RESUMEN
Allelochemicals are specific secondary metabolites that can exhibit autotoxicity by inhibiting the growth of the same plant species that produced them. These metabolites have been found to affect various physical processes during plant growth and development, including inhibition of seed germination, photosynthesis, respiration, root growth, and nutrient uptake, with diverse mechanisms involving cell destruction, oxidative homeostasis and photoinhibition. In some cases, allelochemicals can also have positive effects on plant growth and development. In addition to their ecological significance, allelochemicals also possess potential as plant growth regulators (PGRs) due to their extensive physiological effects. However, a comprehensive summary of the development and applications of allelochemicals as PGRs is currently lacking. In this review, we present an overview of the sources and categories of allelochemicals, discuss their effects and the underlying mechanisms on plant growth and development. We showcase numerous instances of key phytohormonal allelochemicals and non-phytohormonal allelochemicals, highlighting their potential as candidates for the development of PGRs. This review aims to provide a theoretical basis for the development of economical, safe and effective PGRs utilizing allelochemicals, and emphasizes the need for further research in this area.
Asunto(s)
Feromonas , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Feromonas/metabolismo , Feromonas/farmacología , Desarrollo de la Planta , Plantas/metabolismo , FotosíntesisRESUMEN
BACKGROUND: The effects of different photoperiods on plant phytochemical synthesis can be improved by adjusting the daily light integral. Photoperiod is one of the most important environmental factors that control growth, plant's internal rhythm and the synthesis of secondary metabolites. Information about the appropriate standard in terms of photoperiod for growing basil microgreens as one of the most important medicinal plants is limited. In this study, the effects of five different photoperiods, 6 (6 h × 3 cycles), 8 (8 h × 2 cycles), 16, 18, and 24 h day- 1 on the yield, photosynthesis and synthesis of secondary metabolites of three cultivars and one genotype of basil microgreens in floating system were evaluated. The purpose of this research was to determine the feasibility of using permanent light in growing basil microgreens and to create the best balance between beneficial secondary metabolites and performance. RESULTS: The results showed that the effects of photoperiod and cultivar on all investigated traits and their interaction on photosynthetic pigments, antioxidant capacity, total phenolic compounds, proline content and net photosynthesis rate were significantly different at the 1% level. The highest levels of vitamin C, flavonoids, anthocyanins, yield and antioxidant potential composite index (APCI) were obtained under the 24-h photoperiod. The highest antioxidant capacity was obtained for the Kapoor cultivar, and the highest total phenolic compound and proline contents were measured for the Ablagh genotype under a 24-h photoperiod. The highest yield (4.36 kg m- 2) and APCI (70.44) were obtained for the Ablagh genotype. The highest nitrate content was obtained with a photoperiod of 18 h for the Kapoor cultivar. The highest net photosynthesis rate was related to the Violeto cultivar under a 24-hour photoperiod (7.89 µmol CO2 m- 2 s- 1). Antioxidant capacity and flavonoids had a positive correlation with phenolic compounds and vitamin C. Yield had a positive correlation with antioxidant capacity, flavonoids, vitamin C, APCI, and proline. CONCLUSIONS: Under continuous light conditions, basil microgreens resistance to light stress by increasing the synthesis of secondary metabolites and the increase of these biochemical compounds made basil microgreens increase their performance along with the increase of these health-promoting compounds. The best balance between antioxidant compounds and performance was achieved in continuous red + blue light. Based on these results, the use of continuous artificial LED lighting, due to the increase in plant biochemical with antioxidant properties and yield, can be a suitable strategy for growing basil microgreens in floating systems.
Asunto(s)
Ocimum basilicum , Fotoperiodo , Fotosíntesis , Ocimum basilicum/genética , Ocimum basilicum/metabolismo , Ocimum basilicum/crecimiento & desarrollo , Antioxidantes/metabolismo , Metabolismo Secundario , GenotipoRESUMEN
MAIN CONCLUSION: Rainwater most probably constitutes a relatively effective solvent for lichen substances in nature which have the potential to provide for human and environmental needs in the future. The aims were (i) to test the hypothesis on the potential solubility of lichen phenolic compounds using rainwater under conditions that partly reflect the natural environment and (ii) to propose new and effective methods for the water extraction of lichen substances. The results of spectrophotometric analyses of total phenolic metabolites in rainwater-based extracts from epigeic and epiphytic lichens, employing the Folin-Ciocalteu (F.-C.) method, are presented. The water solvent was tested at three pH levels: natural, 3, and 9. Extraction methods were undertaken from two perspectives: the partial imitation of natural environmental conditions and the potential use of extraction for economic purposes. From an ecological perspective, room-temperature water extraction ('cold' method) was used for 10-, 60-, and 120-min extraction periods. A variant of water extraction at analogous time intervals was an 'insolation' with a 100W light bulb to simulate the heat energy of the sun. For economic purposes, the water extraction method used the Soxhlet apparatus and its modified version, the 'tea-extraction' method ('hot' ones). The results showed that those extractions without an external heat source were almost ineffective, but insolation over 60- and 120-min periods proved to be more effective. Both tested 'hot' methods also proved to be effective, especially the 'tea-extraction' one. Generally, an increase in the concentration of phenolic compounds in water extracts resulted from an increasing solvent pH. The results show the probable involvement of lichen substances in biogeochemical processes in nature and their promising use for a variety of human necessities.
Asunto(s)
Líquenes , Fenoles , Solubilidad , Espectrofotometría , Agua , Líquenes/química , Líquenes/metabolismo , Fenoles/metabolismo , Fenoles/análisis , Agua/química , Solventes/química , Concentración de Iones de Hidrógeno , Lluvia/químicaRESUMEN
Extra virgin olive oil (EVOO) is largely used in Mediterranean diet, and it is also worldwide apprised not only for its organoleptic properties but also for its healthy effects mainly attributed to the presence of several naturally occurring phenolic and polyphenolic compounds (bio-phenols). These compounds are characterized by the presence of multiple phenolic groups in more or less complex structures. Their content is fundamental in defining the healthy qualities of EVOO and consequently the analytical methods for their characterization and quantification are of current interest. Traditionally their determination has been conducted using a colorimetric assay based on the reaction of Folin-Ciocalteu (FC) reagent with the functional hydroxy groups of phenolic compounds. Identification and quantification of the bio-phenols in olive oils requires certainly more performing analytical methods. Chromatographic separation is now commonly achieved by HPLC, coupled with spectrometric devices as UV, FID, and MS. This last approach constitutes an actual cutting-edge application for bio-phenol determination in complex matrices as olive oils, mostly on the light of the development of mass analyzers and the achievement of high resolution and accurate mass measurement in more affordable instrument configurations. After a short survey of some rugged techniques used for bio-phenols determination, in this review have been described the most recent mass spectrometry-based methods, adopted for the analysis of the bio-phenols in EVOOs. In particular, the sample handling and the results of HPLC coupled with low- and high-resolution MS and MS/MS analyzers, of ion mobility mass spectrometry and ambient mass spectrometry have been reported and discussed.
Asunto(s)
Fenoles , Espectrometría de Masas en Tándem , Fenoles/análisis , Fenoles/química , Aceite de Oliva/análisis , Aceite de Oliva/química , Fenol/análisis , Cromatografía Líquida de Alta Presión/métodosRESUMEN
BACKGROUND: Observational studies have reported that total (poly)phenol intake is associated with a reduction in all-cause and cardiovascular mortality, but mainly from high-income countries, where (poly)phenol intake may differ from that of low- and middle-income countries. OBJECTIVES: Our objective was to evaluate the association between the intake of total, all classes, and subclasses of (poly)phenols and risk of all-cause and cause-specific mortality in a Mexican cohort. METHODS: We used data from the Mexican Teachers' Cohort, which included 95,313 adult females. After a median follow-up of 11.2 y, 1725 deaths were reported, including 674 from cancer and 282 from cardiovascular diseases. (Poly)phenol intake was estimated using a validated food frequency questionnaire and the Phenol-Explorer database. Multivariable Cox models were applied to estimate the association between (poly)phenol intake and all-cause mortality and competitive risk models for cause-specific mortality. RESULTS: Comparing extreme quartiles, total (poly)phenol intake was associated with lower risk of all-cause [hazard ratio (HR)Q4vs.Q1: 0.88; 95% CI: 0.76, 0.99; P-trend = 0.01] and cancer mortality (HRQ4vs.Q1: 0.81; 95% CI: 0.64, 0.99; P-trend = 0.02). Among (poly)phenol classes, phenolic acids, particularly hydroxycinnamic acids from coffee, showed an inverse association with all-cause (HRQ4vs.Q1: 0.79; 95% CI: 0.69, 0.91; P-trend = 0.002) and cancer mortality (HRQ4vs.Q1: 0.75; 95% CI: 0.61, 0.94; P-trend = 0.03). No associations were observed with flavonoids or with cardiovascular mortality. CONCLUSION: Our study suggests that high (poly)phenol intake, primarily consisting of phenolic acids such as hydroxycinnamic acids, may have a protective effect on overall and cancer mortality. Null associations for flavonoid intake might be due to the potential underestimation of their intake in this population.
Asunto(s)
Dieta , Neoplasias , Polifenoles , Humanos , Femenino , México/epidemiología , Persona de Mediana Edad , Polifenoles/administración & dosificación , Estudios de Cohortes , Adulto , Neoplasias/mortalidad , Enfermedades Cardiovasculares/mortalidad , Factores de Riesgo , Modelos de Riesgos Proporcionales , Fenoles/administración & dosificaciónRESUMEN
This paper presents all-atom molecular dynamics to understand the separation behavior of 5-hydroxymethylfurfural (5-HMF) from 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM]+[BF4]- using alkylated phenols as extractants. We have utilized four solvents such as 4-methyl phenol (4-MP), 4-ethyl phenol (4-EP), 4-propyl phenol (4-PP), and 4-butyl phenol (4-BP). We perform structural, dynamic, and rigorous thermodynamic analyses of 5-HMF in the mixture of ILs and solvents. The [BMIM]+[BF4]- show a strong interaction with phenols. The self-diffusion coefficient of 5-HMF shows a 3-fold increase with a decrease in the methyl group on the phenol. The solvation-free energy (ΔGsolvation) of 5-HMF shows favorably in phenols. On the other hand, the transfer free energy (ΔGtransfer) of 5-HMF presents favorable from ILs to phenols. The partition coefficient (log P) values show favorability for separation of 5-HMF using phenols. Overall, the molecular level analysis provides the role of the alkyl group effect on the phenols for extracting 5-HMF from the ILs.
RESUMEN
The purpose of this study was to determine whether or not there were significant differences in the antibacterial potential of Thuja occidentalis collected from four distinct geographical sites, namely Chamba (Himachal Pradesh, India), Jalandhar (Punjab, India), Aurangabad (Bihar, India) and Kakching (Manipur, India). The plant extracts were prepared in three different solvents: ethanol, methanol, and acetone. The antibacterial potential of the plant extracts was tested against five different bacterial species using well diffusion test. The minimum inhibitory and bactericidal concentrations of the plant sample exhibiting maximum zone of inhibition against different bacterial strains were calculated. Further, the total phenols, flavonoids, and antioxidant efficacy (using DPPH assay) were also analysed biochemically. The activity of different antioxidant enzymes including SOD, CAT and APX were also recorded as these enzymes protect the cells from free radical damage. GC-MS analysis was also performed on all plant extracts to identify the bioactive components. The results showed that the T. occidentalis collected from the Kakching, Manipur, East side of India showed the highest zone of inhibition against all the bacterial strains, followed by Chamba, Jalandhar, and lastly Aurangabad. To analyse the impact of phytochemicals on the antibacterial efficacy, a correlation was drawn between the biochemical parameters and zone of inhibition using Karl Pearson's method. Most bacterial species demonstrated a positive correlation between antibacterial effectiveness (zone of inhibition) and biochemical markers. The GC-MS study revealed positive correlation between zone of inhibition and peak area percentages of α-Pinene, ß-caryophyllene, Germacrene-D, and Humulene in all bacterial species indicating that these chemicals may play a key role in the bactericidal potential of T. occidentalis. Based on the results of this investigation, it is evident that the antibacterial effectiveness of T. occidentalis varies with its geographical location which may be attributed to the differences in the phytochemical makeup.
Asunto(s)
Fabaceae , Thuja , Antioxidantes/farmacología , India , Antibacterianos/farmacología , Extractos Vegetales/farmacologíaRESUMEN
Unlike fossil fuels, biomass has oxygen amounts exceeding 10â wt%. Hydrodeoxygenation (HDO) is a crucial step in upgrading biomass to higher heating value liquid fuels. Oxygen removal has many challenges due to the complex chemistry and the high reactivity leading to irreversible catalyst deactivation. In this study, the focus is on the catalytic HDO of aromatic oxygen-containing model compounds in biomass: phenols and cresols. In the current work, literature on catalytic HDO of phenols using molecular hydrogen is reviewed, with a focus on non-nickel-based mono- and bi-metallic catalysts, as nickel-based catalysts were reviewed elsewhere. In addition, the catalytic HDO of m-cresol using molecular hydrogen is examined. This review also addresses the use of hydrogen donors for the HDO of phenols and cresols. The operating conditions, catalysts, products, and yields are summarized to find the catalyst with promising activity and high selectivity toward aromatics. A critical review of the reactions that successfully led to HDO is presented and research gaps related to the HDO of phenols and cresols are highlighted. The conclusions provide potential successful catalyst combinations that can be used for HDO of phenols, cresols, and liquid aromatic hydrocarbons.
RESUMEN
Volatile phenols impart particular aromas to wine. Due to their distinctive aroma characteristics and low sensory thresholds, volatile phenols can easily influence and modify the aroma of wine. Since these compounds can be formed in wines in various ways, it is necessary to clarify the possible sources of each volatile phenol to achieve management during the winemaking process. The sources of volatile phenols in wine are divided into berry-derived, fermentation-derived, and oak-derived. The pathways and factors influencing the formation of volatile phenols from each source are then reviewed respectively. In addition, an overview of the sensory impact of volatile phenols is given, both in terms of the aroma these volatile phenols directly bring to the wine and their contribution through aroma interactions. Finally, as an essential basis for exploring the scientific problems of volatile phenols in wine, approaches to quantitation of volatile phenols and their precursors are discussed in detail. With the advancement of analytical techniques, more details on volatile phenols have been discovered. Further exploration is worthwhile to achieve more detailed monitoring and targeted management of volatile phenols in wine.
RESUMEN
Cardiovascular diseases are a major global cause of death and healthcare costs, emphasizing the need for effective prevention and management of cardiometabolic risk factors. One promising approach is the consumption of technologically processed functional foods enriched/fortified with (poly)phenols. The current systematic review aimed to evaluate the human clinical trials evidence on the effect of intake of these foods on reducing the most common cardiometabolic risk factors. 12 randomized controlled studies were included in the systematic review, with varying food intake amounts (27-360 g/day) and (poly)phenol doses (32.5-850 mg/day). These interventions included consumption of functional bakery goods, cereal bars, pasta, chocolate, and yogurt, with supplementation periods spanning from 2 to 52 wk. Several foods, such as green tea extract-fortified rye bread and olive fruit (poly)phenol-fortified yogurt, significantly lowered blood pressure. Flavonoid-enriched chocolate, hydroxytyrosol-fortified bread, and other products influenced glucose metabolism. Additionally, various functional foods were associated with improved blood lipid levels. While these results indicate the health advantages of consuming technologically processed functional foods enriched/fortified with (poly)phenols, caution is warranted due to the scarcity and limitations of existing studies. Further research is needed to confirm and expand upon these results in the prevention and management of cardiometabolic risk factors.
RESUMEN
Redox-inactive metal-ion-driven modulation of the oxidation behavior of high-valent metal-oxo complex has garnered significant interest in biological and chemical synthesis; however, their role in permanganate (Mn(VII)) oxidation for the removal of organic pollutants has been largely neglected. Here, we uncover the impact of six metal ions (i.e., Ca2+, Mg2+, Ni2+, Zn2+, Al3+, and Sc3+) presenting in water environments on Mn(VII) activity. These ions uniformly boost the electron and oxygen transfer capabilities of Mn(VII) while impeding proton transfer, as evidenced by electrochemical tests, thioanisole probe analysis, and the kinetic isotope effect. The observed effects are intricately linked to the Lewis acidity of the metal ions. Further mechanistic insights reveal that Mn(VII) can interact with metal ions without direct reduction. Such interactions modify the electronic configuration of Mn(VII) and create an acidic microenvironment, thus increasing its electrophilicity and the energy barrier for the abstraction of proton from organic substrates. More importantly, the efficacy of Mn(VII) in removing phenolic pollutants is regulated by these ions through changing the driving force for proton and electron transfer, i.e., facilitated at pH > 4.5 and inhibited at lower pH. The contribution of active Mn intermediates is also discussed to reveal the oxidative mechanism of the metal ion/Mn(VII) system. These findings not only facilitate the rational design of Mn(VII) oxidation conditions in the presence of metal ions for water decontamination but also offer an alternative paradigm for enhancing electrophilic oxidation.
Asunto(s)
Electrones , Metales , Oxidación-Reducción , Protones , Cinética , Metales/química , Óxidos/química , Iones , Compuestos de Manganeso/químicaRESUMEN
Laboratory animal studies have reported the biliary excretion of chemicals following exposure. Nevertheless, feces are rarely used as a matrix in biomonitoring of chemical exposures. In this study, feces and urine from pet dogs and cats were analyzed for the presence of 45 plasticizers, 45 environmental phenols, and 31 pesticides. Thirty-two analytes were detected in ≥70% pet feces, while up to 29 analytes were frequently (≥70%) found in urine. The sum concentrations of all analytes (∑All) in pet feces were significantly higher than those measured in urine (median: 393-666 ng/g wet weight in feces vs 216-464 ng/mL in urine). Plasticizers were the dominant class of chemicals, accounting for 81-97% and 69-77% of ∑All in urine and feces, respectively. Analyte concentrations measured in paired urine and feces exhibited weak correlations. The excretion rates of the chemicals via urine and feces were calculated through a reverse dosimetry approach. Low-molecular-weight phthalates excreted predominantly in urine, whereas high-molecular-weight phthalates and several organophosphate triesters were excreted predominantly in feces. The fecal excretion rates of parabens, benzophenones, bisphenols, naphthalene, 2,4-dichloronicotinic acid, and 4-nitrophenol were similar to or higher than those of urinary excretion. Our results suggest that feces are an important matrix in biomonitoring of exposure to environmental chemicals.
Asunto(s)
Monitoreo Biológico , Heces , Animales , Gatos , Perros , Heces/química , Monitoreo del Ambiente , Contaminantes Ambientales/orina , Mascotas , Fenoles/orina , Exposición a Riesgos AmbientalesRESUMEN
Phenols emitted from biomass burning contribute significantly to secondary organic aerosol (SOA) formation through the partitioning of semivolatile products formed from gas-phase chemistry and multiphase chemistry in aerosol liquid water and clouds. The aqueous-phase SOA (aqSOA) formed via hydroxyl radical (â¢OH), singlet molecular oxygen (1O2*), and triplet excited states of organic compounds (3C*), which oxidize dissolved phenols in the aqueous phase, might play a significant role in the evolution of organic aerosol (OA). However, a quantitative and predictive understanding of aqSOA has been challenging. Here, we develop a stand-alone box model to investigate the formation of SOA from gas-phase â¢OH chemistry and aqSOA formed by the dissolution of phenols followed by their aqueous-phase reactions with â¢OH, 1O2*, and 3C* in cloud droplets and aerosol liquid water. We investigate four phenolic compounds, i.e., phenol, guaiacol, syringol, and guaiacyl acetone (GA), which represent some of the key potential sources of aqSOA from biomass burning in clouds. For the same initial precursor organic gas that dissolves in aerosol/cloud liquid water and subsequently reacts with aqueous phase oxidants, we predict that the aqSOA formation potential (defined as aqSOA formed per unit dissolved organic gas concentration) of these phenols is higher than that of isoprene-epoxydiol (IEPOX), a well-known aqSOA precursor. Cloud droplets can dissolve a broader range of soluble phenols compared to aqueous aerosols, since the liquid water contents of aerosols are orders of magnitude smaller than cloud droplets. Our simulations suggest that highly soluble and reactive multifunctional phenols like GA would predominantly undergo cloud chemistry within cloud layers, while gas-phase chemistry is likely to be more important for less soluble phenols. But in the absence of clouds, the condensation of low-volatility products from gas-phase oxidation followed by their reversible partitioning to organic aerosols dominates SOA formation, while the SOA formed through aqueous aerosol chemistry increases with relative humidity (RH), approaching 40% of the sum of gas and aqueous aerosol chemistry at 95% RH for GA. Our model developments of biomass-burning phenols and their aqueous chemistry can be readily implemented in regional and global atmospheric chemistry models to investigate the aqueous aerosol and cloud chemistry of biomass-burning organic gases in the atmosphere.
Asunto(s)
Compuestos Orgánicos , Fenoles , Biomasa , Aerosoles , Agua/químicaRESUMEN
Personal care products (PCPs) are sources of exposure to endocrine-disrupting chemicals (EDCs) among women, and socioeconomic status (SES) may influence these exposures. Black women have inequitable exposure to EDCs from PCP use, but no study has investigated how exposure to EDCs through PCPs may vary by SES, independent of race. Using data from the Study of Environment, Lifestyle, and Fibroids, a cohort of reproductive-aged Black women (n = 751), we quantified associations between PCPs and urinary biomarker concentrations of EDC mixtures (i.e., phthalates, phenols, parabens) within SES groups, defined using k-modes clustering based on education, income, marital status, and employment. Information about PCP use and SES was collected through questionnaires and interviews. We used principal component analysis to characterize the EDC mixture profiles. Stratified linear regression models were fit to assess associations between PCP use and EDC mixture profiles, quantified as mean differences in PC scores, by SES group. Associations between PCP use and EDC mixture profiles varied by SES group; e.g., vaginal powder use was associated with a mixture of phenols among lower SES women, whereas this association was null for higher SES women. Findings suggest that SES influences PCP EDC exposure in Black women, which has implications for public health interventions.
Asunto(s)
Cosméticos , Disruptores Endocrinos , Contaminantes Ambientales , Ácidos Ftálicos , Humanos , Femenino , Adulto , Encuestas y Cuestionarios , Reproducción , Fenoles , Parabenos/análisis , Contaminantes Ambientales/análisisRESUMEN
The role of the gut microbiota in human health calls for a better understanding of its determinants. In particular, the possible effects of chemicals with widespread exposure other than pharmaceuticals are little known. Our aim was to characterize the sensitivity of the early-life gut microbiota to specific chemicals with possible antimicrobial action. Within the SEPAGES French couple-child cohort, we assessed 12 phenols in repeated urine samples from 356 pregnant women and their offspring and 19 poly- and perfluoroalkyl substances (PFASs) in serum from the pregnant women. We collected stool samples from the children at one year of age, in which the V3-V4 region of the 16S rRNA gene was sequenced, allowing for gut bacterial profiling. Associations of each chemical with α- and ß-diversity indices of the gut microbiota and with the relative abundance of the most abundant taxa were assessed using single-pollutant and mixture (BKMR) models. Perinatal exposure to certain parabens was associated with gut microbiota α- and ß-diversity and with Firmicutes and Proteobacteria. Suggestive associations of certain phenols with genera of the Lachnospiraceae and Enterobacteriaceae families were observed, but these were not maintained after correction for multiple testing. Parabens, which have known antimicrobial properties, might disrupt the child gut microbiota, but larger studies are required to confirm these findings.
Asunto(s)
Fluorocarburos , Microbioma Gastrointestinal , Fenoles , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Femenino , Lactante , Embarazo , ARN Ribosómico 16S , Masculino , Contaminantes AmbientalesRESUMEN
BACKGROUND: A growing body of literature investigated childhood exposure to environmental chemicals in association with attention-deficit/hyperactivity disorder (ADHD) symptoms, but limited studies considered urinary mixtures of multiple chemical classes. This study examined associations of concurrent exposure to non-persistent chemicals with ADHD symptoms in children diagnosed with autism spectrum disorder (ASD), developmental delay (DD), and typical development (TD). METHODS: A total of 549 children aged 2-5 years from the Childhood Autism Risks from Genetics and Environment (CHARGE) case-control study were administered the Aberrant Behavior Checklist (ABC). This study focused on the ADHD/noncompliance subscale and its two subdomains (hyperactivity/impulsivity, inattention). Sixty-two chemicals from four classes (phenols/parabens, phthalates, organophosphate pesticides, trace elements) were quantified in child urine samples, and 43 chemicals detected in > 70% samples were used to investigate their associations with ADHD symptoms. Negative binomial regression was used for single-chemical analysis, and weighted quantile sum regression with repeated holdout validation was applied for mixture analysis for each chemical class and all chemicals. The mixture analyses were further stratified by diagnostic group. RESULTS: A phthalate metabolite mixture was associated with higher ADHD/noncompliance scores (median count ratio [CR] = 1.10; 2.5th, 97.5th percentile: 1.00, 1.21), especially hyperactivity/impulsivity (median CR = 1.09; 2.5th, 97.5th percentile: 1.00, 1.25). The possible contributors to these mixture effects were di-2-ethylhexyl phthalate (DEHP) metabolites and mono-2-heptyl phthalate (MHPP). These associations were likely driven by children with ASD as these were observed among children with ASD, but not among TD or those with DD. Additionally, among children with ASD, a mixture of all chemicals was associated with ADHD/noncompliance and hyperactivity/impulsivity, and possible contributors were 3,4-dihydroxy benzoic acid, DEHP metabolites, MHPP, mono-n-butyl phthalate, and cadmium. CONCLUSIONS: Early childhood exposure to a phthalate mixture was associated with ADHD symptoms, particularly among children with ASD. While the diverse diagnostic profiles limited generalizability, our findings suggest a potential link between phthalate exposure and the comorbidity of ASD and ADHD.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Dietilhexil Ftalato , Contaminantes Ambientales , Plaguicidas , Ácidos Ftálicos , Oligoelementos , Niño , Humanos , Preescolar , Trastorno por Déficit de Atención con Hiperactividad/inducido químicamente , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/epidemiología , Parabenos/análisis , Fenoles/orina , Estudios de Casos y Controles , Ácidos Ftálicos/orina , Organofosfatos/efectos adversos , Plaguicidas/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/orinaRESUMEN
BACKGROUND: Overweight and obesity are among the leading chronic diseases worldwide. Environmental phenols have been renowned as endocrine disruptors that contribute to weight changes; however, the effects of exposure to mixed phenols on obesity are not well established. METHODS: Using data from adults in National Health and Nutrition Examination Survey, this study examined the individual and combined effects of four phenols on obesity. A combination of traditional logistic regression and two mixed models (weighted quantile sum (WQS) regression and Bayesian kernel-machine regression (BKMR)) were used together to assess the role of phenols in the development of obesity. The potential mediation of cholesterol on these effects was analyzed through a parallel mediation model. RESULTS: The results demonstrated that solitary phenols except triclosan were inversely associated with obesity (P-value < 0.05). The WQS index was also negatively correlated with general obesity (ß: 0.770, 95% CI: 0.644-0.919, P-value = 0.004) and abdominal obesity (ß: 0.781, 95% CI: 0.658-0.928, P-value = 0.004). Consistently, the BKMR model demonstrated the significant joint negative effects of phenols on obesity. The parallel mediation analysis revealed that high-density lipoprotein mediated the effects of all four single phenols on obesity, whereas low-density lipoprotein only mediated the association between benzophenol-3 and obesity. Moreover, Cholesterol acts as a mediator of the association between mixed phenols and obesity. Exposure to single and mixed phenols significantly and negatively correlated with obesity. Cholesterol mediated the association of single and mixed environmental phenols with obesity. CONCLUSIONS: Assessing the potential public health risks of mixed phenols helps to incorporate this information into practical health advice and guidance.
Asunto(s)
Isoflavonas , Obesidad , Fenoles , Humanos , Fenoles/orina , Masculino , Adulto , Femenino , Persona de Mediana Edad , Colesterol/sangre , Compuestos de Bencidrilo/orina , Triclosán/efectos adversos , Encuestas Nutricionales , Teorema de Bayes , Disruptores Endocrinos/orina , Clorofenoles/orinaRESUMEN
BACKGROUND: Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by chronic inflammation and progressive cartilage degradation, ultimately leading to joint dysfunction and disability. Oleocanthal (OC), a bioactive phenolic compound derived from extra virgin olive oil, has garnered significant attention due to its potent anti-inflammatory properties, which are comparable to those of non-steroidal anti-inflammatory drugs (NSAIDs). This study pioneers the investigation into the effects of OC on the Protease-Activated Receptor-2 (PAR-2) mediated inflammatory pathway in OA, aiming to validate its efficacy as a functional food-based therapeutic intervention. METHODS: To simulate cartilage tissue in vitro, human bone marrow-derived mesenchymal stem cells (BMSCs) were differentiated into chondrocytes. An inflammatory OA-like environment was induced in these chondrocytes using lipopolysaccharide (LPS) to mimic the pathological conditions of OA. The therapeutic effects of OC were evaluated by treating these inflamed chondrocytes with various concentrations of OC. The study focused on assessing key inflammatory markers, catabolic enzymes, and mitochondrial function to elucidate the protective mechanisms of OC. Mitochondrial function, specifically mitochondrial membrane potential (ΔΨm), was assessed using Rhodamine 123 staining, a fluorescent dye that selectively accumulates in active mitochondria. The integrity of ΔΨm serves as an indicator of mitochondrial and bioenergetic function. Additionally, Western blotting was employed to analyze protein expression levels, while real-time polymerase chain reaction (RT-PCR) was used to quantify gene expression of inflammatory cytokines and catabolic enzymes. Flow cytometry was utilized to measure cell viability and apoptosis, providing a comprehensive evaluation of OC's therapeutic effects on chondrocytes. RESULTS: The results demonstrated that OC significantly downregulated PAR-2 expression in a dose-dependent manner, leading to a substantial reduction in pro-inflammatory cytokines, including TNF-α, IL-1ß, and MCP-1. Furthermore, OC attenuated the expression of catabolic markers such as SOX4 and ADAMTS5, which are critically involved in cartilage matrix degradation. Importantly, OC was found to preserve mitochondrial membrane potential (ΔΨm) in chondrocytes subjected to inflammatory stress, as evidenced by Rhodamine 123 staining, indicating a protective effect on cellular bioenergetics. Additionally, OC modulated the Receptor Activator of Nuclear Factor Kappa-Β Ligand (RANKL)/Receptor Activator of Nuclear Factor Kappa-Β (RANK) pathway, suggesting a broader therapeutic action against the multifactorial pathogenesis of OA. CONCLUSIONS: This study is the first to elucidate the modulatory effects of OC on the PAR-2 mediated inflammatory pathway in OA, revealing its potential as a multifaceted therapeutic agent that not only mitigates inflammation but also protects cartilage integrity. The preservation of mitochondrial function and modulation of the RANKL/RANK pathway further underscores OC's comprehensive therapeutic potential in counteracting the complex pathogenesis of OA. These findings position OC as a promising candidate for integration into nutritional interventions aimed at managing OA. However, further research is warranted to fully explore OC's therapeutic potential across different stages of OA and its long-term effects in musculoskeletal disorders.
Asunto(s)
Antiinflamatorios , Condrocitos , Monoterpenos Ciclopentánicos , Células Madre Mesenquimatosas , Osteoartritis , Receptor PAR-2 , Humanos , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Osteoartritis/metabolismo , Osteoartritis/tratamiento farmacológico , Receptor PAR-2/metabolismo , Antiinflamatorios/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Monoterpenos Ciclopentánicos/farmacología , Células Cultivadas , Alimentos Funcionales , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Lipopolisacáridos/farmacología , Aldehídos , FenolesRESUMEN
Considering the limited data available on tree species in Uzbekistan, this research aimed to provide new insights. We gathered plant samples from different locations within Samarkand city and thoughtfully selected 15 tree species that represent the country's flora. Using scanning electron microscopy, we conducted comprehensive analyses of pollen morphology, revealing a diverse range of variations in the shapes, dimensions, and surface characteristics displayed by pollen grains. Distinct ornamentations such as micro-echinate, reticulate, rugulate, gemmate-verrucate, and verrucate-scabrate patterns facilitated the differentiation of species. These scanning electron microscopy findings enhance our comprehension of tree species diversity, adaptation, and ecological roles. In addition, leaf extracts were analyzed using HPLC and GC-MS, revealing a plethora of bioactive compounds, including catechins, chlorogenic acid, vanillic acid, and others. Furthermore, GC-MS analysis revealed the presence of seven key compounds, including 1-hexadecyne, 2-chloroethanol, 1,6-heptadiene, 2-methyl-, 5-bromoadamantan-2-one, ethyl 3-(3-pyridyl) propenoate, bis (2-ethylhexyl) phthalate, and quercetin. This study demonstrates the effectiveness of this method in assessing the quality of leaf extracts from tree species by examining both microscopic characteristics and chemical composition. This multifaceted approach has deepened our understanding of the characteristics and chemical compositions of these trees, thus contributing to a more profound appreciation of their ecological significance and potential applications.
Asunto(s)
Alérgenos , Árboles , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas , Microscopía Electrónica de RastreoRESUMEN
BACKGROUND: Toxicological and epidemiological studies have shown that environmental endocrine disruptors interfere with hormonal homeostasis. However, there is limited research on the effects of mixed exposure to nonpersistent endocrine disruptors on thyroid hormones and the factors (e.g., presence status of thyroid autoantibodies or nutritional status of organismal iodine) that may influence this association. METHODS: Data were collected from the National Health and Nutrition Examination Survey (NHANES) 2007-2008 and 2011-2012. Relationships between single pollutants and thyroid hormone and thyroid autoantibody levels were assessed using generalized linear (GLM) and restricted cubic spline (RCS) regression models. Weighted quantile sum regression (WQS), group-weighted quantile sum regression (GWQS), quantile-based g-computation (qgcomp), and adaptive elasticity network (AENET) were applied to assess the mixed exposure effect. Next, subgroup analyses were performed on the basis of the urinary iodine concentration or thyroid autoantibody status to assess the modifying role of urinary iodine and thyroid autoantibodies. RESULTS: A total of 2385 study participants were included in this study. Both the single-pollutant model and the multipollutant mixed model revealed that parabens and bis(2-ethylhexyl) phthalate (DEHP) metabolites were significantly and negatively associated with serum thyroxine (T4) levels. However, no associations were found between the target pollutants and thyroid autoantibodies (thyroglobulin antibodies (TgAb) and thyroid peroxidase antibodies (TPOAb)). In addition, this study revealed that urinary iodine or thyroid autoantibody status altered the associations of some of the target pollutants with thyroid hormones. WQS and qgcomp analyses, revealed that the associations of mixed pollutants with hormones differed depending on the urinary iodine or antibody status, especially T4 and thyroid-stimulating hormone (TSH). CONCLUSION: Significant associations were found between phenols, parabens, and phthalates and serum thyroid hormone levels, with parabens and DEHP metabolites playing major roles. Urinary iodine and thyroid autoantibody status act as modifiers between environmental endocrine-disrupting pollutants and thyroid hormones.