in the initiation of NASH. In this study, we used mice and human hepatocytes L-02 to investigate the role of ferroptosis in PFOS-induced NASH and the effect and molecular mechanism of PFOS on liver ferroptosis. We found here that PFOS caused NASH in mice, and lipid accumulation and inflammatory response in the L-02 cells. PFOS induced hepatic ferroptosis in vivo and in vitro, as evidenced by the decrease in glutathione peroxidase 4 (GPX4), and the increases in cytosolic iron, acyl-CoA synthetase long-chain family member 4 (ACSL4) and lipid peroxidation. In the PFOS-treated cells, the increases in the inflammatory factors and lipid contents were reversed by ferroptosis inhibitor. PFOS-induced ferroptosis was relieved by autophagy inhibitor. The expression of mitochondrial calcium uniporter (MCU) was accelerated by PFOS, leading to subsequent mitochondrial calcium accumulation, and inhibiting autophagy reversed the increase in MCU. Inhibiting mitochondrial calcium reversed the variations in GPX4 and cytosolic iron, without influencing the change in ACSL4, induced by PFOS. MCU interacted with ACSL4 and the siRNA against MCU reversed the changes in ACSL4,GPX4 and cytosolic iron systemically. This study put forward the involvement of hepatic ferroptosis in PFOS-induced NASH and identified MCU as the mediator of the autophagy-dependent ferroptosis.


Asunto(s)
Ácidos Alcanesulfónicos , Autofagia , Calcio , Coenzima A Ligasas , Ferroptosis , Fluorocarburos , Enfermedad del Hígado Graso no Alcohólico , Ferroptosis/efectos de los fármacos , Fluorocarburos/toxicidad , Animales , Ácidos Alcanesulfónicos/toxicidad , Ratones , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/patología , Autofagia/efectos de los fármacos , Coenzima A Ligasas/metabolismo , Humanos , Calcio/metabolismo , Canales de Calcio/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Línea Celular , Hepatocitos/efectos de los fármacos
5.
Ecotoxicol Environ Saf ; 277: 116368, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38669874

RESUMEN

Perfluorooctane sulfonate (PFOS) is a persistent chemical that has long been a threat to human health. However, the molecular effects of PFOS on various organs are not well studied. In this study, male Sprague-Dawley rats were treated with various doses of PFOS through gavage for 21 days. Subsequently, the liver, lung, heart, kidney, pancreas, testis, and serum of the rats were harvested for lipid analysis. We applied a focusing lipidomic analytical strategy to identify key lipid responses of phosphorylcholine-containing lipids, including phosphatidylcholines and sphingomyelins. Partial least squares discriminant analysis revealed that the organs most influenced by PFOS exposure were the liver, kidney, and testis. Changes in the lipid profiles of the rats indicated that after exposure, levels of diacyl-phosphatidylcholines and 22:6-containing phosphatidylcholines in the liver, kidney, and testis of the rats decreased, whereas the level of 20:3-containing phosphatidylcholines increased. Furthermore, levels of polyunsaturated fatty acids-containing plasmenylcholines decreased. Changes in sphingomyelin levels indicated organ-dependent responses. Decreased levels of sphingomyelins in the liver, nonmonotonic dose responses in the kidney, and irregular responses in the testis after PFOS exposure are observed. These lipid responses may be associated with alterations pertaining to phosphatidylcholine synthesis, fatty acid metabolism, membrane properties, and oxidative stress in the liver, kidney, and testis. Lipid responses in the liver could have contributed to the observed increase in liver to body weight ratios. The findings suggest potential toxicity and possible mechanisms associated with PFOS in multiple organs.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Riñón , Hígado , Ratas Sprague-Dawley , Testículo , Animales , Ácidos Alcanesulfónicos/toxicidad , Fluorocarburos/toxicidad , Masculino , Ratas , Hígado/efectos de los fármacos , Hígado/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Testículo/efectos de los fármacos , Testículo/metabolismo , Contaminantes Ambientales/toxicidad , Esfingomielinas , Fosfatidilcolinas , Metabolismo de los Lípidos/efectos de los fármacos , Lipidómica , Pulmón/efectos de los fármacos , Pulmón/metabolismo
6.
Ecotoxicol Environ Saf ; 270: 115945, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38183750

RESUMEN

Perfluorooctane sulfonate (PFOS), an endocrine-disrupting chemical pollutant, affects embryonic heart development; however, the mechanisms underlying its toxicity have not been fully elucidated. Here, Single-cell RNA sequencing (scRNA-seq) was used to investigate the overall effects of PFOS on myocardial differentiation from human embryonic stem cells (hESCs). Additionally, apoptosis, mitochondrial membrane potential, and ATP assays were performed. Downregulated cardiogenesis-related genes and inhibited cardiac differentiation were observed after PFOS exposure in vitro. The percentages of cardiomyocyte and cardiac progenitor cell clusters decreased significantly following exposure to PFOS, while the proportion of primitive endoderm cell was increased in PFOS group. Moreover, PFOS inhibited myocardial differentiation and blocked cellular development at the early- and middle-stage. A Gene Ontology analysis and pseudo-time trajectory illustrated that PFOS disturbed multiple processes related to cardiogenesis and oxidative phosphorylation in the mitochondria. Furthermore, PFOS decreased mitochondrial membrane potential and induced apoptosis. These results offer meaningful insights into the cardiogenic toxicity of PFOS exposure during heart formation as well as the adverse effects of PFOS on mitochondria.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Células Madre Embrionarias Humanas , Enfermedades Mitocondriales , Humanos , Fluorocarburos/toxicidad , Fluorocarburos/metabolismo , Miocitos Cardíacos , Análisis de Secuencia de ARN , Enfermedades Mitocondriales/metabolismo , Ácidos Alcanesulfónicos/toxicidad , Ácidos Alcanesulfónicos/metabolismo
7.
Ecotoxicol Environ Saf ; 281: 116647, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944014

RESUMEN

As a persistent organic pollutant, perfluorooctane sulfonate (PFOS) has a serious detrimental impact on human health. It has been suggested that PFOS is associated with liver inflammation. However, the underlying mechanisms are still unclear. Here, PFOS was found to elevate the oligomerization tendency of voltage-dependent anion channel 1 (VDAC1) in the mice liver and human normal liver cells L-02. Inhibition of VDAC1 oligomerization alleviated PFOS-induced nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome activation. Cytoplasmic membrane VDAC1 translocated to mitochondria was also observed in response to PFOS. Therefore, the oligomerization of VDAC1 occurred mainly in the mitochondria. VDAC1 was found to interact with the ATP synthase beta subunit (ATP5B) under PFOS treatment. Knockdown of ATP5B or immobilization of ATP5B to the cytoplasmic membrane alleviated the increased VDAC1 oligomerization and NLRP3 inflammasome activation. Therefore, our results suggested that PFOS induced NLRP3 inflammasome activation through VDAC1 oligomerization, a process dependent on ATP5B to transfer VDAC1 from the plasma membrane to the mitochondria. The findings offer novel perspectives on the activation of the NLRP3 inflammasome, the regulatory mode on VDAC1 oligomerization, and the mechanism of PFOS toxicity.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Canal Aniónico 1 Dependiente del Voltaje , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Animales , Ácidos Alcanesulfónicos/toxicidad , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética , Fluorocarburos/toxicidad , Humanos , Ratones , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Línea Celular , Ratones Endogámicos C57BL , Hígado/efectos de los fármacos , Hígado/metabolismo , Contaminantes Ambientales/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo
8.
Ecotoxicol Environ Saf ; 276: 116318, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626609

RESUMEN

Perfluorooctane sulfonate (PFOS), an officially listed persistent organic pollutant, is a widely distributed perfluoroalkyl substance. Epidemiological studies have shown that PFOS is intimately linked to the occurrence of insulin resistance (IR). However, the detailed mechanism remains obscure. In previous studies, we found that mitochondrial calcium overload was concerned with hepatic IR induced by PFOS. In this study, we found that PFOS exposure noticeably raised lysosomal calcium in L-02 hepatocytes from 0.5 h. In the PFOS-cultured L-02 cells, inhibiting autophagy alleviated lysosomal calcium overload. Inhibition of mitochondrial calcium uptake aggravated the accumulation of lysosomal calcium, while inhibition of lysosomal calcium outflowing reversed PFOS-induced mitochondrial calcium overload and IR. Transient receptor potential mucolipin 1 (TRPML1), the calcium output channel of lysosomes, interacted with voltage-dependent anion channel 1 (VDAC1), the calcium intake channel of mitochondria, in the PFOS-cultured cells. Moreover, we found that ATP synthase F1 subunit beta (ATP5B) interacted with TRPML1 and VDAC1 in the L-02 cells and the liver of mice under PFOS exposure. Inhibiting ATP5B expression or restraining the ATP5B on the plasma membrane reduced the interplay between TRPML1 and VDAC1, reversed the mitochondrial calcium overload and deteriorated the lysosomal calcium accumulation in the PFOS-cultured cells. Our research unveils the molecular regulation of the calcium crosstalk between lysosomes and mitochondria, and explains PFOS-induced IR in the context of activated autophagy.


Asunto(s)
Ácidos Alcanesulfónicos , Autofagia , Calcio , Fluorocarburos , Resistencia a la Insulina , Hígado , Lisosomas , Mitocondrias , ATPasas de Translocación de Protón Mitocondriales , Ácidos Alcanesulfónicos/toxicidad , Fluorocarburos/toxicidad , Animales , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Autofagia/efectos de los fármacos , Calcio/metabolismo , Ratones , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Masculino , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Línea Celular , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Contaminantes Ambientales/toxicidad , Canales Catiónicos TRPM/metabolismo , Ratones Endogámicos C57BL
9.
Ecotoxicol Environ Saf ; 284: 116924, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39181077

RESUMEN

Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant and accumulated in the liver of mammals. PFOS exposure is closely associated with the development of pyroptosis. Nevertheless, the underlying mechanism is unclear. We found here that PFOS induced pyroptosis in the mice liver and L-02 cells as demonstrated by activation of the NOD-like receptor protein 3 inflammasome, gasdermin D cleavage and increased release of interleukin-1ß and interleukin-18. The level of cytoplasmic calcium was accelerated in hepatocytes upon exposure to PFOS. The phosphorylated/activated form of calcium/calmodulin-dependent protein kinase II (CaMKII) was augmented by PFOS in vivo and in vitro. PFOS-induced pyroptosis was relieved by CaMKII inhibitor. Among various CaMKII subtypes, we identified that CaMKIIγ was activated specifically by PFOS. CaMKIIγ interacted with Smad family member 3 (Smad3) under PFOS exposure. PFOS increased the phosphorylation of Smad3, and CaMKII inhibitor or CaMKIIγ siRNA alleviated PFOS-caused phosphorylation of Smad3. Inhibiting Smad3 activity was found to alleviate PFOS-induced hepatocyte pyroptosis. This study puts forward that CaMKIIγ-Smad3 is the linkage between calcium homeostasis disturbance and pyroptosis, providing a mechanistic explanation for PFOS-induced pyroptosis.


Asunto(s)
Ácidos Alcanesulfónicos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Fluorocarburos , Hepatocitos , Piroptosis , Proteína smad3 , Ácidos Alcanesulfónicos/toxicidad , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Fluorocarburos/toxicidad , Fosforilación , Proteína smad3/metabolismo , Ratones , Piroptosis/efectos de los fármacos , Ratones Endogámicos C57BL , Masculino , Contaminantes Ambientales/toxicidad
10.
Toxicol Ind Health ; 40(12): 653-666, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39217409

RESUMEN

Perfluorooctane sulfonate (PFOS) is one of the most widely used perfluorinated compounds, and as an environmental endocrine disruptor and environmental persistent pollutant, the threat of PFOS to human health is of increasing concern. Exposure to PFOS has been shown to be closely associated with liver disease, but the intrinsic molecular targets and mechanisms of PFOS-induced liver damage are not well understood. This study was conducted to explore whether the Wnt/ß-Catenin signaling pathway and the endoplasmic reticulum stress signaling pathway are involved in damage of PFOS to the liver. In this study, we used the CCK-8 method to detect cell viability, a microscope and DAPI staining to observe cell morphology, flow cytometry to detect cell ROS and apoptosis levels; and Western blot to detect the expressions of proteins in the WNT/ß-Catenin, endoplasmic reticulum stress and apoptosis-related pathways. We found that PFOS activated WNT/ß-Catenin and endoplasmic reticulum stress-related pathways in L-02 cells and could lead to the development of oxidative stress and apoptosis. Our findings showed that PFOS could cause damage to L-02 cells, and the WNT/ß-Catenin signaling and endoplasmic reticulum stress pathways were involved in the changes caused by PFOS to L-02 cells, which provided a new theoretical basis for studying the hepatotoxicity and mechanism of PFOS. PFOS can lead to increased intracellular ROS levels, causing oxidative stress, endoplasmic reticulum stress and activation of the WNT/ß-catenin signaling pathway. Our experimental results showed that PFOS can cause damage to L-02 cells, and the WNT/ß-Catenin signaling pathway and endoplasmic reticulum stress pathway are involved in the process of damage caused by PFOS to L-02 cells.


Asunto(s)
Ácidos Alcanesulfónicos , Apoptosis , Estrés del Retículo Endoplásmico , Fluorocarburos , Vía de Señalización Wnt , Ácidos Alcanesulfónicos/toxicidad , Fluorocarburos/toxicidad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Vía de Señalización Wnt/efectos de los fármacos , Línea Celular , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , beta Catenina/metabolismo , Contaminantes Ambientales/toxicidad
11.
Environ Geochem Health ; 46(9): 349, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073492

RESUMEN

Given environmental persistence, potential for bioaccumulation, and toxicity of Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), the scientific community has increasingly focused on researching their toxicology and degradation methods. This paper presents a survey of recent research advances in the toxicological effects and degradation methods of PFOA and PFOS. Their adverse effects on the liver, nervous system, male reproductive system, genetics, and development are detailed. Additionally, the degradation techniques of PFOA and PFOS, including photochemical, photocatalytic, and electrochemical methods, are analyzed and compared, highlighted the potential of these technologies for environmental remediation. The biotransformation pathways and mechanisms of PFOA and PFOS involving microorganisms, plants, and enzymes are also presented. As the primary green degradation pathway for PFOA and PFOS, Biodegradation uses specific microorganisms, plants or enzymes to remove PFOA and PFOS from the environment through redox reactions, enzyme catalysis and other pathways. Currently, there has been a paucity of research conducted on the biodegradation of PFOA and PFOS. However, this degradation technology is promising owing to its specificity, cost-effectiveness, and ease of implementation. Furthermore, novel materials/methods for PFOA and PFOS degradation are presented in this paper. These novel materials/methods effectively improve the degradation efficiency of PFOA and PFOS and provide new ideas and tools for the degradation of PFOA and PFOS. This information can assist researchers in identifying flaws and gaps in the field, which can facilitate the formulation of innovative research ideas.


Asunto(s)
Ácidos Alcanesulfónicos , Biodegradación Ambiental , Caprilatos , Fluorocarburos , Fluorocarburos/metabolismo , Caprilatos/metabolismo , Ácidos Alcanesulfónicos/metabolismo , Ácidos Alcanesulfónicos/toxicidad , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/toxicidad , Animales , Tecnología Química Verde/métodos
12.
J Environ Sci (China) ; 145: 1-12, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38844310

RESUMEN

The potential association between colorectal cancer (CRC) and environmental pollutants is worrisome. Previous studies have found that some perfluoroalkyl acids, including perfluorooctane sulfonate (PFOS), induced colorectal tumors in experimental animals and promoted the migration of and invasion by CRC cells in vitro, but the underlying mechanism is unclear. Here, we investigated the effects of PFOS on the proliferation and migration of CRC cells and the potential mechanisms involving activating the PI3K/Akt-NF-κB signal pathway and epithelial-mesenchymal transition (EMT). It was found that PFOS promoted the growth and migration of HCT116 cells at non-cytotoxic concentrations and increased the mRNA expression of the migration-related angiogenic cytokines vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8). In a mechanistic investigation, the up-stream signal pathway PI3K/Akt-NF-κB was activated by PFOS, and the process was suppressed by LY294002 (PI3K/Akt inhibitor) and BAY11-7082 (NF-κB inhibitor) respectively, leading to less proliferation of HCT116 cells. Furthermore, matrix metalloproteinases (MMP) and EMT-related markers were up-regulated after PFOS exposure, and were also suppressed respectively by LY294002 and BAY11-7082. Moreover, the up-regulation of EMT markers was suppressed by a MMP inhibitor GM6001. Taken together, our results indicated that PFOS promotes colorectal cancer cell migration and proliferation by activating the PI3K/Akt-NF-κB signal pathway and epithelial-mesenchymal transition. This could be a potential toxicological mechanism of PFOS-induced malignant development of colorectal cancer.


Asunto(s)
Ácidos Alcanesulfónicos , Movimiento Celular , Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Fluorocarburos , Fluorocarburos/toxicidad , Ácidos Alcanesulfónicos/toxicidad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias Colorrectales/patología , Humanos , Movimiento Celular/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Células HCT116 , Proteínas Proto-Oncogénicas c-akt/metabolismo , FN-kappa B/metabolismo , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral
13.
Int J Cancer ; 153(4): 775-782, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-36843273

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are highly persistent endocrine-disrupting chemicals that may contribute to breast cancer development; however, epidemiologic evidence is limited. We investigated associations between prediagnostic serum levels of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) and postmenopausal breast cancer risk, overall and by hormone receptor status, in a nested case-control study of 621 cases and 621 matched controls in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. PFOS and PFOA levels were determined based on serum metabolomic profiling performed using ultraperformance liquid chromatography-tandem mass spectrometry. We used multivariable conditional logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between each PFAS and breast cancer risk, overall, by estrogen receptor (ER) or progesterone receptor (PR) status, and by joint ER/PR status. We found little evidence of association between PFOS or PFOA and breast cancer risk overall. However, in subtype-specific analyses, we observed statistically significant increased risks of ER+, PR+, and ER+/PR+ tumors for the third vs lowest quartile of serum PFOS (ORs [95% CIs] = 1.59 [1.01-2.50], 2.34 [1.29-4.23], and 2.19 [1.21-3.98], respectively) and elevated but nonstatistically significant ORs for the fourth quartile. Conversely, for PFOA, modest positive associations with ER-, PR-, ER+/PR-, and ER-/PR- tumors were generally seen in the upper quartiles. Our findings contribute evidence supporting positive associations between serum PFOS and hormone receptor-positive tumors, and possibly between PFOA and receptor-negative tumors. Future prospective studies incorporating tumor hormone receptor status are needed to better understand the role of PFAS in breast cancer etiology.


Asunto(s)
Neoplasias de la Mama , Neoplasias Colorrectales , Fluorocarburos , Neoplasias Ováricas , Masculino , Humanos , Femenino , Neoplasias de la Mama/inducido químicamente , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/epidemiología , Estudios de Casos y Controles , Estudios Prospectivos , Próstata , Posmenopausia , Detección Precoz del Cáncer , Modelos Logísticos , Hormonas , Pulmón
14.
Environ Res ; 225: 115518, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36841522

RESUMEN

The migration of per- and polyfluoroalkyl substances (PFAS) onto agricultural properties has resulted in the accumulation of PFAS in livestock. The environmental determinants of PFAS accumulation in livestock from the grazing environment are poorly understood, resulting in limited capacity to manage livestock exposure and subsequent transfer of PFAS through the food chain. Analytical- (n = 978 samples of soil, water, pasture, and serum matrices), farm management/practice- and livestock physiology data were collated and interrogated from environmental PFAS investigations across ten farms, from four agro-ecological regions of Victoria (Australia). Statistical analysis identified perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) as key analytes of concern for livestock bioaccumulation. PFOS and PFHxS concentrations in livestock drinking water were positively correlated with serum concentrations while other intake pathways (pasture and soil) had weaker correlations. Seasonal trends in PFAS body burden (serum concentrations) were identified and suggested to be linked to seasonal grazing behaviours and physiological water requirements. The data showed for the first time that livestock exposure to PFAS is dynamic and with relatively short elimination half-lives, there is opportunity for exposure management. Meat from cattle, grazed on PFAS impacted sites, may exceed health-based guideline values for PFAS, especially for markets with low limits (like the European Commission Maximum Limits or EC MLs). This study found that sites with mean livestock drinking water concentrations as low as 0.003 µg PFOS/L may exceed the EC ML for PFOS in cattle meat. Risk assessment can be used to prioritise site cleanup and development of management plans to reduce PFAS body burden by considering timing of stock rotation and/or supplementation of primary exposure sources.


Asunto(s)
Agua Potable , Fluorocarburos , Animales , Bovinos , Agua Potable/análisis , Ganado , Medición de Riesgo , Alcanosulfonatos/análisis
15.
Ecotoxicol Environ Saf ; 249: 114384, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36512850

RESUMEN

Perfluorooctane sulfonate (PFOS) is a widely used and distributed perfluorinated compounds and is reported to be harmful to cardiovascular health; however, the direct association between PFOS exposure and atherosclerosis and the underlying mechanisms remain unknown. Therefore, this study aimed to investigate the effects of PFOS exposure on the atherosclerosis progression and the underlying mechanisms. PFOS was administered through oral gavage to apolipoprotein E-deficient (ApoE-/-) mice for 12 weeks. PFOS exposure significantly increased pulse wave velocity (PWV) and intima-media thickness (IMT), increased aortic plaque burden and vulnerability, and elevated serum lipid and inflammatory cytokine levels. PFOS promoted aortic and RAW264.7 M1 macrophage polarization, which increased the secretion of nitric oxide synthase (iNOS) and pro-inflammatory factors (tumor necrosis factor-α [TNF-α], interleukin-6 [IL-6], and interleukin-1ß [IL-1ß]), and suppressed M2 macrophage polarization, which decreased the expression of CD206, arginine I (Arg-1), and interleukin-10 (IL-10). Moreover, PFOS activated nuclear factor-kappa B (NF-κB) in the aorta and macrophages. BAY11-7082 was used to inhibit NF-κB-alleviated M1 macrophage polarization and the inflammatory response induced by PFOS in RAW264.7 macrophages. Our results are the first to reveal the acceleratory effect of PFOS on the atherosclerosis progression in ApoE-/- mice, which is associated with the NF-κB activation of macrophages to M1 polarization to induce inflammation.


Asunto(s)
Aterosclerosis , Fluorocarburos , Macrófagos , FN-kappa B , Animales , Ratones , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/inducido químicamente , Aterosclerosis/patología , Grosor Intima-Media Carotídeo , Macrófagos/efectos de los fármacos , FN-kappa B/metabolismo , Análisis de la Onda del Pulso , Transducción de Señal , Fluorocarburos/toxicidad
16.
Ecotoxicol Environ Saf ; 263: 115374, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37591127

RESUMEN

As a new type of persistent organic pollutant, perfluorooctane sulphonate (PFOS) has received extensive attention worldwide. Cannabidiol (CBD) is a non-psychoactive natural cannabinoid extract that has been proved to have antioxidation, regulation of inflammation and other functions. However, the effects of PFOS on liver injury and whether CBD can alleviate PFOS-induced liver injury are still unclear. Therefore, in this study, we used CBD (10 mg/kg) and/or PFOS (5 mg/kg) to intraperitoneally inject mice for 30 days. We found that PFOS exposure led to inflammatory infiltration in the liver of mice, increased the formation of macrophage extracellular trap (MET), and promoted fibrosis. In vitro, we established a coculture system of RAW264.7, AML12 and LX-2 cells, and treated them with CBD (10 µM) and/or PFOS (200 µM). The results showed that PFOS could also induce the expression of MET, inflammation and fibrosis marker genes in vitro. Coiled-coil domain containing protein 25 (CCD25), as a MET-DNA sensor, was used to investigate its ability to regulate inflammation and fibrosis, we knocked down CCDC25 and its downstream proteins (integrin-linked kinase, ILK) by siRNA technology, and used QNZ to inhibit NF-κB pathway. The results showed that the knockdown of CCDC25 and ILK and the inhibition of NF-κB pathway could inhibit MET-induced inflammation and fibrosis marker gene expression. In summary, we found that PFOS-induced MET can promote inflammation and fibrosis through the CCDC25-ILK-NF-κB signaling axis, while the treatment of CBD showed a protective effect, and it is proved by Macromolecular docking that this protective effect is achieved by combining CBD with peptidylarginine deiminase 4 (PAD4) to alleviate the release of MET. Therefore, regulating the formation of MET and the CCDC25-ILK-NF-κB signaling axis is an innovative treatment option that can effectively reduce hepatotoxicity. Our study reveals the mechanism of PFOS-induced hepatotoxicity and provides promising insights into the protective role of CBD in this process.


Asunto(s)
Cannabidiol , Enfermedad Hepática Inducida por Sustancias y Drogas , Trampas Extracelulares , Animales , Ratones , Cannabidiol/farmacología , FN-kappa B/genética , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Macrófagos , Fibrosis , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control
17.
Ecotoxicol Environ Saf ; 263: 115333, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37586196

RESUMEN

Emerging alternatives to perfluorooctane sulfonate (PFOS), including 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) and p-perfluorous nonenoxybenzene sulfonate (OBS), have been widely detected in the real environment as PFOS restriction. However, the toxicity in plants and the underlying mechanism of F-53B and OBS remain scarce, especially compared to PFOS. PFOS and their emerging alternatives pose significant potential risks to food, especially for crops, safety and human health with the great convenience of high chemical stability. Germination toxicity, oxidative stress biomarkers, and metabolomics were used to compare the relative magnitudes of toxicity of PFOS and its alternatives in wheat (Triticum aestivum L.). PFOS, F-53B, and OBS inhibited wheat germination compared to the control group, with germination inhibition rates of 45.6%, 53.5%, and 64.3% at 400 µM PFOS, F-53B, and OBS exposure, respectively. Moreover, oxidative stress biomarker changes were observed in PFOS, F-53B, and OBS, with OBS being more pronounced. The chlorophyll concentrations in wheat shoots increased, and the anthocyanin concentration decreased along with the increased exposure concentration. Superoxide dismutase (SOD) activity increased in wheat root but decreased in the shoot. Peroxidase (POD) activity and malondialdehyde (MDA) concentration increased, whereas catalase (CAT) activity decreased. Regarding metabolomics, PFOS, F-53B, and OBS exposure (10 µM) significantly altered 85, 133, and 134 metabolites, respectively. According to KEGG enrichment analysis, F-53B specifically affects lipid metabolism, whereas OBS causes an imbalance in amino acid and carbohydrate metabolism. These findings suggested that PFOS, F-53B, and OBS have distinct toxic mechanisms. Thus, our results indicated that the relative size of the toxicity in wheat is as follows: OBS > F-53B > PFOS, and this finding provides a new reference basis for the phytotoxicity assessment of F-53B and OBS.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Animales , Triticum , Pez Cebra/metabolismo , Contaminantes Químicos del Agua/toxicidad , Ácidos Alcanesulfónicos/metabolismo , Fluorocarburos/análisis
18.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37628946

RESUMEN

Perfluorooctane sulfonate (PFOS) has been used in a wide variety of industrial and commercial products. The adverse effects of PFOS on the developing brain are becoming of a great concern. However, the molecular mechanisms of PFOS on brain development have not yet been clarified. We investigated the effect of early-life exposure to PFOS on brain development and the mechanism involved. We investigated the change in thyroid hormone (TH)-induced dendrite arborization of Purkinje cells in the primary culture of newborn rat cerebellum. We further examined the mechanism of PFOS on TH signaling by reporter gene assay, quantitative RT-PCR, and type 2 iodothyronine deiodinase (D2) assay. As low as 10-7 M PFOS suppressed thyroxine (T4)-, but not triiodothyronine (T3)-induced dendrite arborization of Purkinje cells. Reporter gene assay showed that PFOS did not affect TRα1- and TRß1-mediated transcription in CV-1 cells. RT-PCR showed that PFOS suppressed D2 mRNA expression in the absence of T4 in primary cerebellar cells. D2 activity was also suppressed by PFOS in C6 glioma-derived cells. These results indicate that early-life exposure of PFOS disrupts TH-mediated cerebellar development possibly through the disruption of D2 activity and/or mRNA expression, which may cause cerebellar dysfunction.


Asunto(s)
Cerebelo , Yoduro Peroxidasa , Animales , Ratas , Yoduro Peroxidasa/genética , Células de Purkinje , ARN Mensajero
19.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37834465

RESUMEN

The present study investigates the impact of two endocrine disruptors, namely Bisphenols (BPs) and Perfluoroalkyls (PFs), on human stem cells. These chemicals leach from plastic, and when ingested through contaminated food and water, they interfere with endogenous hormone signaling, causing various diseases. While the ability of BPs and PFs to cross the placental barrier and accumulate in fetal serum has been documented, the exact consequences for human development require further elucidation. The present research work explored the effects of combined exposure to BPs (BPA or BPS) and PFs (PFOS and PFOA) on human placenta (fetal membrane mesenchymal stromal cells, hFM-MSCs) and amniotic fluid (hAFSCs)-derived stem cells. The effects of the xenobiotics were assessed by analyzing cell proliferation, mitochondrial functionality, and the expression of genes involved in pluripotency and epigenetic regulation, which are crucial for early human development. Our findings demonstrate that antenatal exposure to BPs and/or PFs may alter the biological characteristics of perinatal stem cells and fetal epigenome, with potential implications for health outcomes at birth and in adulthood. Further research is necessary to comprehend the full extent of these effects and their long-term consequences.


Asunto(s)
Disruptores Endocrinos , Fluorocarburos , Células Madre Mesenquimatosas , Recién Nacido , Embarazo , Humanos , Femenino , Placenta/metabolismo , Epigénesis Genética , Líquido Amniótico/metabolismo , Células Madre Mesenquimatosas/metabolismo , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/metabolismo , Disruptores Endocrinos/farmacología , Evaluación de Resultado en la Atención de Salud , Fluorocarburos/toxicidad , Fluorocarburos/metabolismo
20.
Chem Res Chin Univ ; 39(3): 408-414, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37303471

RESUMEN

Improving the technical performance of related industrial products is an efficient strategy to reducing the application quantities and environmental burden for toxic chemicals. A novel polyfluoroalkyl surfactant potassium 1,1,2,2,3,3,4,4-octafluoro-4-(perfluorobutoxy)butane-1-sulfonate(F404) was synthesized by a commercializable route. It had a surface tension(γ) of 18.2 mN/m at the critical micelle concentration(CMC, 1.04 g/L), significantly lower than that of perfluorooctane sulfonate(PFOS, ca. 33.0 mN/m, 0.72 g/L), and exhibited remarkable suppression of chromium-fog at a dose half that of PFOS. The half maximal inhibitory concentration(IC50) values in HepG2 cells and the lethal concentration of 50%(LC50) in zebrafish embryos after 72 hpf indicated a lower toxicity for F404 in comparison to PFOS. In a UV/sulphite system, 89.3% of F404 were decomposed after 3 h, representing a defluorination efficiency of 43%. The cleavage of the ether C-O bond during the decomposition would be expected to form a short chain·C4F9 as the position of the ether C-O in the F404 fluorocarbon chains is C4-O5. The ether unit is introduced in the perfluoroalkyl chain to improve water solubility, biocompatibility and degradation, thereby minimizing the environmental burden. Electronic Supplementary Material: Supplementary material is available in the online version of this article at 10.1007/s40242-023-3030-4.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA