RESUMEN
Adenosine deaminase-dependent RNA editing is a widespread universal mechanism of posttranscriptional gene function modulation. Changes in RNA editing level may contribute to various physiological and pathological processes. In the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptor GluA2 subunit, A-I editing in the Q607R site leads to dramatic changes in function, making the receptor channel calcium-impermeable. A standard approach for quantifying (un)edited RNAs is based on endpoint PCR (Sanger sequencing or restriction analysis), a time-consuming and semiquantitative method. We aimed to develop RT-qPCR assays to quantify rat Q607R (A-I) edited/unedited mRNA in samples in the present work. Based on self-probing PCR detection chemistry, described initially for detecting short DNA fragments, we designed and optimised RT-qPCR assays to quantify Q607R (un)edited mRNA. We used self-probing primer PCR technology for mRNA quantification for the first time. Using a novel assay, we confirmed that Q607R GluA2 mRNA editing was increased in 14-day- (P14) or 21-day-old (P21) postnatal brain tissue (hippocampus) compared to the embryonic brain (whole brains at E20) in Wistar rats. Q607R unedited GluA2 mRNA was detectable by our assay in the cDNA of mature brain tissue compared to that derived through classical methods. Thus, self-probing primer PCR detection chemistry is an easy-to-use approach for RT-qPCR analysis of RNA editing.
Asunto(s)
Expresión Génica , Hipocampo/metabolismo , Edición de ARN , ARN Mensajero/genética , Receptores AMPA/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Masculino , Sondas de Ácido Nucleico/genética , Polimorfismo de Nucleótido Simple , ARN Mensajero/metabolismo , Ratas Wistar , Reproducibilidad de los Resultados , Factores de TiempoRESUMEN
Kainate receptors (KARs) are considered one of the key modulators of synaptic activity in the mammalian central nervous system. These receptors were discovered more than 30 years ago, but their role in brain functioning remains unclear due to some peculiarities. One such feature of these receptors is the editing of pre-mRNAs encoding GluK1 and GluK2 subunits. Despite the long history of studying this phenomenon, numerous questions remain unanswered. This review summarizes the current data about the mechanism and role of pre-mRNA editing of KAR subunits in the mammalian brain and proposes a perspective of future investigations.
Asunto(s)
Encéfalo , Receptores de Ácido Kaínico , Animales , Encéfalo/metabolismo , Humanos , Mamíferos/genética , Mamíferos/metabolismo , ARN Mensajero , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/metabolismoRESUMEN
Glutamate receptors play a key role in excitatory synaptic transmission and plasticity in the central nervous system (CNS). Their channel properties are largely dictated by the subunit composition of tetrameric receptors. Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate channels are assembled from GluA1-4 AMPA or GluK1-5 kainate receptor subunits. However, their functional properties are highly modulated by a post-transcriptional mechanism called RNA editing. This process involves the enzymatic deamination of specific adenosines (A) into inosines (I) in pre-messenger RNA. This post-transcriptional modification leads to critical amino acid substitutions in the receptor subunits, which induce profound alterations of the channel properties. Three of the four AMPA and two of the five kainate receptor subunits are subjected to RNA editing. This study reviews the advances in understanding the importance of glutamate receptor RNA editing in finely tuning glutamatergic neurotransmission under physiological conditions and discusses the way in which the dis-regulation of RNA editing may be involved in neurological pathology.
Asunto(s)
Edición de ARN/fisiología , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Animales , Humanos , Plasticidad Neuronal/fisiología , Receptores AMPA/genética , Receptores AMPA/metabolismo , Sinapsis/genética , Sinapsis/metabolismoRESUMEN
The majority of AMPA receptors in the adult brain contain GluA2 subunits, which can be edited at the Q/R site, changing a glutamine to an arginine within the ion pore. Q/R editing renders AMPARs virtually Ca(2+)-impermeable, which is important for normal AMPA receptor function. Thus, all GluA2 subunits are Q/R-edited in the adult brain. However, it has remained controversial precisely when editing sets in during development. In the present study, we show that GluA2 mRNA is very rapidly Q/R-edited immediately after its appearance, which is after 4.5 days of differentiation from 46C embryonic stem cells (ESCs) to neuroepithelial precursor cells (NEPs). At this time point, most of the GluA2 transcripts were already edited, with only a small fraction remaining unedited, and half a day later all GluA2 transcripts were edited. This can be explained by the observation that the enzyme that Q/R-edits GluA2 transcripts, ADAR2, is already expressed in the cell well before GluA2 transcription starts, and later is not significantly upregulated any more. Editing at another site works differently: The R/G site within the ligand-binding domain was never completely edited at any of the developmental stages tested, and the enzyme that performs this editing, ADAR1, was significantly upregulated during neural differentiation. This confirms previous data suggesting that R/G editing, in contrast to Q/R editing, progresses gradually during development.
RESUMEN
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease. More than 90% of ALS cases are sporadic, and the majority of sporadic ALS patients do not carry mutations in genes causative of familial ALS; therefore, investigation specifically targeting sporadic ALS is needed to discover the pathogenesis. The motor neurons of sporadic ALS patients express unedited GluA2 mRNA at the Q/R site in a disease-specific and motor neuron-selective manner. GluA2 is a subunit of the AMPA receptor, and it has a regulatory role in the Ca(2+)-permeability of the AMPA receptor after the genomic Q codon is replaced with the R codon in mRNA by adenosine-inosine conversion, which is mediated by adenosine deaminase acting on RNA 2 (ADAR2). Therefore, ADAR2 activity may not be sufficient to edit all GluA2 mRNA expressed in the motor neurons of ALS patients. To investigate whether deficient ADAR2 activity plays pathogenic roles in sporadic ALS, we generated genetically modified mice (AR2) in which the ADAR2 gene was conditionally knocked out in the motor neurons. AR2 mice showed an ALS-like phenotype with the death of ADAR2-lacking motor neurons. Notably, the motor neurons deficient in ADAR2 survived when they expressed only edited GluA2 in AR2/GluR-B(R/R) (AR2res) mice, in which the endogenous GluA2 alleles were replaced by the GluR-B(R) allele that encoded edited GluA2. In heterozygous AR2 mice with only one ADAR2 allele, approximately 20% of the spinal motor neurons expressed unedited GluA2 and underwent degeneration, indicating that half-normal ADAR2 activity is not sufficient to edit all GluA2 expressed in motor neurons. It is likely therefore that the expression of unedited GluA2 causes the death of motor neurons in sporadic ALS. We hypothesize that a progressive downregulation of ADAR2 activity plays a critical role in the pathogenesis of sporadic ALS and that the pathological process commences when motor neurons express unedited GluA2.