Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 942
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(5): 1177-1190.e18, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38366593

RESUMEN

Phospholipids containing a single polyunsaturated fatty acyl tail (PL-PUFA1s) are considered the driving force behind ferroptosis, whereas phospholipids with diacyl-PUFA tails (PL-PUFA2s) have been rarely characterized. Dietary lipids modulate ferroptosis, but the mechanisms governing lipid metabolism and ferroptosis sensitivity are not well understood. Our research revealed a significant accumulation of diacyl-PUFA phosphatidylcholines (PC-PUFA2s) following fatty acid or phospholipid treatments, correlating with cancer cell sensitivity to ferroptosis. Depletion of PC-PUFA2s occurred in aging and Huntington's disease brain tissue, linking it to ferroptosis. Notably, PC-PUFA2s interacted with the mitochondrial electron transport chain, generating reactive oxygen species (ROS) for initiating lipid peroxidation. Mitochondria-targeted antioxidants protected cells from PC-PUFA2-induced mitochondrial ROS (mtROS), lipid peroxidation, and cell death. These findings reveal a critical role for PC-PUFA2s in controlling mitochondria homeostasis and ferroptosis in various contexts and explain the ferroptosis-modulating mechanisms of free fatty acids. PC-PUFA2s may serve as diagnostic and therapeutic targets for modulating ferroptosis.


Asunto(s)
Grasas de la Dieta , Ferroptosis , Fosfolípidos , Ácidos Grasos , Fosfatidilcolinas , Fosfolípidos/química , Fosfolípidos/metabolismo , Especies Reactivas de Oxígeno , Grasas de la Dieta/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(30): e2122158119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858418

RESUMEN

Eicosapentaenoic acid (EPA), an omega-3 (ω-3) polyunsaturated fatty acid, is an essential nutrient that exhibits antiinflammatory, neuroprotective, and cardiovascular-protective activities. Although EPA is used as a nutrient-based pharmaceutical agent or dietary supplement, its molecular target(s) is debatable. Here, we showed that EPA and its metabolites strongly and reversibly inhibit vesicular nucleotide transporter (VNUT), a key molecule for vesicular storage and release of adenosine triphosphate (ATP) in purinergic chemical transmission. In vitro analysis showed that EPA inhibits human VNUT-mediated ATP uptake at a half-maximal inhibitory concentration (IC50) of 67 nM, acting as an allosteric modulator through competition with Cl-. EPA impaired vesicular ATP release from neurons without affecting the vesicular release of other neurotransmitters. In vivo, VNUT-/- mice showed a delay in the onset of neuropathic pain and resistance to both neuropathic and inflammatory pain. EPA potently attenuated neuropathic and inflammatory pain in wild-type mice but not in VNUT-/- mice without affecting the basal nociception. The analgesic effect of EPA was canceled by the intrathecal injection of purinoceptor agonists and was stronger than that of existing drugs used for neuropathic pain treatment, with few side effects. Neuropathic pain impaired insulin sensitivity in previous studies, which was improved by EPA in the wild-type mice but not in the VNUT-/- mice. Our results showed that VNUT is a molecular target of EPA that attenuates neuropathic and inflammatory pain and insulin resistance. EPA may represent a unique nutrient-based treatment and prevention strategy for neurological, immunological, and metabolic diseases by targeting purinergic chemical transmission.


Asunto(s)
Ácido Eicosapentaenoico , Neuralgia , Proteínas de Transporte de Nucleótidos , Adenosina Trifosfato/metabolismo , Animales , Ácido Eicosapentaenoico/farmacología , Ácido Eicosapentaenoico/uso terapéutico , Humanos , Resistencia a la Insulina , Ratones , Neuralgia/tratamiento farmacológico , Neuralgia/genética , Nocicepción , Proteínas de Transporte de Nucleótidos/antagonistas & inhibidores , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo
3.
J Lipid Res ; 65(1): 100492, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38135255

RESUMEN

Quantitative information on blood metabolites can be used in developing advanced medical strategies such as early detection and prevention of disease. Monitoring bioactive lipids such as steroids, bile acids, and PUFA metabolites could be a valuable indicator of health status. However, a method for simultaneously measuring these bioactive lipids has not yet been developed. Here, we report a LC/MS/MS method that can simultaneously measure 144 bioactive lipids, including steroids, bile acids, and PUFA metabolites, from human plasma, and a sample preparation method for these targets. Protein removal by methanol precipitation and purification of bioactive lipids by solid-phase extraction improved the recovery of the targeted compounds in human plasma samples, demonstrating the importance of sample preparation methods for a wide range of bioactive lipid analyses. Using the developed method, we studied the plasma from healthy human volunteers and confirmed the presence of bioactive lipid molecules associated with sex differences and circadian rhythms. The developed method of bioactive lipid analysis can be applied to health monitoring and disease biomarker discovery in precision medicine.


Asunto(s)
Esteroides , Espectrometría de Masas en Tándem , Humanos , Femenino , Masculino , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Ácidos y Sales Biliares , Lípidos
4.
J Lipid Res ; 65(6): 100548, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38649096

RESUMEN

DHA is abundant in the brain where it regulates cell survival, neurogenesis, and neuroinflammation. DHA can be obtained from the diet or synthesized from alpha-linolenic acid (ALA; 18:3n-3) via a series of desaturation and elongation reactions occurring in the liver. Tracer studies suggest that dietary DHA can downregulate its own synthesis, but the mechanism remains undetermined and is the primary objective of this manuscript. First, we show by tracing 13C content (δ13C) of DHA via compound-specific isotope analysis, that following low dietary DHA, the brain receives DHA synthesized from ALA. We then show that dietary DHA increases mouse liver and serum EPA, which is dependant on ALA. Furthermore, by compound-specific isotope analysis we demonstrate that the source of increased EPA is slowed EPA metabolism, not increased DHA retroconversion as previously assumed. DHA feeding alone or with ALA lowered liver elongation of very long chain (ELOVL2, EPA elongation) enzyme activity despite no change in protein content. To further evaluate the role of ELOVL2, a liver-specific Elovl2 KO was generated showing that DHA feeding in the presence or absence of a functional liver ELOVL2 yields similar results. An enzyme competition assay for EPA elongation suggests both uncompetitive and noncompetitive inhibition by DHA depending on DHA levels. To translate our findings, we show that DHA supplementation in men and women increases EPA levels in a manner dependent on a SNP (rs953413) in the ELOVL2 gene. In conclusion, we identify a novel feedback inhibition pathway where dietary DHA downregulates its liver synthesis by inhibiting EPA elongation.


Asunto(s)
Ácidos Docosahexaenoicos , Regulación hacia Abajo , Ácido Eicosapentaenoico , Hígado , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/administración & dosificación , Animales , Ácido Eicosapentaenoico/farmacología , Ácido Eicosapentaenoico/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Ratones , Regulación hacia Abajo/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Ácido alfa-Linolénico/farmacología , Ácido alfa-Linolénico/metabolismo , Ácido alfa-Linolénico/administración & dosificación
5.
J Biol Chem ; 299(1): 102793, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36509140

RESUMEN

Astrocytic excitatory amino acid transporter 2 (EAAT2) plays a major role in removing the excitatory neurotransmitter L-glutamate (L-Glu) from synaptic clefts in the forebrain to prevent excitotoxicity. Polyunsaturated fatty acids such as docosahexaenoic acid (DHA, 22:6 n-3) enhance synaptic transmission, and their target molecules include EAATs. Here, we aimed to investigate the effect of DHA on EAAT2 and identify the key amino acid for DHA/EAAT2 interaction by electrophysiological recording of L-Glu-induced current in Xenopus oocytes transfected with EAATs, their chimeras, and single mutants. DHA transiently increased the amplitude of EAAT2 but tended to decrease that of excitatory amino acid transporter subtype 1 (EAAT1), another astrocytic EAAT. Single mutation of leucine (Leu) 434 to alanine (Ala) completely suppressed the augmentation by DHA, while mutation of EAAT1 Ala 435 (corresponding to EAAT2 Leu434) to Leu changed the effect from suppression to augmentation. Other polyunsaturated fatty acids (docosapentaenoic acid, eicosapentaenoic acid, arachidonic acid, and α-linolenic acid) similarly augmented the EAAT2 current and suppressed the EAAT1 current. Finally, our docking analysis suggested the most stable docking site is the lipid crevice of EAAT2, in close proximity to the L-Glu and sodium binding sites, suggesting that the DHA/Leu434 interaction might affect the elevator-like slide and/or the shapes of the other binding sites. Collectively, our results highlight a key molecular detail in the DHA-induced regulation of synaptic transmission involving EAATs.


Asunto(s)
Ácidos Docosahexaenoicos , Transportador 2 de Aminoácidos Excitadores , Transmisión Sináptica , Xenopus laevis , Ácidos Docosahexaenoicos/metabolismo , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Leucina , Mutación , Xenopus laevis/metabolismo
6.
J Biol Chem ; 299(4): 103042, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36803964

RESUMEN

Hepatic stellate cells (HSCs) are liver-resident cells best known for their role in vitamin A storage under physiological conditions. Upon liver injury, HSCs activate into myofibroblast-like cells, a key process in the onset of liver fibrosis. Lipids play an important role during HSC activation. Here, we provide a comprehensive characterization of the lipidomes of primary rat HSCs during 17 days of activation in vitro. For lipidomic data interpretation, we expanded our previously described Lipid Ontology (LION) and associated web application (LION/Web) with the LION-PCA heatmap module, which generates heatmaps of the most typical LION-signatures in lipidomic datasets. Furthermore, we used LION to perform pathway analysis to determine the significant metabolic conversions in lipid pathways. Together, we identify two distinct stages of HSC activation. In the first stage, we observe a decrease of saturated phosphatidylcholine, sphingomyelin, and phosphatidic acid and an increase in phosphatidylserine and polyunsaturated bis(monoacylglycero)phosphate (BMP), a lipid class typically localized at endosomes and lysosomes. In the second activation stage, BMPs, hexosylceramides, and ether-linked phosphatidylcholines are elevated, resembling a lysosomal lipid storage disease profile. The presence of isomeric structures of BMP in HSCs was confirmed ex vivo in MS-imaging datasets of steatosed liver sections. Finally, treatment with pharmaceuticals targeting the lysosomal integrity led to cell death in primary HSCs but not in HeLa cells. In summary, our combined data suggest that lysosomes play a critical role during a two-stage activation process of HSCs.


Asunto(s)
Células Estrelladas Hepáticas , Lipidómica , Humanos , Ratas , Animales , Células Estrelladas Hepáticas/metabolismo , Células HeLa , Cirrosis Hepática/metabolismo , Lisosomas/metabolismo , Lípidos/fisiología
7.
Neurobiol Dis ; 193: 106443, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395315

RESUMEN

The coexistence of chronic pain and depression in clinical practice places a substantial social burden and profoundly impacts in patients. Although a clear correlation exists, the underlying mechanism of comorbidity between chronic pain and depression remains elusive. Research conducted in recent decades has uncovered that soluble epoxide hydrolase, a pivotal enzyme in the metabolism of polyunsaturated fatty acids, plays a crucial role in inflammation. Interestingly, this enzyme is intricately linked to the development of both pain and depression. With this understanding, this review aims to summarize the roles of soluble epoxide hydrolase in pain, depression, and their comorbidity. Simultaneously, we will also explore the underlying mechanisms, providing guidance for future research and drug development.


Asunto(s)
Dolor Crónico , Epóxido Hidrolasas , Humanos , Epóxido Hidrolasas/metabolismo , Depresión , Comorbilidad , Inflamación/metabolismo
8.
Am J Kidney Dis ; 84(2): 179-194.e1, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38423161

RESUMEN

RATIONALE & OBJECTIVE: Many studies have reported polyunsaturated fatty acids (PUFA) as significant predictors of cardiovascular disease, but little is known about the relationship between PUFA levels and chronic kidney disease (CKD). This study explored this relationship among individuals with and without CKD. STUDY DESIGN: Prospective observational cohort study. SETTING & PARTICIPANTS: 73,419 participants without CKD (cohort 1) and 6,735 participants with CKD (cohort 2) in the UK Biobank Study, with PUFA levels measured between 2007 and 2010. EXPOSURE: Percentage of plasma PUFA, omega-3 fatty acid (FA), omega-6 FA, docosahexaenoic acid (DHA), and linoleic acid relative to total FA. OUTCOME: Incident CKD for cohort 1 and incident kidney failure requiring replacement therapy (KFRT) for cohort 2. ANALYTICAL APPROACH: Cox proportional hazards regression analyses, including a cause-specific competing risk model. RESULTS: In cohort 1, individuals with higher quartiles of plasma PUFA levels had healthier lifestyles and fewer comorbidities. During 841,007 person-years of follow-up (median 11.9 years), incident CKD occurred in 4.5% of participants (incidence rate, 39.1 per 10,000 person-years). For incident CKD in cohort 1, the adjusted cause-specific hazard ratios for quartiles 2, 3, and 4 were 0.83 (95% CI, 0.75-0.92), 0.85 (95% CI, 0.76-0.96), 0.71 (95% CI, 0.62-0.82), respectively, compared with quartile 1. This inverse relationship was consistently observed for all PUFA types. In cohort 2, although total PUFA levels were not associated with KFRT, higher PUFA subtype levels of DHA were associated with a lower risk of KFRT. LIMITATIONS: Observational design and limited generalizability to individuals with higher disease severity; no data on eicosapentaenoic acid. CONCLUSIONS: Among individuals without CKD, higher plasma PUFA levels and all 4 PUFA components were associated with a lower risk of incident CKD. In individuals with CKD, only the omega-3 component of PUFA, DHA, was associated with a lower risk of KFRT. PLAIN-LANGUAGE SUMMARY: Low amounts of polyunsaturated fatty acids (PUFA) in the blood are suspected of increasing the chances of heart disease, but it is not known whether the PUFA relates to kidney disease occurrence. In a large group without kidney disease in the United Kingdom, people with higher levels of PUFA in their blood tended to have a lower risk of developing kidney disease compared to those with lower PUFA levels. This relationship was consistently observed for all PUFA types. However, in the group with kidney disease, only higher levels of docosahexaenoic acid, a subtype of PUFAs, were associated with a lower risk of developing severe kidney problems that required kidney replacement therapy. These findings suggest that higher levels of PUFA, found in certain healthy fats, might protect against the development of kidney disease in the general population. As kidney function declines, only the docosahexaenoic acid, a subtype of PUFA, appears to be associated with preserved kidney function.


Asunto(s)
Ácidos Grasos Insaturados , Insuficiencia Renal Crónica , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/epidemiología , Ácidos Grasos Insaturados/sangre , Anciano , Adulto , Estudios de Cohortes , Incidencia , Reino Unido/epidemiología , Ácidos Docosahexaenoicos/sangre
9.
Int Arch Allergy Immunol ; 185(2): 124-132, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37913762

RESUMEN

INTRODUCTION: The incidence of allergic rhinitis (AR) is increasing year by year, and the pathogenesis is complex, in which diet may play an important role. The role of polyunsaturated fatty acids (PUFAs) in AR is still controversial. Previous studies have looked at the effects of PUFA during pregnancy, childhood, and adolescence. In this study, we aimed to determine the association between dietary intake of PUFA and AR in adults. METHODS: We used the NHANES database from 2005 to 2006 to include a total of 4,211 adult subjects. We collected dietary PUFA intake data and information on AR. Logistic regression and restricted cubic spline models were constructed to examine the association between PUFA intake and AR in adults. The t test was used to compare daily PUFA intakes in patients with and without AR. RESULTS: In the fully adjusted model (OR: 1.016; 95% CI: 1.003; 1.028), PUFA intake was positively correlated with allergic symptoms, hay fever, and AR in adults (p < 0.05). In addition, daily PUFA intake was significantly higher in people with allergic symptoms, hay fever, and AR than in people without the disease (p < 0.01). CONCLUSIONS: Our results suggest a positive association between dietary PUFA intake and AR in adults to a certain extent. Future studies on dietary PUFA dose will provide new strategies for the prevention and treatment of allergic diseases such as AR related to non-pharmaceutical interventions.


Asunto(s)
Rinitis Alérgica Estacional , Rinitis Alérgica , Adulto , Embarazo , Femenino , Adolescente , Humanos , Niño , Estudios Transversales , Encuestas Nutricionales , Dieta , Rinitis Alérgica/epidemiología , Ácidos Grasos Insaturados
10.
FASEB J ; 37(9): e23151, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37585289

RESUMEN

Docosahexaenoic acid (DHA) and ultra-long-chain polyunsaturated fatty acids (ULC-PUFAs) are uniquely enriched in membrane phospholipids of retinal photoreceptors. Several studies have shown that di-DHA- and ULC-PUFA-containing phospholipids in photoreceptors have an important role in maintaining normal visual function; however, the molecular mechanisms underlying the synthesis and enrichment of these unique lipids in the retina, and their specific roles in retinal function remain unclear. Long-chain acyl-coenzyme A (CoA) synthetase 6 (ACSL6) preferentially converts DHA into DHA-CoA, which is a substrate during DHA-containing lipid biosynthesis. Here, we report that Acsl6 mRNA is expressed in the inner segment of photoreceptor cells and the retinal pigment epithelial cells, and genetic deletion of ACSL6 resulted in the selective depletion of di-DHA- and ULC-PUFA-containing phospholipids, but not mono-DHA-containing phospholipids in the retina. MALDI mass spectrometry imaging (MALDI-MSI) revealed the selective distribution of di-DHA- and ULC-PUFA-containing phospholipids in the photoreceptor outer segment (OS). Electroretinogram of Acsl6-/- mice exhibited photoreceptor cell-derived visual impairment, whereas the expression levels and localization of opsin proteins were unchanged. Acsl6-/- mice exhibited an age-dependent progressive decrease of the thickness of the outer nuclear layers, whereas the inner nuclear layers and OSs were normal. These results demonstrate that ACSL6 facilitates the local enrichment of di-DHA- and ULC-PUFA-containing phospholipids in the retina, which supports normal visual function and retinal homeostasis.


Asunto(s)
Ácidos Docosahexaenoicos , Fosfolípidos , Ratones , Animales , Fosfolípidos/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Retina/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ligasas/análisis , Ligasas/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo
11.
Crit Rev Food Sci Nutr ; : 1-14, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066633

RESUMEN

Preterm infants, often characterized by lower birth weights and underdeveloped physiologies, necessitate specialized nutritional care. While breast milk stands as the ideal nutritional source, offering substantial energy through its fatty acid content to support the infants' growth and developmental needs, its usage might not always be feasible. Fatty acids in breast milk are critical for the development of these infants. In scenarios where breast milk is not an option, formula feeding becomes a necessary alternative. Thus, a comprehensive understanding of the fatty acid profiles in both breast milk and formulas is crucial for addressing the distinct nutritional requirements of preterm infants. This paper aims to summarize the effects of lipid composition, structure, and positioning in breast milk and formula on the growth and development of preterm infants. Furthermore, it explores recent advancements in the use of novel structural lipids in formulas, laying the groundwork for future innovations in formula design specifically catered to the needs of preterm infants.

12.
Biosci Biotechnol Biochem ; 88(6): 696-704, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38520162

RESUMEN

We focused on the production of docosahexaenoic acid (DHA)-containing microbial lipids by Aurantiochytrium sp. using of defatted soybean (DS) as a nitrogen source. Defatted soybean is a plant biomass that could provide a sustainable supply at a low cost. Results showed that Aurantiochytrium sp. could not directly assimilate the DS as a nitrogen source but could grow well in a medium containing DS fermented with rice malt. When cultivated in a fermented DS (FDS) medium, Aurantiochytrium sp. showed vigorous growth with the addition of sufficient sulfate and chloride ions as inorganic nutrients without seawater salt. A novel isolated Aurantiochytrium sp. 6-2 showed 15.8 ± 3.4 g/L DHA productivity (in 54.8 ± 12.1 g/L total fatty acid production) in 1 L of the FDS medium. Therefore, DHA produced by Aurantiochytrium sp. using FDS enables a stable and sustainable DHA supply and could be an alternative source of natural DHA derived from fish oil.


Asunto(s)
Alimentación Animal , Ácidos Docosahexaenoicos , Fermentación , Glycine max , Nitrógeno , Estramenopilos , Ácidos Docosahexaenoicos/biosíntesis , Ácidos Docosahexaenoicos/metabolismo , Glycine max/metabolismo , Glycine max/crecimiento & desarrollo , Nitrógeno/metabolismo , Estramenopilos/metabolismo , Estramenopilos/crecimiento & desarrollo , Alimentación Animal/análisis , Animales , Peces/metabolismo , Biomasa , Medios de Cultivo/química
13.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39062812

RESUMEN

Dietary intake of omega-3 polyunsaturated fatty acids (eicosapentaenoic acid, EPA) exerts antiarrhythmic effects, although the mechanisms are poorly understood. Here, we investigated the possible beneficial actions of EPA on saturated fatty acid-induced changes in the L-type Ca2+ channel in cardiomyocytes. Cardiomyocytes were cultured with an oleic acid/palmitic acid mixture (OAPA) in the presence or absence of EPA. Beating rate reduction in cardiomyocytes caused by OAPA were reversed by EPA. EPA also retrieved a reduction in Cav1.2 L-type Ca2+ current, mRNA, and protein caused by OAPA. Immunocytochemical analysis revealed a distinct downregulation of the Cav1.2 channel caused by OAPA with a concomitant decrease in the phosphorylated component of a transcription factor adenosine-3',5'-cyclic monophosphate (cAMP) response element binding protein (CREB) in the nucleus, which were rescued by EPA. A free fatty acid receptor 4 (FFAR4) agonist TUG-891 reversed expression of Cav1.2 and CREB mRNA caused by OAPA, whereas an FFAR4 antagonist AH-7614 abolished the effects of EPA. Excessive reactive oxygen species (ROS) accumulation caused by OAPA decreased Cav1.2 and CREB mRNA expressions, which was reversed by an ROS scavenger. Our data suggest that EPA rescues cellular Cav1.2-Ca2+ channel decline caused by OAPA lipotoxicity and oxidative stresses via both free fatty acid receptor 4-dependent and -independent pathways.


Asunto(s)
Canales de Calcio Tipo L , Ácido Eicosapentaenoico , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Ácido Eicosapentaenoico/farmacología , Animales , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/genética , Ratas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ácidos Grasos/metabolismo , Transducción de Señal/efectos de los fármacos , Células Cultivadas
14.
Compr Rev Food Sci Food Saf ; 23(1): e13272, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284597

RESUMEN

Omega-3 fatty acids (omega-3 FAs) have been widely recognized for their therapeutic advantages, including anti-inflammatory and cardioprotective properties. They have shown promise in enhancing regulatory function, promotingdevelopment and mitigating the progression of diabetes and cancer. The scientific communities, along with industries, are actively endorsing initiatives aimed at increasing the daily intake of lipids rich in omega-3 FAs. Nevertheless, incorporating polyunsaturated FAs (PUFAs) into food products poses several challenges due to their susceptibility to oxidation when exposed to oxygen, high temperatures, and moisture. This oxidative deterioration results in undesirable flavours and a loss of nutritional value. Various methods, including physical blending, interesterification, and encapsulation, have been utilized as ways to enhance the stability of edible oils rich in PUFA against oxidation. Encapsulation has emerged as a proven strategy for enhancing the oxidative stability and functional properties of omega-3 FA-rich oils. Multiple encapsulation methods have been developed to stabilize and improve the delivery of omega-3 FAs in food products. The selection of an appropriate encapsulation method depends on the desired application of the encapsulated oil. In addition, encapsulation enhances the bioavailability of omega-3 FAs by promoting increased absorption of the encapsulated form in the intestinal epithelium. This review discusses the techniques and principles of omega-3 FA-rich oil encapsulation and its role in improving stability and bioavailability. Furthermore, it also investigates the potential health benefits of these encapsulated oils. This review explores the variations in bioavailability based on encapsulation techniques and processing, offering vital insights for nutrition and product development.


Asunto(s)
Ácidos Grasos Omega-3 , Disponibilidad Biológica , Oxidación-Reducción
15.
J Cell Sci ; 134(20)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34557909

RESUMEN

Sortilin is a neuronal receptor for apolipoprotein E (apoE). Sortilin-dependent uptake of lipidated apoE promotes conversion of polyunsaturated fatty acids (PUFA) into neuromodulators that induce anti-inflammatory gene expression in the brain. This neuroprotective pathway works with the apoE3 variant but is lost with the apoE4 variant, the main risk factor for Alzheimer's disease (AD). Here, we elucidated steps in cellular handling of lipids through sortilin, and why they are disrupted by apoE4. Combining unbiased proteome screens with analyses in mouse models, we uncover interaction of sortilin with fatty acid-binding protein 7 (FABP7), the intracellular carrier for PUFA in the brain. In the presence of apoE3, sortilin promotes functional expression of FABP7 and its ability to elicit lipid-dependent gene transcription. By contrast, apoE4 binding blocks sortilin-mediated sorting, causing catabolism of FABP7 and impairing lipid signaling. Reduced FABP7 levels in the brain of AD patients expressing apoE4 substantiate the relevance of these interactions for neuronal lipid homeostasis. Taken together, we document interaction of sortilin with mediators of extracellular and intracellular lipid transport that provides a mechanistic explanation for loss of a neuroprotective lipid metabolism in AD.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Proteínas Adaptadoras del Transporte Vesicular , Enfermedad de Alzheimer/genética , Animales , Apolipoproteína E3 , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Proteína de Unión a los Ácidos Grasos 7 , Humanos , Lípidos , Ratones
16.
Biochem Biophys Res Commun ; 665: 152-158, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37163935

RESUMEN

Uridine has formerly been shown to alleviate obesity and hepatic lipid accumulation. N-carbamoyl aspartate (NCA) provides carbon atoms to uridine in de novo pyrimidine biosynthesis pathway. However, whether NCA is involved in the lipid metabolism remains elusive. Here we showed that NCA supplementation significantly decreased (P < 0.05) serum cholesterol (CHOL), high-density lipoprotein (HDL), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP) levels of mice, and significantly increased (P < 0.05) relative mRNA expression of genes related to the synthesis of pyrimidine nucleotides and polyunsaturated fatty acids. Besides, supplemented with NCA significantly decreased body weight and area under the curve (AUC), and increased body temperature in the high-fat diet fed mice. For further, relative protein expression of uridine monophosphate synthase (UMPS), sterol regulatory element-binding protein 1(SREBP-1) and phosphorylated hormone-sensitive triglyceride lipase (P-HSL) in the liver, and uncoupling protein 1 (UCP-1) in interscapular brown adipose tissue (iBAT) also showed upregulated in the high-fat diet fed mice. Thus, NCA promoted de novo synthesis of pyrimidine and polyunsaturated fatty acid, and reduced body weight by stimulating high-fat diet-induced thermogenesis of iBAT.


Asunto(s)
Tejido Adiposo Pardo , Ácido Aspártico , Ratones , Animales , Tejido Adiposo Pardo/metabolismo , Ácido Aspártico/metabolismo , Peso Corporal , Termogénesis/genética , Dieta Alta en Grasa/efectos adversos , Pirimidinas/farmacología , Uridina/metabolismo
17.
Proc Biol Sci ; 290(2009): 20231327, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37876198

RESUMEN

Cell death is physiologically induced by specific mediators. However, our power to trigger the process in selected cells is quite limited. The protandric shrimp Hippolyte inermis offers a possible answer. Here, we analyse a de novo transcriptome of shrimp post-larvae fed on diatoms. The sex ratio of diatom-fed shrimps versus shrimps fed on control diets was dramatically altered, demonstrating the disruption of the androgenic gland, and their transcriptome revealed key modifications in gene expression. A wide transcriptomic analysis, validated by real-time qPCR, revealed that ferroptosis represents the primary factor to re-shape the body of this invertebrate, followed by further apoptotic events, and our findings open biotechnological perspectives for controlling the destiny of selected tissues. Ferroptosis was detected here for the first time in a crustacean. In addition, this is the first demonstration of a noticeable effect prompted by an ingested food, deeply impacting the gene networks of a young metazoan, definitely determining its future physiology and sexual differentiation.


Asunto(s)
Diatomeas , Ferroptosis , Animales , Ácidos Grasos , Apoptosis , Perfilación de la Expresión Génica , Crustáceos
18.
Mol Ecol ; 32(4): 970-982, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36461663

RESUMEN

Long-chain (≥C20 ) polyunsaturated fatty acids (LC-PUFAs) are physiologically important fatty acids for most animals, including humans. Although most LC-PUFA production occurs in aquatic primary producers such as microalgae, recent research indicates the ability of certain groups of (mainly marine) invertebrates for endogenous LC-PUFA biosynthesis and/or bioconversion from dietary precursors. The genetic pathways for and mechanisms behind LC-PUFA biosynthesis remain unknown in many invertebrates to date, especially in non-model species. However, the numerous genomic and transcriptomic resources currently available can contribute to our knowledge of the LC-PUFA biosynthetic capabilities of metazoans. Within our previously generated transcriptome of the benthic harpacticoid copepod Platychelipus littoralis, we detected expression of one methyl-end desaturase, one front-end desaturase, and seven elongases, key enzymes responsible for LC-PUFA biosynthesis. To demonstrate their functionality, we characterized eight of them using heterologous expression in yeast. The P. littoralis methyl-end desaturase has Δ15/17/19 desaturation activity, enabling biosynthesis of α-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid (DHA) from 18:2 n-6, 20:4 n-6 and 22:5 n-6, respectively. Its front-end desaturase has Δ4 desaturation activity from 22:5 n-3 to DHA, implying that P. littoralis has multiple pathways to produce this physiologically important fatty acid. All studied P. littoralis elongases possess varying degrees of elongation activity for saturated and unsaturated fatty acids, producing aliphatic hydrocarbon chains with lengths of up to 30 carbons. Our investigation revealed a functionally diverse range of fatty acid biosynthesis genes in copepods, which highlights the need to scrutinize the role that primary consumers could perform in providing essential nutrients to upper trophic levels.


Asunto(s)
Ácido Eicosapentaenoico , Ácidos Grasos Insaturados , Humanos , Animales , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/genética , Ácidos Grasos Insaturados/metabolismo , Genoma , Saccharomyces cerevisiae/genética , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo
19.
Int Arch Allergy Immunol ; 184(7): 681-691, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36996769

RESUMEN

INTRODUCTION: Eczema is a common allergic skin condition among children and adolescents, and polyunsaturated fatty acids (PUFAs) are a kind of fatty acid which were reported to be associated with reduced risk of eczema. Previous studies explored different types of PUFAs with various age groups of children and adolescents, and the influence of confounding factors such as medicine use was not considered. In the present study, we aimed to identify the associations between PUFAs and the risk of eczema in children and adolescents. These findings of our study might help better understand the associations between PUFAs and eczema. METHODS: This cross-sectional study collected the data of 2,560 children and adolescents aged 6-19 years from National Health and Nutrition Examination Surveys (NHANES) between 2005 and 2006. Total PUFA, omega-3 (n-3), including octadecatrienoic acid/18:3, octadecatrienoic acid/18:4, eicosapentaenoic acid/20:5, docosapentaenoic acid/22:5, and docosahexaenoic acid/22:6, omega-6 (n-6), including octadecatrienoic acid/18:2 and eicosatetraenoic acid/20:4, total n-3 intake, total n-6 intake, and n-3/n-6 were main variables in this study. Univariate logistic regression was applied for identifying potential confounders for eczema. Univariate and multivariate logistic regression analysis were conducted to explore the associations between PUFAs and eczema. Subgroup analysis was performed on subjects with different ages, and patients complicated with other allergic diseases, allergy, and medicine use or not. RESULTS: In total, there were 252 (9.8%) subjects who had eczema. After adjusting for confounding factors including age, race, poverty to income ratio (PIR), medicine use, hay fever, sinus infection, body mass index (BMI), serum total immunoglobulin E (IgE) antibody, and IgE, we observed that eicosatetraenoic acid/20:4 (OR = 0.17, 95% CI: 0.04-0.68) and total n-3 (OR = 0.88, 95% CI: 0.77-0.99) were linked with decreased risk of eczema in children and adolescents. Eicosatetraenoic acid/20:4 was correlated with decreased risk of eczema in participants without hay fever (OR = 0.82, 95% CI: 0.70-0.97) and medicine use (OR = 0.80, 95% CI: 0.68-0.94) or with allergy (OR = 0.75, 95% CI: 0.59-0.94). Total n-3 intake was associated with a reduced risk of eczema with the adjusted OR of 0.84, 95% CI: 0.72-0.98) in participants without hay fever. In those without sinus infection, octadecatrienoic acid/18:4 was linked with decreased risk of eczema (OR = 0.83, 95% CI: 0.69-0.99). CONCLUSION: N-3 and eicosatetraenoic acid/20:4 might be associated with the risk of eczema in children and adolescents.


Asunto(s)
Eccema , Ácidos Grasos Omega-3 , Hipersensibilidad , Rinitis Alérgica Estacional , Humanos , Niño , Adolescente , Rinitis Alérgica Estacional/complicaciones , Encuestas Nutricionales , Estudios Transversales , Eccema/epidemiología , Eccema/etiología , Inmunoglobulina E , Ácidos Araquidónicos
20.
FASEB J ; 36(6): e22312, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35532744

RESUMEN

Myopia is increasing worldwide and its preventable measure should urgently be pursued. N-3 polyunsaturated fatty acids (PUFAs) have been reported to have various effects such as vasodilative and anti-inflammatory, which myopia may be involved in. This study is to investigate the inhibitory effect of PUFAs on myopia progression. A lens-induced myopia (LIM) model was prepared using C57B L6/J 3-week-old mice, which were equipped with a -30 diopter lens to the right eye. Chows containing two different ratios of n-3/n-6 PUFA were administered to the mice, and myopic shifts were confirmed in choroidal thickness, refraction, and axial length in the n-3 PUFA-enriched chow group after 5 weeks. To exclude the possibility that the other ingredients in the chow may have taken the suppressive effect, fat-1 transgenic mice, which can produce n-3 PUFAs endogenously, demonstrated significant suppression of myopia. To identify what elements in n-3 PUFAs took effects on myopia suppression, enucleated eyes were used for targeted lipidomic analysis, and eicosapentaenoic acid (EPA) were characteristically distributed. Administration of EPA to the LIM model confirmed the inhibitory effect on choroidal thinning and myopia progression. Subsequently, to identify the elements and the metabolites of fatty acids effective on myopia suppression, targeted lipidomic analysis was performed and it demonstrated that metabolites of EPA were involved in myopia suppression, whereas prostaglandin E2 and 14,15-dihydrotestosterone were associated with progression of myopia. In conclusion, EPA and its metabolites are related to myopia suppression and inhibition of choroidal thinning.


Asunto(s)
Ácidos Grasos Omega-3 , Miopía , Animales , Coroides/metabolismo , Ácido Eicosapentaenoico/farmacología , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/farmacología , Lipidómica , Ratones , Ratones Transgénicos , Miopía/metabolismo , Miopía/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA