RESUMEN
Pancreatic cancer (PC) is one of the most aggressive malignancies. A combination of targeted therapies could increase the therapeutic efficacy in tumors with heterogeneous target expression. Overexpression of the human epidermal growth factor receptor type 3 (HER3) and the epithelial cell adhesion molecule (EpCAM) in up to 40% and 30% of PCs, respectively, is associated with poor prognosis and highlights the relevance of these targets. Designed ankyrin repeat protein (DARPin) Ec1 fused with the low immunogenic bacterial toxin LoPE provides specific and potent cytotoxicity against EpCAM-expressing cancer cells. Here, we investigated whether the co-targeting of HER3 using the monoclonal antibody seribantumab (MM-121) and of EpCAM using Ec1-LoPE would improve the therapeutic efficacy in comparison to the individual agents. Radiolabeled 99mTc(CO)3-Ec1-LoPE showed specific binding with rapid internalization in EpCAM-expressing PC cells. MM-121 did not interfere with the binding of Ec1-LoPE to EpCAM. Evaluation of cytotoxicity indicated synergism between Ec1-LoPE and MM-121 in vitro. An experimental therapy study using Ec1-LoPE and MM-121 in mice bearing EpCAM- and HER3-expressing BxPC3 xenografts demonstrated the feasibility of the therapy. Further development of the co-targeting approach using HER3 and EpCAM could therefore be justified.
Asunto(s)
Proteínas de Repetición de Anquirina Diseñadas , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Molécula de Adhesión Celular Epitelial , Xenoinjertos , Estudios de Factibilidad , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Modelos Animales de Enfermedad , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias PancreáticasRESUMEN
Targeted tumor therapy is an attractive approach for cancer treatment. Delta-like ligand 4 (DLL4) is overexpressed in tumor vasculature and plays a pivotal role in tumor neovascular development and angiogenesis during tumor progression. Immunotoxins due to their superior cell-killing ability and the relative simplicity of their preparation, have great potential in the clinical treatment of cancer. The aim of this study was to develop a novel immunotoxin against DLL4 as a cell cytotoxic agent and angiogenesis maturation inhibitor. In present study, an immunotoxin, named DLL4Nb-PE, in which a Nanobody as targeting moiety fused to the Pseudomonas exotoxin A (PE) was constructed, expressed and assessed by SDS-PAGE, western blotting, ELISA and flowcytometry. The functional assessment was carried out via MTT, apoptosis and chicken chorioallantoic membrane (CAM) assays. It was demonstrated DLL4Nb-PE specifically binds to DLL4 and recognizes DLL4-expressing MKN cells. The cytotoxicity assays showed that this molecule could induce apoptosis and kill DLL4 positive MKN cells. In addition, it inhibited neovascularization in the chicken chorioallantoic membrane. Our findings indicate designed anti-DLL4 immunotoxin has valuable potential for application to the treatment of tumors with high DLL4 expression.
Asunto(s)
Inmunotoxinas , Neoplasias , Proliferación Celular , Exotoxinas/metabolismo , Exotoxinas/farmacología , Exotoxinas/uso terapéutico , Humanos , Inmunotoxinas/farmacología , Inmunotoxinas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Pseudomonas/metabolismoRESUMEN
Recombinant immunotoxins (RITs) are an effective class of agents for targeted therapy in cancer treatment. In this article, we demonstrate the straight-forward production and testing of an anti-CD7 RIT based on PE24 in a prokaryotic and a eukaryotic cell-free system. The prokaryotic cell-free system was derived from Escherichia coli BL21 StarTM (DE3) cells transformed with a plasmid encoding the chaperones groEL/groES. The eukaryotic cell-free system was prepared from Chinese hamster ovary (CHO) cells that leave intact endoplasmic reticulum-derived microsomes in the cell-free reaction mix from which the RIT was extracted. The investigated RIT was built by fusing an anti-CD7 single-chain variable fragment (scFv) with the toxin domain PE24, a shortened variant of Pseudomonas Exotoxin A. The RIT was produced in both cell-free systems and tested for antigen binding against CD7 and cell killing on CD7-positive Jurkat, HSB-2, and ALL-SIL cells. CD7-positive cells were effectively killed by the anti-CD7 scFv-PE24 RIT with an IC50 value of 15 pM to 40 pM for CHO and 42 pM to 156 pM for E. coli cell-free-produced RIT. CD7-negative Raji cells were unaffected by the RIT. Toxin and antibody domain alone did not show cytotoxic effects on either CD7-positive or CD7-negative cells. To our knowledge, this report describes the production of an active RIT in E. coli and CHO cell-free systems for the first time. We provide the proof-of-concept that cell-free protein synthesis allows for on-demand testing of antibody−toxin conjugate activity in a time-efficient workflow without cell lysis or purification required.
Asunto(s)
Inmunotoxinas , Anticuerpos de Cadena Única , Animales , Cricetinae , Sistema Libre de Células , Inmunotoxinas/genética , Inmunotoxinas/farmacología , Escherichia coli/genética , Células CHO , Cricetulus , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/farmacología , EucariontesRESUMEN
Human epidermal growth factor receptor 2 (HER-2) is overexpressed in many malignant tumors. The anti-HER2 antibody trastuzumab has been approved for treating HER2-positive early and metastatic breast cancers. Pseudomonas exotoxin A (PE), a bacterial toxin of Pseudomonas aeruginosa, consists of an A-domain with enzymatic activity and a B-domain with cell binding activity. Recombinant immunotoxins comprising the HER2(scFv) single-chain Fv from trastuzumab and the PE24B catalytic fragment of PE display promising cytotoxic effects, but immunotoxins are typically insoluble when expressed in the cytoplasm of Escherichia coli, and thus they require solubilization and refolding. Herein, a recombinant immunotoxin gene was fused with maltose binding protein (MBP) and overexpressed in a soluble form in E. coli. Removal of the MBP yielded stable HER2(scFv)-PE24B at 91% purity; 0.25 mg of pure HER2(scFv)-PE24B was obtained from a 500 mL flask culture. Purified HER2(scFv)-PE24B was tested against four breast cancer cell lines differing in their surface HER2 level. The immunotoxin showed stronger cytotoxicity than HER2(scFv) or PE24B alone. The IC50 values for HER2(scFv)-PE24B were 28.1 ± 2.5 pM (n = 9) and 19 ± 1.4 pM (n = 9) for high HER2-positive cell lines SKBR3 and BT-474, respectively, but its cytotoxicity was lower against MDA-MB-231 and MCF7. Thus, fusion with MBP can facilitate the soluble expression and purification of scFv immunotoxins.
Asunto(s)
ADP Ribosa Transferasas , Antineoplásicos Inmunológicos/farmacología , Toxinas Bacterianas , Exotoxinas , Inmunotoxinas/farmacología , Proteínas de Unión a Maltosa , Receptor ErbB-2/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/farmacología , Anticuerpos de Cadena Única , Factores de Virulencia , ADP Ribosa Transferasas/genética , Toxinas Bacterianas/genética , Línea Celular Tumoral , Supervivencia Celular , Relación Dosis-Respuesta a Droga , Escherichia coli/genética , Escherichia coli/metabolismo , Exotoxinas/genética , Expresión Génica , Ingeniería Genética , Vectores Genéticos/genética , Humanos , Inmunotoxinas/genética , Inmunotoxinas/aislamiento & purificación , Proteínas de Unión a Maltosa/genética , Espectrometría de Masas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Anticuerpos de Cadena Única/genética , Factores de Virulencia/genética , Exotoxina A de Pseudomonas aeruginosaRESUMEN
Immunotoxin targeted therapy is a promising way of cancer therapy that is made from a toxin attached to an antibody which target a specific protein presented on cancer cells. In this study, we introduce immunotoxins comprising of truncated pseudomonas exotoxin A (PEA) and diphtheria toxin (DT) conjugated to trastuzumab. The effectiveness of 20 and 30 µg/ml immunotoxins and trastuzumab were studied on SK-BR-3 and BT-474 HER2/neu positive breast cancer cell lines by a cell death assay test. The produced immunotoxins have the potential to reduce the therapeutic dose of the trastuzumab and in the same time achieve higher efficiency.
Asunto(s)
ADP Ribosa Transferasas/farmacología , Toxinas Bacterianas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Difteria/metabolismo , Exotoxinas/farmacología , Inmunotoxinas/farmacología , Pseudomonas/metabolismo , Factores de Virulencia/farmacología , Anticuerpos Monoclonales/farmacología , Línea Celular Tumoral , Femenino , Humanos , Receptor ErbB-2/metabolismo , Trastuzumab/farmacología , Exotoxina A de Pseudomonas aeruginosaRESUMEN
High immunogenicity and systemic toxicity are the main obstacles limiting the clinical use of the therapeutic agents based on Pseudomonas aeruginosa exotoxin A. In this work, we studied the immunogenicity, general toxicity and antitumor effect of the targeted toxin DARPin-LoPE composed of HER2-specific DARPin and a low immunogenic exotoxin A fragment lacking immunodominant human B lymphocyte epitopes. The targeted toxin has been shown to effectively inhibit the growth of HER2-positive human ovarian carcinoma xenografts, while exhibiting low non-specific toxicity and side effects, such as vascular leak syndrome and liver tissue degradation, as well as low immunogenicity, as was shown by specific antibody titer. This represents prospects for its use as an agent for targeted therapy of HER2-positive tumors.
Asunto(s)
Epítopos de Linfocito B/inmunología , Xenoinjertos , Inmunotoxinas/inmunología , Inmunotoxinas/farmacología , Proteínas Musculares/inmunología , Proteínas Nucleares/inmunología , Neoplasias Ováricas/tratamiento farmacológico , Receptor ErbB-2/inmunología , ADP Ribosa Transferasas/inmunología , ADP Ribosa Transferasas/farmacología , Secuencia de Aminoácidos , Animales , Antineoplásicos/inmunología , Antineoplásicos/farmacología , Toxinas Bacterianas/inmunología , Toxinas Bacterianas/farmacología , Biomarcadores de Tumor , Carcinoma/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Epítopos de Linfocito B/genética , Exotoxinas/inmunología , Exotoxinas/farmacología , Femenino , Humanos , Concentración 50 Inhibidora , Hígado/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Terapia Molecular Dirigida , Proteínas Musculares/genética , Proteínas Nucleares/genética , Neoplasias Ováricas/patología , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/uso terapéutico , Bazo/patología , Factores de Virulencia/inmunología , Factores de Virulencia/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Exotoxina A de Pseudomonas aeruginosaRESUMEN
LMB-2, is a potent recombinant immunotoxin (RIT) that is composed of scFv antibody that targets CD25 (Tac) and a toxin fragment (PE38). It is used to treat T cell leukemias and lymphomas. To make LMB-2 less immunogenic, we introduced a large deletion in domain II and six point mutations in domain III that were previously shown to reduce T cell activation in other RITs. We found that unlike other RITs, deletion of domain II from LMB-2 severely compromised its activity. Rather than deletion, we identified T cell epitopes in domain II and used alanine substitutions to identify point mutations that diminished those epitopes. The novel RIT, LMB-142 contains a 38kDa toxin and nine point mutations that diminished T cell response to the corresponding peptides by an average of 75%. LMB-142 has good cytotoxic activity and has lower nonspecific toxicity in mice. LMB-142 should be more efficient in cancer therapy because more treatment cycles can be given.
Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Inmunoterapia/métodos , Inmunotoxinas/uso terapéutico , Leucemia de Células T/terapia , Pseudomonas/inmunología , Linfocitos T/inmunología , Animales , Anticuerpos Monoclonales/genética , Toxinas Bacterianas/genética , Línea Celular Tumoral , Proliferación Celular , Citocinas/metabolismo , Diseño de Fármacos , Ensayo de Immunospot Ligado a Enzimas , Epítopos de Linfocito T/genética , Exotoxinas/genética , Exotoxinas/uso terapéutico , Femenino , Ingeniería Genética , Humanos , Inmunotoxinas/genética , Subunidad alfa del Receptor de Interleucina-2/inmunología , Leucemia de Células T/inmunología , Activación de Linfocitos , Ratones , Mutagénesis Sitio-Dirigida , Mutación/genéticaRESUMEN
The tumor microenvironment is a barrier to breast cancer therapy. Cancer-associated fibroblast cells (CAFs) can support tumor proliferation, metastasis, and drug resistance by secreting various cytokines and growth factors. Abnormal angiogenesis provides sufficient nutrients for tumor proliferation. Considering that CAFs express the sigma receptor (which recognizes anisamide, AA), we developed a CAFs and breast cancer cells dual-targeting nano drug delivery system to transport the LightOn gene express system, a spatiotemporal controlled gene expression consisting of a light-sensitive transcription factor and a specific minimal promoter. We adopted RGD (Arg-Gly-Asp) to selectively bind to the αvß3 integrin on activated vascular endothelial cells and tumor cells. After the LightOn system has reached the tumor site, LightOn gene express system can spatiotemporal controllably express toxic Pseudomonas exotoxin An under blue light irradiation. The LightOn gene express system, combined with multifunctional nanoparticles, achieved high targeting delivery efficiency both in vitro and in vivo. It also displayed strong tumor and CAFs inhibition, anti-angiogenesis ability and anti-metastasis ability, with good safety. Moreover, it improved survival rate, survival time, and lung metastasis rate in a mouse breast cancer model. This study proves the efficacy of combining the LightOn system with targeted multifunctional nanoparticles in tumor and anti-metastatic therapy and provides new insights into tumor microenvironment regulation.
Asunto(s)
Nanopartículas Multifuncionales , Nanopartículas , Neoplasias , Ratones , Animales , Células Endoteliales , Exotoxinas/genética , Exotoxinas/uso terapéutico , Regulación de la Expresión Génica , Transgenes , Línea Celular Tumoral , Microambiente Tumoral , Nanopartículas/uso terapéuticoRESUMEN
Immunotoxins consist of an antibody or antibody fragment that binds to a specific cell surface structure and a cytotoxic domain that kills the cell after cytosolic uptake. Pseudomonas Exotoxin A (PE) based immunotoxins directed against a variety of tumor entities have successfully entered the clinic. PE possesses a KDEL-like motif (REDLK) that enables the toxin to travel from sorting endosomes via the KDEL-receptor pathway to the endoplasmic reticulum (ER), from where it is transported into the cytosol. There, it ADP-ribosylates the eukaryotic elongation factor 2, resulting in ribosome inhibition and finally apoptosis. One major problem of immunotoxins is their lysosomal degradation causing the need for much more immunotoxin molecules than finally required for induction of cell death. The resulting dose limitations and substantially increased side effects require new strategies to achieve improved cytosolic uptake. Here we generated an immunotoxin consisting of a humanized single chain variable fragment (scFv) targeting the prostate specific membrane antigen (PSMA) and the de-immunized PE variant PE24mut. This immunotoxin, hD7-1(VL-VH)-PE24mut, showed high and specific cytotoxicity in PSMA-expressing prostate cancer cells. We deleted the REDLK sequence to prevent transport to the ER and achieve endosomal entrapment. The cytotoxicity of this immunotoxin, hD7-1(VL-VH)-PE24mutΔREDLK, was greatly reduced. To restore activity, we added the endosomal escape enhancer SO1861 and observed an up to 190,000-fold enhanced cytotoxicity corresponding to a 57-fold enhancement compared to the initial immunotoxin with the REDLK sequence. A biodistribution study with different routes of administration clearly showed that the subcutaneous injection of hD7-1(VL-VH)-PE24mutΔREDLK in mice resulted in the highest tumor uptake. Treatment of mice bearing prostate tumors with a combination of hD7-1(VL-VH)-PE24mutΔREDLK plus SO1861 resulted in inhibition of tumor growth and enhanced overall survival compared to the monotherapies. The endosomal entrapment of non-toxic anti-PSMA immunotoxins followed by enhanced endosomal escape by SO1861 provides new therapeutic options in the future management of prostate cancer.
RESUMEN
Introduction: Current treatments for asthma help to alleviate clinical symptoms but do not cure the disease. In this study, we explored a novel therapeutic approach for the treatment of house dust mite allergen Der p 1induced asthma by aiming to eliminate specific population of B-cells involved in memory IgE response to Der p 1. Materials and Methods: To achieve this aim, we developed and evaluated two different proDer p 1-based fusion proteins; an allergen-toxin (proDer p 1-ETA) and an allergen-drug conjugate (ADC) (proDer p 1-SNAP-AURIF) against Der p 1 reactive hybridomas as an in vitro model for Der p 1 reactive human B-cells. The strategy involved the use of proDer p 1 allergen as a cell-specific ligand to selectively deliver the bacterial protein toxin Pseudomonas exotoxin A (ETA) or the synthetic small molecule toxin Auristatin F (AURIF) into the cytosol of Der p 1 reactive cells for highly efficient cell killing. Results: As such, we demonstrated recombinant proDer p 1 fusion proteins were selectively bound by Der p 1 reactive hybridomas as well as primary IgG1+ B-cells from HDM-sensitized mice. The therapeutic potential of proDer p 1-ETA' and proDer p 1-SNAP-AURIF was confirmed by their selective cytotoxic activities on Der p 1 reactive hybridoma cells. The allergen-toxin demonstrated superior cytotoxic activity, with IC50 values in the single digit nanomolar value, compared to the ADC. Discussions: Altogether, the proof-of-concept experiments in this study provide a promising approach for the treatment of patients with house dust mite-driven allergic asthma.
RESUMEN
The discovery of single-domain antibodies has opened new avenues for drug development. Single-domain antibodies, also known as nanobodies, can access buried epitopes that are inaccessible to conventional antibodies. These antigen-binding domains have a high level of solubility and stability, which makes them well suited for therapeutic development. This chapter will discuss the design, production, and testing of single-domain antibody-based recombinant immunotoxins. Recombinant immunotoxins are chimeric proteins that combine the specificity of an antibody with the ribosomal-inhibitory domain of a bacterial toxin. Immunotoxins using the Pseudomonas exotoxin domain have been well studied in clinical trials. Recently, an anti-CD22 immunotoxin was granted marketing approval for use in patients with relapsed or refractory hairy cell leukemia. This supports the idea that treatment with recombinant immunotoxins can be explored for cancers that have not responded to standard therapies.
Asunto(s)
Toxinas Bacterianas , Inmunotoxinas , Neoplasias , Anticuerpos de Dominio Único , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Toxinas Bacterianas/metabolismo , Exotoxinas/metabolismo , Humanos , Inmunotoxinas/uso terapéutico , Neoplasias/tratamiento farmacológico , Proteínas Recombinantes de Fusión/genética , Factores de Virulencia/metabolismoRESUMEN
Cancer is one of the prominent causes of death worldwide. Despite the existence of various modalities for cancer treatment, many types of cancer remain uncured or develop resistance to therapeutic strategies. Furthermore, almost all chemotherapeutics cause a range of side effects because they affect normal cells in addition to malignant cells. Therefore, the development of novel therapeutic agents that are targeted specifically toward cancer cells is indispensable. Immunotoxins (ITs) are a class of tumor cell-targeted fusion proteins consisting of both a targeting moiety and a toxic moiety. The targeting moiety is usually an antibody/antibody fragment or a ligand of the immune system that can bind an antigen or receptor that is only expressed or overexpressed by cancer cells but not normal cells. The toxic moiety is usually a protein toxin (or derivative) of animal, plant, insect, or bacterial origin. To date, three ITs have gained Food and Drug Administration (FDA) approval for human use, including denileukin diftitox (FDA approval: 1999), tagraxofusp (FDA approval: 2018), and moxetumomab pasudotox (FDA approval: 2018). All of these ITs take advantage of bacterial protein toxins. The toxic moiety of the first two ITs is a truncated form of diphtheria toxin, and the third is a derivative of Pseudomonas exotoxin (PE). There is a growing list of ITs using PE, or its derivatives, being evaluated preclinically or clinically. Here, we will review these ITs to highlight the advances in PE-based anticancer strategies, as well as review the targeting moieties that are used to reduce the non-specific destruction of non-cancerous cells. Although we tried to be as comprehensive as possible, we have limited our review to those ITs that have proceeded to clinical trials and are still under active clinical evaluation.
RESUMEN
Efficient treatment of disseminated ovarian cancer (OC) is challenging due to its heterogeneity and chemoresistance. Overexpression of human epidermal growth factor receptor 2 (HER2) and epithelial cell adhesion molecule (EpCAM) in approx. 30% and 70% of ovarian cancers, respectively, allows for co-targeted treatment. The clinical efficacy of the monoclonal antibody trastuzumab in patients with HER2-positive breast, gastric and gastroesophageal cancers makes it readily available as the HER2-targeting component. As the EpCAM-targeting component, we investigated the designed ankyrin repeat protein (DARPin) Ec1 fused to a truncated variant of Pseudomonas exotoxin A with reduced immunogenicity and low general toxicity (LoPE). Ec1-LoPE was radiolabeled, evaluated in ovarian cancer cells in vitro and its biodistribution and tumor-targeting properties were studied in vivo. The therapeutic efficacy of Ec1-LoPE alone and in combination with trastuzumab was studied in mice bearing EpCAM- and HER2-expressing SKOV3 xenografts. SPECT/CT imaging enabled visualization of EpCAM and HER2 expression in the tumors. Co-treatment using Ec1-LoPE and trastuzumab was more effective at reducing tumor growth and prolonged the median survival of mice compared with mice in the control and monotherapy groups. Repeated administration of Ec1-LoPE was well tolerated without signs of hepatic or kidney toxicity. Co-treatment with trastuzumab and Ec1-LoPE might be a potential therapeutic strategy for HER2- and EpCAM-positive OC.
RESUMEN
BACKGROUND/AIM: Reports on over-expression of the epidermal growth factor receptor (EGFR) in bladder cancer and its function in tumorigenesis have suggested to target this antigen. MATERIALS AND METHODS: We generated the targeted toxin EGF-PE40 consisting of the human epidermal growth factor (EGF) as the binding domain and PE40, a truncated version of Pseudomonas Exotoxin A, as the toxin domain. EGF-PE40 was tested on EGFR-expressing bladder cancer cells in view of binding via flow cytometry, and cytotoxicity via WST viability assay. Induction of apoptosis was examined by western blot. RESULTS: The targeted toxin specifically triggered cytotoxicity in the bladder cancer cells with 50% inhibitory concentration (IC50) values in the low nanomolar or picomolar range, and was about 1,250- to 1,500-fold more cytotoxic than the EGFR inhibitor erlotinib. Cytotoxicity of EGF-PE40 was based on the induction of apoptosis. CONCLUSION: EGF-PE40 represents a promising candidate for the future treatment of bladder cancer.
Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Factor de Crecimiento Epidérmico/química , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , ADP Ribosa Transferasas/química , Animales , Toxinas Bacterianas/química , Células CHO , Línea Celular Tumoral , Cricetulus , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Exotoxinas/química , Humanos , Factores de Virulencia/química , Exotoxina A de Pseudomonas aeruginosaRESUMEN
Immunotoxins (ITs) are protein-based drugs that compose of targeting and cytotoxic moieties. After binding the IT to the specific cell-surface antigen, the IT internalises into the target cell and kills it. Targeting and cytotoxic moieties usually include monoclonal antibodies and protein toxins with bacterial or plant origin, respectively. ITs have been successful in haematologic malignancies treatment. However, ITs penetrate poorly into solid tumours because of their large size. Use of camelid antibody fragments known as nanobodies (Nbs) as a targeting moiety may overcome this problem. Nbs are the smallest fragment of antibodies with excellent tumour tissue penetration. The ability to recognise cryptic (immuno-evasive) target antigens, low immunogenicity, and high-affinity are other fundamental characteristics of Nbs that make them suitable candidates in targeted therapy. Here, we reviewed and discussed the structure and function of ITs, Nbs, and nanobody-based ITs. To gain sound insight into the issue at hand, we focussed on nanobody-based ITs.
Asunto(s)
Inmunotoxinas/farmacología , Neoplasias/tratamiento farmacológico , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/farmacología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacología , Antígenos/química , HumanosRESUMEN
Immunotoxins are a class of targeted cancer therapeutics in which a toxin such as Pseudomonas exotoxin A (PE) is linked to an antibody or cytokine to direct the toxin to a target on cancer cells. While a variety of PE-based immunotoxins have been developed and a few have demonstrated promising clinical and preclinical results, cancer cells frequently have or develop resistance to these immunotoxins. This review presents our current understanding of the mechanism of action of PE-based immunotoxins and discusses cellular mechanisms of resistance that interfere with various steps of the pathway. These steps include binding of the immunotoxin to the target antigen, internalization, intracellular processing and trafficking to reach the cytosol, inhibition of protein synthesis through ADP-ribosylation of elongation factor 2 (EF2), and induction of apoptosis. Combination therapies that increase immunotoxin action and overcome specific mechanisms of resistance are also reviewed.
Asunto(s)
ADP Ribosa Transferasas/inmunología , Toxinas Bacterianas/inmunología , Resistencia a Antineoplásicos , Exotoxinas/inmunología , Inmunotoxinas/farmacología , Neoplasias/tratamiento farmacológico , Factores de Virulencia/inmunología , ADP Ribosa Transferasas/farmacología , Toxinas Bacterianas/farmacología , Supervivencia Celular/efectos de los fármacos , Ensayos Clínicos como Asunto , Citosol/metabolismo , Exotoxinas/farmacología , Humanos , Inmunotoxinas/inmunología , Neoplasias/inmunología , Factor 2 de Elongación Peptídica/metabolismo , Transporte de Proteínas , Factores de Virulencia/farmacología , Exotoxina A de Pseudomonas aeruginosaRESUMEN
BACKGROUND: One of the approaches to cancer gene therapy relies on tumor transfection with DNA encoding toxins under the control of tumor-specific promoters. METHODS: Here, we used DNA plasmids encoding very potent anti-ERBB2 targeted toxin, driven by the human telomerase promoter or by the ubiquitous CAG promoter (pTERT-ETA and pCAG-ETA) and linear polyethylenimine to target cancer cells. RESULTS: We showed that the selectivity of cancer cell killing by the pTERT-ETA plasmid is highly dependent upon the method of preparation of DNA-polyethylenimine complexes. After adjustment of complex preparation protocol, cell lines with high activity of telomerase promoter can be selectively killed by transfection with the pTERT-ETA plasmid. We also showed that cells transfected with pTERT-ETA and pCAG-ETA plasmids do not exert any detectable bystander effect in vitro. CONCLUSION: Despite this, three intratumoral injections of a plasmid-polyethylenimine complex resulted in substantial growth retardation of a poorly transfectable D2F2/E2 tumor in mice. There were no significant differences in anti-tumor properties between DNA constructs with telomerase or CAG promoters in vivo.
Asunto(s)
ADP Ribosa Transferasas/farmacología , Toxinas Bacterianas/farmacología , Exotoxinas/farmacología , Terapia Genética , Neoplasias/terapia , Polietileneimina/farmacología , Factores de Virulencia/farmacología , ADP Ribosa Transferasas/genética , Animales , Toxinas Bacterianas/genética , Efecto Espectador , Línea Celular Tumoral , Supervivencia Celular , Exotoxinas/genética , Expresión Génica , Humanos , Ratones , Plásmidos , Regiones Promotoras Genéticas , Transfección , Factores de Virulencia/genética , Exotoxina A de Pseudomonas aeruginosaRESUMEN
The epidermal growth factor receptor (EGFR) was found to be a valuable target on prostate cancer (PCa) cells. However, EGFR inhibitors mostly failed in clinical studies with patients suffering from PCa. We therefore tested the targeted toxins EGF-PE40 and EGF-PE24mut consisting of the natural ligand EGF as binding domain and PE40, the natural toxin domain of Pseudomonas Exotoxin A, or PE24mut, the de-immunized variant thereof, as toxin domains. Both targeted toxins were expressed in the periplasm of E.coli and evoked an inhibition of protein biosynthesis in EGFR-expressing PCa cells. Concentration- and time-dependent killing of PCa cells was found with IC50 values after 48 and 72 h in the low nanomolar or picomolar range based on the induction of apoptosis. EGF-PE24mut was found to be about 11- to 120-fold less toxic than EGF-PE40. Both targeted toxins were more than 600 to 140,000-fold more cytotoxic than the EGFR inhibitor erlotinib. Due to their high and specific cytotoxicity, the EGF-based targeted toxins EGF-PE40 and EGF-PE24mut represent promising candidates for the future treatment of PCa.
Asunto(s)
ADP Ribosa Transferasas/uso terapéutico , Toxinas Bacterianas/uso terapéutico , Exotoxinas/uso terapéutico , Inmunotoxinas/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Factores de Virulencia/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Células CHO , Línea Celular Tumoral , Supervivencia Celular , Cricetulus , Receptores ErbB/antagonistas & inhibidores , Humanos , Masculino , Células PC-3 , Proteínas Recombinantes de Fusión/uso terapéutico , Exotoxina A de Pseudomonas aeruginosaRESUMEN
The human epidermal growth factor receptor 2 (HER2) is a clinically validated target for cancer therapy, and targeted therapies are often used in regimens for patients with a high HER2 expression level. Despite the success of current drugs, a number of patients succumb to their disease, which motivates development of novel drugs with other modes of action. We have previously shown that an albumin binding domain-derived affinity protein with specific affinity for HER2, ADAPT6, can be used to deliver the highly cytotoxic protein domain PE25, a derivative of Pseudomonas exotoxin A, to HER2 overexpressing malignant cells, leading to potent and specific cell killing. In this study we expanded the investigation for an optimal targeting domain and constructed two fusion toxins where a HER2-binding affibody molecule, ZHER2:2891, or the dual-HER2-binding hybrid ZHER2:2891-ADAPT6 were used for cancer cell targeting. We found that both targeting domains conferred strong binding to HER2; both to the purified extracellular domain and to the HER2 overexpressing cell line SKOV3. This resulted in fusion toxins with high cytotoxic potency toward cell lines with high expression levels of HER2, with EC50 values between 10 and 100 pM. For extension of the plasma half-life, an albumin binding domain was also included. Intravenous injection of the fusion toxins into mice showed a profound influence of the targeting domain on biodistribution. Compared to previous results, with ADAPT6 as targeting domain, ZHER2:2891 gave rise to further extension of the plasma half-life and also shifted the clearance route of the fusion toxin from the liver to the kidneys. Collectively, the results show that the targeting domain has a major impact on uptake of PE25-based fusion toxins in different organs. The results also show that PE25-based fusion toxins with high affinity to HER2 do not necessarily increase the cytotoxicity beyond a certain point in affinity. In conclusion, ZHER2:2891 has the most favorable characteristics as targeting domain for PE25.
RESUMEN
BACKGROUND: Immunotoxins consisting of a toxin from bacteria or plants and a targeting module have been developed as potent anti-cancer therapeutics. The majority of them, especially those in preclinical or clinical testing stages, are fusion proteins of a toxin and antibody fragment. Immunotoxins based on full-length antibodies are less studied, even though the fragment crystallizable (Fc) domain plays an important role in regulating the concentration of immunoglobulin G (IgG) in the serum and in antibody-mediated immune responses against pathogens. RESULTS: We devised a method to site-specifically conjugate IgG and another protein using a cysteine residue introduced into the IgG and a bio-orthogonally reactive unnatural amino acid incorporated into the other protein. The human epidermal growth factor receptor 2 (Her2)-targeting IgG, trastuzumab, was engineered to have an unpaired cysteine in the heavy chain, and an unnatural amino acid with the azido group was incorporated into an engineered Pseudomonas exotoxin A (PE24). The two protein molecules were conjugated site-specifically using a bifunctional linker having dibenzocyclooctyne and maleimide groups. Binding to Her2 and interaction with various Fc receptors of trastuzumab were not affected by the conjugation with PE24. The trastuzumab-PE24 conjugate was cytotoxic to Her2-overexpressing cell lines, which involved the inhibition of cellular protein synthesis due to the modification of elongation factor-2. CONCLUSIONS: We constructed the site-specifically conjugated immunotoxin based on IgG and PE24, which induced target-specific cytotoxicity. To evaluate the molecule as a cancer therapeutic, animal studies are planned to assess tumor regression, half-life in blood, and in vivo immunogenicity. In addition, we expect that the site-specific conjugation method can be used to develop other antibody-protein conjugates for applications in therapeutics and diagnostics.