Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Infect Immun ; 92(2): e0049023, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38226817

RESUMEN

Streptococcus pneumoniae is a Gram-positive bacterium and a significant health threat with the populations most at risk being children, the elderly, and the immuno-compromised. To colonize and transition into an invasive infectious organism, S. pneumoniae secretes virulence factors that are translocated across the bacterial membrane and destined for surface exposure, attachment to the cell wall, or secretion into the host. The surface exposed protein chaperones PrsA, SlrA, and HtrA facilitate S. pneumoniae protein secretion; however, the distinct roles contributed by each of these secretion chaperones have not been well defined. Tandem Mass-Tagged Mass Spectrometry and virulence, adhesion, competence, and cell wall integrity assays were used to interrogate the individual and collective contributions of PrsA, SlrA, and HtrA to multiple aspects of S. pneumoniae physiology and virulence. PrsA, SlrA, and HtrA were found to play critical roles in S. pneumoniae host cell infection and competence, and the absence of each of these secretion chaperones significantly altered the S. pneumoniae secretome in distinct ways. PrsA and SlrA were additionally found to contribute to cell wall assembly and resistance to cell wall-active antimicrobials and were important for enabling S. pneumoniae host cell adhesion during colonization and invasive infection. These findings serve to further illustrate the pivotal contributions of PrsA, SlrA, and HtrA to S. pneumoniae protein secretion and virulence.


Asunto(s)
Chaperonas Moleculares , Streptococcus pneumoniae , Niño , Humanos , Anciano , Chaperonas Moleculares/metabolismo , Factores de Virulencia/metabolismo , Virulencia , Proteínas de la Membrana/metabolismo , Farmacorresistencia Microbiana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
2.
BMC Microbiol ; 24(1): 108, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566014

RESUMEN

BACKGROUND: Staphylococcus aureus secretes a variety of proteins including virulence factors that cause diseases. PrsA, encoded by many Gram-positive bacteria, is a membrane-anchored lipoprotein that functions as a foldase to assist in post-translocational folding and helps maintain the stability of secreted proteins. Our earlier proteomic studies found that PrsA is required for the secretion of protein A, an immunoglobulin-binding protein that contributes to host immune evasion. This study aims to investigate how PrsA influences protein A secretion. RESULTS: We found that in comparison with the parental strain HG001, the prsA-deletion mutant HG001ΔprsA secreted less protein A. Deleting prsA also decreased the stability of exported protein A. Pulldown assays indicated that PrsA interacts with protein A in vivo. The domains in PrsA that interact with protein A are mapped to both the N- and C-terminal regions (NC domains). Additionally, the NC domains are essential for promoting PrsA dimerization. Furthermore, an immunoglobulin-binding assay revealed that, compared to the parental strain HG001, fewer immunoglobulins bound to the surface of the mutant strain HG001ΔprsA. CONCLUSIONS: This study demonstrates that PrsA is critical for the folding and secretion of protein A. The information derived from this study provides a better understanding of virulent protein export pathways that are crucial to the pathogenicity of S. aureus.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Proteínas Bacterianas/metabolismo , Proteína Estafilocócica A , Pliegue de Proteína , Proteínas de la Membrana/metabolismo , Proteómica , Infecciones Estafilocócicas/microbiología , Inmunoglobulinas/metabolismo
3.
Mol Microbiol ; 118(3): 278-293, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35943959

RESUMEN

Listeria monocytogenes (Lm) is a widespread environmental Gram-positive bacterium that can transition into a pathogen following ingestion by a susceptible host. To cross host barriers and establish infection, Lm is dependent upon the regulated secretion and activity of many proteins including PrsA2, a peptidyl-prolyl cis-trans isomerase with foldase activity. PrsA2 contributes to the stability and activity of a number of secreted virulence factors that are required for Lm invasion, replication, and cell-to-cell spread within the infected host. In contrast, a second related secretion chaperone, PrsA1, has thus far no identified contributions to Lm pathogenesis. Here we describe the characterization of a two-component signal transduction system PieRS that regulates the expression of a regulon that includes the secretion chaperones PrsA1 and PrsA2. PieRS regulated gene products are required for bacterial resistance to ethanol exposure and are important for bacterial survival during transit through the gastrointestinal tract. PrsA1 was also found to make a unique contribution to Lm survival in the GI tract, revealing for the first time a non-overlapping requirement for both secretion chaperones PrsA1 and PrsA2 during the process of intra-gastric infection.


Asunto(s)
Listeria monocytogenes , Listeriosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Traslocación Bacteriana , Humanos , Intestinos , Listeria monocytogenes/genética , Listeriosis/microbiología , Chaperonas Moleculares/metabolismo , Factores de Virulencia/metabolismo
4.
Eur J Clin Microbiol Infect Dis ; 41(1): 163-167, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34529167

RESUMEN

We describe a case of recurrent catheter-related blood stream infections (BSI) with Staphylococcus aureus, in which the first isolate tested susceptible to penicillin, while subsequent isolates were resistant. Phenotypic susceptibility correlated with the absence/presence of the blaZ gene. The in vitro stability of penicillin resistance was investigated by subculturing single colonies. In two out of five colonies, phenotypical resistance was lost after a single subculture, which correlated with loss of the blaZ gene. This in vitro phenomenon probably resulted in a very major error in the microbiology report of the first BSI, where penicillin had been recommended as treatment.


Asunto(s)
Antibacterianos/farmacología , Bacteriemia/microbiología , Proteínas Bacterianas/genética , Infecciones Relacionadas con Catéteres/microbiología , Penicilinas/farmacología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , beta-Lactamasas/genética , Bacteriemia/tratamiento farmacológico , Proteínas Bacterianas/metabolismo , Sangre/microbiología , Infecciones Relacionadas con Catéteres/tratamiento farmacológico , Humanos , Pruebas de Sensibilidad Microbiana , Resistencia a las Penicilinas , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , beta-Lactamasas/metabolismo
5.
J Basic Microbiol ; 62(7): 815-823, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35475500

RESUMEN

In this study, first, ß-mannanase gene man derived from Bacillus amyloliquefaciens CGMCC1.857 was cloned and expressed in Bacillus subtilis 168 to generate B. subtilis M1. However, the extracellular ß-mannanase activity of B. subtilis M1 was not very high. To further increase extracellular ß-mannanase extracytoplasmic molecular chaperone, PrsA lipoprotein was tandem expressed with man gene in B. subtilis 168 to yield B. subtilis M2. The secretion of ß-mannanase of B. subtilis M2 was enhanced by 15.4%, compared with the control B. subtilis M1. Subsequently, process optimization strategies were also developed to enhance ß-mannanase production by B. subtilis 168 M2. It was noted that the optimal temperature for ß-mannanase production (25°C) was different from the optimal growth temperature (37°C) for B. subtilis. Based on these findings, a two-stage temperature control strategy was proposed where the bacterial culture was maintained at 37°C for the first 12 h to obtain a high rate of cell growth, followed by lowering the temperature to 25°C to enhance ß-mannanase production. Using this strategy, the extracellular ß-mannanase activity reached 5016 ± 167 U/ml at about 36 h, which was 19.1% greater than the best result obtained using a constant temperature (25°C). The result of this study showed that PrsA lipoprotein overexpression and two-stage temperature control strategy were more efficient for ß-mannanase fermentation in B. subtilis.


Asunto(s)
Bacillus subtilis , beta-Manosidasa , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Fermentación , Humanos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Temperatura , beta-Manosidasa/genética , beta-Manosidasa/metabolismo
6.
Arch Gynecol Obstet ; 301(1): 137-142, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31883047

RESUMEN

PURPOSE: Phase-rectified signal averaging method (PRSA) represents an analysis method which applied on fetal cardiotocography (CTG) allows the quantification of the speed of fetal heart rate changes. By calculating the average deceleration capacity (ADC) an assessment of the fetal autonomic nervous system (ANS) is possible. The objective of this study was to test its ability to predict perinatal acidosis. METHODS: A case-control study was performed at a University Hospital in Munich. All intrapartum CTG heart rate tracings saved during a 7-year period were considered for analysis. All neonates born with an umbilical arterial blood pH ≤ 7.10 were considered as cases. Controls were defined as healthy fetuses born with a pH ≥ 7.25. The main matching criteria were gestational age at delivery, parity, birth mode, and birth weight percentile. Exclusion criteria were a planned caesarean section, fetal malformations, and multiple pregnancies. ADC and STV were then calculated during the last 60, the last 45, and the last 30 min intervals prior to delivery. RESULTS: Of all stored birth CTG recordings, 227 cases met the inclusion criteria and were studied. ADC was significantly higher in fetuses born with acidemia (4.85 bpm ± 3.0) compared to controls (3.36 bpm ± 2.2). The area under ROC curve was 0.659 (95% CI 0.608-0.710) for ADC and 0.566 (0.512-0.620) for STV (p = 0.013). CONCLUSIONS: This study confirms that the assessment of ADC using PRSA represents a good additional tool for the prediction of acute fetal acidosis during delivery.


Asunto(s)
Acidosis/sangre , Cardiotocografía/métodos , Sangre Fetal/química , Enfermedades Fetales/diagnóstico , Estudios de Casos y Controles , Femenino , Sangre Fetal/citología , Enfermedades Fetales/sangre , Frecuencia Cardíaca Fetal/fisiología , Humanos , Masculino , Embarazo
7.
BMC Cancer ; 19(1): 748, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31362708

RESUMEN

BACKGROUND: Primary retroperitoneal serous adenocarcinoma (PRSA) is an extremely uncommon malignancy exclusively reported in females. Due to the rarity of the disease, it is difficult to establish a standardized treatment. CASE PRESENTATION: We describe a unique case of PRSA in a 71-year-old male who presented with right-sided lower back pain and numbness. Magnetic resonance imaging identified a mass invading the adjacent psoas muscle and twelfth rib. Tissue biopsy confirmed poorly differentiated PRSA. Patient was initially treated with neoadjuvant carboplatin and paclitaxel chemotherapy regimen. This resulted in complete radiological resolution of the tumor. However, 12 weeks later, rapid recurrence was noted on follow-up CT scan. The patient was then treated with external radiotherapy with concurrent nivolumab, an anti-PD-1 antibody. The patient displayed a positive response to treatment with reduction in primary tumor and metastases and had a sustained disease control. CONCLUSION: Treatment with radiotherapy in combination with anti-PD-1 antibody could be an effective modality of management for PRSA.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Cistadenocarcinoma Seroso/radioterapia , Cistadenocarcinoma Seroso/terapia , Inmunoterapia/métodos , Nivolumab/uso terapéutico , Neoplasias Retroperitoneales/radioterapia , Neoplasias Retroperitoneales/terapia , Anciano , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Fitogénicos/efectos adversos , Antineoplásicos Fitogénicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Carboplatino/efectos adversos , Carboplatino/uso terapéutico , Cistadenocarcinoma Seroso/diagnóstico por imagen , Estudios de Seguimiento , Humanos , Factores Inmunológicos/uso terapéutico , Imagen por Resonancia Magnética , Masculino , Terapia Neoadyuvante , Recurrencia Local de Neoplasia , Nivolumab/farmacología , Paclitaxel/efectos adversos , Paclitaxel/uso terapéutico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Neoplasias Retroperitoneales/diagnóstico por imagen , Resultado del Tratamiento
8.
Microb Cell Fact ; 18(1): 158, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31530286

RESUMEN

BACKGROUND: PrsA is an extracytoplasmic folding catalyst essential in Bacillus subtilis. Overexpression of the native PrsA from B. subtilis has repeatedly lead to increased amylase yields. Nevertheless, little is known about how the overexpression of heterologous PrsAs can affect amylase secretion. RESULTS: In this study, the final yield of five extracellular alpha-amylases was increased by heterologous PrsA co-expression up to 2.5 fold. The effect of the overexpression of heterologous PrsAs on alpha-amylase secretion is specific to the co-expressed alpha-amylase. Co-expression of a heterologous PrsA can significantly reduce the secretion stress response. Engineering of the B. licheniformis PrsA lead to a further increase in amylase secretion and reduced secretion stress. CONCLUSIONS: In this work we show how heterologous PrsA overexpression can give a better result on heterologous amylase secretion than the native PrsA, and that PrsA homologs show a variety of specificity towards different alpha-amylases. We also demonstrate that on top of increasing amylase yield, a good PrsA-amylase pairing can lower the secretion stress response of B. subtilis. Finally, we present a new recombinant PrsA variant with increased performance in both supporting amylase secretion and lowering secretion stress.


Asunto(s)
Bacillus subtilis/enzimología , Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Lipoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , alfa-Amilasas/metabolismo , Proteínas Bacterianas/genética , Lipoproteínas/genética , Proteínas de la Membrana/genética , Ingeniería Metabólica , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , alfa-Amilasas/química
9.
BMC Pregnancy Childbirth ; 19(1): 230, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-31277600

RESUMEN

BACKGROUND: Non-invasive electrophysiological assessment (NIEA) is an evolving area in fetal surveillance and is attracting increasing research interest. There is however, limited data outlining its utility in evaluating intra uterine growth restriction (IUGR). The objective of this study was to carry out a systematic review to outline the utility of NIEA parameters in evaluating IUGR. METHODS: A systematic review of peer reviewed literature was performed, searching PUBMED, Ovid MEDLINE and EMBASE. The outcomes of interest included NIEA parameters [P wave duration, PR interval, QRS duration, QT interval, T/QRS ratio, short term variability (STV) and long term variability (LTV)] and a descriptive summary of relevant studies as well. RESULTS: Sixteen studies were identified as suitable for inclusion. The utility of NIEA parameters were investigated in tabular form. In particular, QRS and QT duration, T/QRS ratio, STV and PRSA analysis displayed utility and merit further consideration in evaluating for IUGR. Issues identified in the review were in relation to variances in definition of IUGR, small sample sizes and the lack of technological consistency across studies. CONCLUSION: NIEA shows promise as an adjunct surveillance tool in fetal diagnostics for IUGR. Larger prospective studies should be directed towards establishing reliable parameters with a focus on uniformity of IUGR definition, technological consistency and the individualisation of NIEA parameters.


Asunto(s)
Electrocardiografía/métodos , Retardo del Crecimiento Fetal/diagnóstico , Corazón Fetal/fisiopatología , Magnetocardiografía/métodos , Diagnóstico Prenatal/métodos , Femenino , Retardo del Crecimiento Fetal/fisiopatología , Humanos , Embarazo
10.
Ultrasound Obstet Gynecol ; 52(3): 347-351, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28782142

RESUMEN

OBJECTIVES: Maternal gestational diabetes mellitus (GDM) is known to influence fetal physiology. Phase-rectified signal averaging (PRSA) is an innovative signal-processing technique that can be used to investigate fetal heart signals. The PRSA-calculated variables average acceleration capacity (AAC) and average deceleration capacity (ADC) are established indices of autonomic nervous system (ANS) function. The aim of this study was to evaluate the influence of GDM on the fetal cardiovascular and ANS function in human pregnancy using PRSA. METHODS: This was a prospective clinical case-control study of 58 mothers with diagnosed GDM and 58 gestational-age matched healthy controls in the third trimester of pregnancy. Fetal cardiotocography (CTG) recordings were performed in all cases at entry to the study, and a follow-up recording was performed in 19 GDM cases close to delivery. The AAC and ADC indices were calculated by the PRSA method and fetal heart rate short-term variation (STV) by CTG software according to Dawes-Redman criteria. RESULTS: Mean gestational age of both groups at study entry was 35.7 weeks. There was a significant difference in mean AAC (1.97 ± 0.33 bpm vs 2.42 ± 0.57 bpm; P < 0.001) and ADC (1.94 ± 0.32 bpm vs 2.28 ± 0.46 bpm; P < 0.001) between controls and fetuses of diabetic mothers. This difference could not be demonstrated using standard computerized fetal CTG analysis of STV (controls, 10.8 ± 3.0 ms vs GDM group, 11.3 ± 2.5 ms; P = 0.32). Longitudinal fetal heart rate measurements in a subgroup of women with diabetes were not significantly different from those at study entry. CONCLUSIONS: Our findings show increased ANS activity in fetuses of diabetic mothers in late gestation. Analysis of human fetal cardiovascular and ANS function by PRSA may offer improved surveillance over conventional techniques linking GDM pregnancy to future cardiovascular dysfunction in the offspring. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.


Asunto(s)
Sistema Nervioso Autónomo , Diabetes Gestacional/fisiopatología , Frecuencia Cardíaca Fetal , Procesamiento de Señales Asistido por Computador , Adulto , Peso al Nacer , Cardiotocografía/métodos , Estudios de Casos y Controles , Femenino , Edad Gestacional , Humanos , Recién Nacido , Masculino , Embarazo , Tercer Trimestre del Embarazo , Estudios Prospectivos , Ultrasonografía Prenatal
11.
J Bacteriol ; 199(1)2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795319

RESUMEN

Staphylococcus aureus is an important human pathogen that relies on a large repertoire of secreted and cell wall-associated proteins for pathogenesis. Consequently, the ability of the organism to cause disease is absolutely dependent on its ability to synthesize and successfully secrete these proteins. In this study, we investigate the role of peptidyl-prolyl cis/trans isomerases (PPIases) on the activity of the S. aureus secreted virulence factor nuclease (Nuc). We identify a staphylococcal cyclophilin-type PPIase (PpiB) that is required for optimal activity of Nuc. Disruption of ppiB results in decreased nuclease activity in culture supernatants; however, the levels of Nuc protein are not altered, suggesting that the decrease in activity results from misfolding of Nuc in the absence of PpiB. We go on to demonstrate that PpiB exhibits PPIase activity in vitro, is localized to the bacterial cytosol, and directly interacts with Nuc in vitro to accelerate the rate of Nuc refolding. Finally, we demonstrate an additional role for PpiB in S. aureus hemolysis and demonstrate that the S. aureus parvulin-type PPIase PrsA also plays a role in the activity of secreted virulence factors. The deletion of prsA leads to a decrease in secreted protease and phospholipase activity, similar to that observed in other Gram-positive pathogens. Together, these results demonstrate, for the first time to our knowledge, that PPIases play an important role in the secretion of virulence factors in S. aureus IMPORTANCE: Staphylococcus aureus is a highly dangerous bacterial pathogen capable of causing a variety of infections throughout the human body. The ability of S. aureus to cause disease is largely due to an extensive repertoire of secreted and cell wall-associated proteins, including adhesins, toxins, exoenzymes, and superantigens. These virulence factors, once produced, are typically transported across the cell membrane by the secretory (Sec) system in a denatured state. Consequently, once outside the cell, they must refold into their active form. This step often requires the assistance of bacterial folding proteins, such as PPIases. In this work, we investigate the role of PPIases in S. aureus and uncover a cyclophilin-type enzyme that assists in the folding/refolding of staphylococcal nuclease.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Isomerasa de Peptidilprolil/metabolismo , Pliegue de Proteína , Staphylococcus aureus/enzimología , Factores de Virulencia , Proteínas Bacterianas/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Mutación , Isomerasa de Peptidilprolil/genética , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-27795377

RESUMEN

Antimicrobial resistance is recognized as one of the principal threats to public health worldwide, yet the problem is increasing. Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) strains are among the most difficult to treat in clinical settings due to the resistance of MRSA to nearly all available antibiotics. The cyclic anionic lipopeptide antibiotic daptomycin (DAP) is the clinical mainstay of anti-MRSA therapy. The decreased susceptibility to DAP (DAP resistance [DAPr]) reported in MRSA is frequently accompanied by a paradoxical decrease in ß-lactam resistance, a process known as the "seesaw effect." Despite the observed discordance in resistance phenotypes, the combination of DAP and ß-lactams has been proven to be clinically effective for the prevention and treatment of infections due to DAPr MRSA strains. However, the mechanisms underlying the interactions between DAP and ß-lactams are largely unknown. In the study described here, we studied the role of mprF with DAP-induced mutations in ß-lactam sensitization and its involvement in the effective killing by the DAP-oxacillin (OXA) combination. DAP-OXA-mediated effects resulted in cell wall perturbations, including changes in peptidoglycan insertion, penicillin-binding protein 2 (PBP 2) delocalization, and reduced membrane amounts of PBP 2a, despite the increased transcription of mecA through mec regulatory elements. We have found that the VraSR sensor-regulator is a key component of DAP resistance, triggering mutated mprF-mediated cell membrane (CM) modifications that result in impairment of PrsA location and chaperone functions, both of which are essential for PBP 2a maturation, the key determinant of ß-lactam resistance. These observations provide for the first time evidence that synergistic effects between DAP and ß-lactams involve PrsA posttranscriptional regulation of CM-associated PBP 2a.


Asunto(s)
Daptomicina/farmacología , beta-Lactamas/farmacología , Proteínas Bacterianas/genética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Mutación , Oxacilina/farmacología , Proteínas de Unión a las Penicilinas/genética
13.
Am J Obstet Gynecol ; 215(5): 630.e1-630.e7, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27343566

RESUMEN

BACKGROUND: Phase-rectified signal averaging, an innovative signal processing technique, can be used to investigate quasi-periodic oscillations in noisy, nonstationary signals that are obtained from fetal heart rate. Phase-rectified signal averaging is currently the best method to predict survival after myocardial infarction in adult cardiology. Application of this method to fetal medicine has established significantly better identification than with short-term variation by computerized cardiotocography of growth-restricted fetuses. OBJECTIVE: The aim of this study was to determine the longitudinal progression of phase-rectified signal averaging indices in severely growth-restricted human fetuses and the prognostic accuracy of the technique in relation to perinatal and neurologic outcome. STUDY DESIGN: Raw data from cardiotocography monitoring of 279 human fetuses were obtained from 8 centers that took part in the multicenter European "TRUFFLE" trial on optimal timing of delivery in fetal growth restriction. Average acceleration and deceleration capacities were calculated by phase-rectified signal averaging to establish progression from 5 days to 1 day before delivery and were compared with short-term variation progression. The receiver operating characteristic curves of average acceleration and deceleration capacities and short-term variation were calculated and compared between techniques for short- and intermediate-term outcome. RESULTS: Average acceleration and deceleration capacities and short-term variation showed a progressive decrease in their diagnostic indices of fetal health from the first examination 5 days before delivery to 1 day before delivery. However, this decrease was significant 3 days before delivery for average acceleration and deceleration capacities, but 2 days before delivery for short-term variation. Compared with analysis of changes in short-term variation, analysis of (delta) average acceleration and deceleration capacities better predicted values of Apgar scores <7 and antenatal death (area under the curve for prediction of antenatal death: delta average acceleration capacity, 0.62 [confidence interval, 0.19-1.0]; delta short-term variation, 0.54 [confidence interval, 0.13-0.97]; P=.006; area under the curve for prediction Apgar <7: average deceleration capacity <24 hours before delivery, 0.64 [confidence interval, 0.52-0.76]; short-term variation <24 hours before delivery, 0.53 [confidence interval, 0.40-0.65]; P=.015). Neither phase-rectified signal averaging indices nor short-term variation showed predictive power for developmental disability at 2 years of age (Bayley developmental quotient, <95 or <85). CONCLUSION: The phase-rectified signal averaging method seems to be at least as good as short-term variation to monitor progressive deterioration of severely growth-restricted fetuses. Our findings suggest that for short-term outcomes such as Apgar score, phase-rectified signal averaging indices could be an even better test than short-term variation. Overall, our findings confirm the possible value of prospective trials based on phase-rectified signal averaging indices of autonomic nervous system of severely growth-restricted fetuses.


Asunto(s)
Cardiotocografía/métodos , Retardo del Crecimiento Fetal/diagnóstico , Frecuencia Cardíaca Fetal/fisiología , Procesamiento de Señales Asistido por Computador , Adulto , Puntaje de Apgar , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/etiología , Femenino , Retardo del Crecimiento Fetal/fisiopatología , Humanos , Recién Nacido , Estudios Longitudinales , Masculino , Valor Predictivo de las Pruebas , Embarazo , Pronóstico , Curva ROC
14.
BMC Pulm Med ; 16(1): 124, 2016 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-27544078

RESUMEN

BACKGROUND: Autonomic dysfunction in patients with chronic obstructive pulmonary disease (COPD) may increase the risks of arrhythmia and sudden death. We studied cardiac autonomic function in patients with acute exacerbation of COPD (AECOPD). METHODS: Patients with AECOPD were classified into ventricular tachycardia (VT) and non-VT groups according to the presence or absence of VT. The following parameters derived from 24-h Holter monitoring were compared between groups: average heart rate, heart rate deceleration capacity (DC), heart rate acceleration capacity (AC), standard deviation of normal RR intervals (SDNN), standard deviation of average RR interval in 5-min segments (SDANN), root mean square of standard deviations of differences between adjacent normal RR intervals (rMSSD), low-frequency power (LF), high-frequency power (HF) and LF/HF ratio. RESULTS: Seventy patients were included, 22 in the VT group and 48 in the non-VT group. The groups had similar clinical characteristics (except for more common amiodarone use in the VT group, P < 0.05) and general ECG characteristics. DC, SDNN, SDANN and rMSSD were lower and AC higher in the VT group (P < 0.05). In the VT group, DC was correlated positively with SDNN (r = 0.716), SDANN (r = 0.595), rMSSD (r = 0.571) and HF (r = 0.486), and negatively with LF (r = -0.518) and LF/HF (r = -0.458) (P < 0.05). AC was correlated negatively with SDNN (r = -0.682), SDANN (r = -0.567) and rMSSD (r = -0.548) (P < 0.05). CONCLUSIONS: DC decreased and AC increased in patients with AECOPD and VT, reflecting an imbalance in autonomic regulation of the heart that might increase the risk of sudden death.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Corazón/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Taquicardia Ventricular/fisiopatología , Enfermedad Aguda , Anciano , China , Progresión de la Enfermedad , Electrocardiografía Ambulatoria , Femenino , Frecuencia Cardíaca , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Taquicardia Ventricular/complicaciones
15.
mBio ; 15(7): e0074324, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38809022

RESUMEN

Pathogenic bacteria rely on secreted virulence factors to cause disease in susceptible hosts. However, in Gram-positive bacteria, the mechanisms underlying secreted protein activation and regulation post-membrane translocation remain largely unknown. Using proteomics, we identified several proteins that are dependent on the secreted chaperone PrsA2. We followed with phenotypic, biochemical, and biophysical assays and computational analyses to examine the regulation of a detected key secreted virulence factor, listeriolysin O (LLO), and its interaction with PrsA2 from the bacterial pathogen Listeria monocytogenes (Lm). Critical to Lm virulence is internalization by host cells and the subsequent action of the cholesterol-dependent pore-forming toxin, LLO, which enables bacterial escape from the host cell phagosome. Since Lm is a Gram-positive organism, the space between the cell membrane and wall is solvent exposed. Therefore, we hypothesized that the drop from neutral to acidic pH as the pathogen is internalized into a phagosome is critical to regulating the interaction of PrsA2 with LLO. Here, we demonstrate that PrsA2 directly interacts with LLO in a pH-dependent manner. We show that PrsA2 protects and sequesters LLO under neutral pH conditions where LLO can be observed to aggregate. In addition, we identify molecular features of PrsA2 that are required for interaction and ultimately the folding and activity of LLO. Moreover, protein-complex modeling suggests that PrsA2 interacts with LLO via its cholesterol-binding domain. These findings highlight a mechanism by which a Gram-positive secretion chaperone regulates the secretion, stability, and folding of a pore-forming toxin under conditions relevant to host cell infection. IMPORTANCE: Lm is a ubiquitous food-borne pathogen that can cause severe disease to vulnerable populations. During infection, Lm relies on a wide repertoire of secreted virulence factors including the LLO that enables the bacterium to invade the host and spread from cell to cell. After membrane translocation, secreted factors must become active in the challenging bacterial cell membrane-wall interface. However, the mechanisms required for secreted protein folding and function are largely unknown. Lm encodes a chaperone, PrsA2, that is critical for the activity of secreted factors. Here, we show that PrsA2 directly associates and protects the major Lm virulence factor, LLO, under conditions corresponding to the host cytosol, where LLO undergoes irreversible denaturation. Additionally, we identify molecular features of PrsA2 that enable its interaction with LLO. Together, our results suggest that Lm and perhaps other Gram-positive bacteria utilize secreted chaperones to regulate the activity of pore-forming toxins during infection.


Asunto(s)
Toxinas Bacterianas , Proteínas de Choque Térmico , Proteínas Hemolisinas , Listeria monocytogenes , Listeriosis , Pliegue de Proteína , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/química , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidad , Listeria monocytogenes/química , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/química , Listeriosis/microbiología , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/química , Isomerasa de Peptidilprolil/metabolismo , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/química , Concentración de Iones de Hidrógeno , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Estabilidad Proteica , Humanos
16.
Artículo en Inglés | MEDLINE | ID: mdl-39331329

RESUMEN

Sucrose isomerase is an important food enzyme that catalyzes the isomerization of sucrose into isomaltulose, a functional sugar widely used in food industry, while the production level of sucrose isomerase in food safe host strains was much lower than industrial requirement. Bacillus subtilis is an excellent host strain for recombinant protein expression, which owns the characteristics of powerful secretory capability and generally recognized as safe state. In this study, the expression of sucrose isomerase in B. subtilis was improved through expression element optimization and fermentation optimization. Firstly, the extracellular chaperone PrsA was overexpressed to enhance extracellular folding of sucrose isomerase, which improved the recombinant expression level by 80.02%. Then, the protein synthesis level was optimized through promoter screening, improving the recombinant expression level by 60.40%. On the basis of strain modification, the fermentation conditions including nitrogen source, carbon source, metal ion, pH and temperature were optimized successively in shake-flask. Finally, the 3 L bioreactor cultivation condition was optimized and yielding a sucrose isomerase activity of 862.86 U/mL, the highest level among the food safety strains. This study provides an effective strategy to improve the expression level of food enzymes in B. subtilis.

17.
Virulence ; 14(1): 2249779, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37641974

RESUMEN

Streptococcus suis type 2 (SS2), a major emerging/re-emerging zoonotic pathogen found in humans and pigs, can cause severe clinical infections, and pose public health issues. Our previous studies recognized peptidyl-prolyl isomerase (PrsA) as a critical virulence factor promoting SS2 pathogenicity. PrsA contributed to cell death and operated as a pro-inflammatory effector. However, the molecular pathways through which PrsA contributes to cell death are poorly understood. Here in this study, we prepared the recombinant PrsA protein and found that pyroptosis and necroptosis were involved in cell death stimulated by PrsA. Specific pyroptosis and necroptosis signalling inhibitors could significantly alleviate the fatal effect. Cleaved caspase-1 and IL-1ß in pyroptosis with phosphorylated MLKL proteins in necroptosis pathways, respectively, were activated after PrsA stimulation. Truncated protein fragments of enzymatic PPIase domain (PPI), N-terminal (NP), and C-terminal (PC) domains fused with PPIase, were expressed and purified. PrsA flanking N- or C-terminal but not enzymatic PPIase domain was found to be critical for PrsA function in inducing cell death and inflammation. Additionally, PrsA protein could be anchored on the cell surface to interact with host cells. However, Toll-like receptor 2 (TLR2) was not implicated in cell death and recognition of PrsA. PAMPs of PrsA could not promote TLR2 activation, and no rescued phenotypes of death were shown in cells blocking of TLR2 receptor or signal-transducing adaptor of MyD88. Overall, these data, for the first time, advanced our perspective on PrsA function and elucidated that PrsA-induced cell death requires its flanking N- or C-terminal domain but is dispensable for recognizing TLR2. Further efforts are still needed to explore the precise molecular mechanisms of PrsA-inducing cell death and, therefore, contribution to SS2 pathogenicity.


Asunto(s)
Proteínas Bacterianas , Infecciones Estreptocócicas , Streptococcus suis , Receptor Toll-Like 2 , Animales , Humanos , Muerte Celular , Isomerasa de Peptidilprolil , Piroptosis , Streptococcus suis/genética , Porcinos , Receptor Toll-Like 2/genética , Proteínas Bacterianas/metabolismo , Infecciones Estreptocócicas/metabolismo
18.
Bioinformation ; 19(1): 48-52, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37720298

RESUMEN

Staphylococcus aureus is an opportunistic pathogen that causes variety of infections range from mild skin diseases to life-threatening sepsis. It is also notorious for acquiring resistance to numerous antibiotics. Parvulin-type peptidyl-prolyl cis-trans isomerase (PPiase) domain containing PrsA protein is considered as an essential folding factor for secreted proteins of Gram-positive bacteria. Therefore, it is considered as a potential target for anti-staphylococcal drug discovery. Juglone, plant-derived 1,4-naphthoquinone, shows confirmed antitumor and antibacterial activities. Destruction of bacterial biofilm, inhibition of enzyme expression, degradation of nucleic acids, and other pathways are likely the major possible mechanisms for Staphylococcus aureus inactivation by juglone. Selective inhibition of parvulin type PPiase by juglone has been proven biochemically. However, detail structural information of parvulin-juglone interaction and mechanism of enzymatic inhibition till unexplored. Past hypothesis on inactivation of parvulin type PPiase due to covalent attachment of juglone molecules to its cysteine residues is not acceptable for the S. aureus PrsA parvulin domain as that lacks cysteine. Docking studies showed that juglone binds to the active site residues of S. aureus PrsA parvulin domain involved in enzymatic reaction. Active site conserved histidine residue of parvulin may be involved in juglone interaction as it was found to be the common interactive residue in majority of docking complexes. Data shows Juglone possibly inhibits parvulin type PPiase through competitive inhibition mechanism. Subtle differences of juglone interactions with other orthologous parvulin domains will help to develop semisynthetic drug with higher specificity against S. aureus.

19.
Indian J Med Microbiol ; 40(1): 57-60, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34774342

RESUMEN

PURPOSE: The prsA and vraTSR regulatory systems play a unique role in methicillin resistance by modifying the peptidoglycan cell wall PBP2 and involving cell wall stress response in Staphylococcus aureus. This study was designed to observe the transcriptional response of prsA and vraTSR system under oxacillin stress in S.aureus. METHODS: In this study, three clinical isolates of Staphylococcus aureus and a laboratory strain were examined. All the isolates were tested for mecA gene by PCR assay and were also tested for prsA, vraT, vraS and vraR gene. The transcriptional responses of the prsA gene along with the vraTSR regulatory system in these isolates was observed under normal conditions and exposed to 2 â€‹µg/ml and 4 â€‹µg/ml of oxacillin stress by quantitative real-time PCR assay. RESULTS: The result of transcriptional analysis confirmed that under oxacillin stress, the expressions of vraS and vraT are increased with the increase in the concentration of oxacillin. However, prsA has shown no significant expression under oxacillin stress. CONCLUSION: Although prsA did not show any specific expressional pattern, the study highlights the role of vraS and vraT regulatory system in conferring a methicillin-resistant phenotype when exposed to subinhibitory concentrations of oxacillin, which could act as a potential target for the next-generation antimicrobials.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Resistencia a la Meticilina , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Oxacilina/farmacología , Proteínas de Unión a las Penicilinas/genética , Staphylococcus aureus/genética
20.
Virulence ; 13(1): 1379-1392, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35876630

RESUMEN

The role of secretion chaperone-regulated virulence proteins in the pathogenesis of infective endocarditis (IE) induced by viridans streptococci such as Streptococcus mutans is unclear. In this study, we investigated the contribution of the foldase protein PrsA, a putative parvulin-type peptidyl-prolyl isomerase, to the pathogenesis of S. mutans-induced IE. We found that a prsA-deficient strain had reduced virulence in terms of formation of vegetation on damaged heart valves, as well as reduced autolysis activity, eDNA release and biofilm formation capacity. The secretion and surface exposure of AtlA in vitro was reduced in the prsA-deficient mutant strain, and complementation of recombinant AtlA in the culture medium restored a wild type biofilm phenotype of the prsA-deficient mutant strain. This result suggests that secretion and surface localization of AtlA is regulated by PrsA during biofilm formation. Together, these results demonstrate that S. mutans PrsA could regulate AtlA-mediated eDNA release to contribute to biofilm formation in the pathogenesis of IE.


Asunto(s)
Endocarditis Bacteriana , Endocarditis , Proteínas Bacterianas/metabolismo , Biopelículas , ADN/metabolismo , Humanos , Streptococcus mutans/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA