RESUMEN
The mammalian small intestine epithelium harbors a peculiar population of CD4+CD8αα+ T cells that are derived from mature CD4+ T cells through reprogramming of lineage-specific transcription factors. CD4+CD8αα+ T cells occupy a unique niche in T cell biology because they exhibit mixed phenotypes and functional characteristics of both CD4+ helper and CD8+ cytotoxic T cells. The molecular pathways driving their generation are not fully mapped. However, recent studies demonstrate the unique role of the commensal gut microbiota as well as distinct cytokine and chemokine requirements in the differentiation and survival of these cells. We review the established and newly identified factors involved in the generation of CD4+CD8αα+ intraepithelial lymphocytes (IELs) and place them in the context of the molecular machinery that drives their phenotypic and functional differentiation.
Asunto(s)
Linfocitos Intraepiteliales , Humanos , Animales , Diferenciación Celular , Factores de Transcripción/metabolismo , Linfocitos T Citotóxicos , Linfocitos T CD8-positivos , Mucosa Intestinal/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , MamíferosRESUMEN
Multiple sclerosis (MS) is a common and devastating chronic inflammatory disease of the CNS. CD4+ T cells are assumed to be the first to cross the blood-central nervous system (CNS) barrier and trigger local inflammation. Here, we explored how pathogenicity-associated effector programs define CD4+ T cell subsets with brain-homing ability in MS. Runx3- and Eomes-, but not T-bet-expressing CD4+ memory cells were diminished in the blood of MS patients. This decline reversed following natalizumab treatment and was supported by a Runx3+ Eomes+ T-bet- enrichment in cerebrospinal fluid samples of treatment-naïve MS patients. This transcription factor profile was associated with high granzyme K (GZMK) and CCR5 levels and was most prominent in Th17.1 cells (CCR6+ CXCR3+ CCR4-/dim ). Previously published CD28- CD4 T cells were characterized by a Runx3+ Eomes- T-bet+ phenotype that coincided with intermediate CCR5 and a higher granzyme B (GZMB) and perforin expression, indicating the presence of two separate subsets. Under steady-state conditions, granzyme Khigh Th17.1 cells spontaneously passed the blood-brain barrier in vitro. This was only found for other subsets including CD28- cells when using inflamed barriers. Altogether, CD4+ T cells contain small fractions with separate pathogenic features, of which Th17.1 seems to breach the blood-brain barrier as a possible early event in MS.
Asunto(s)
Antígenos CD28 , Esclerosis Múltiple , Humanos , Encéfalo/patología , Antígenos CD28/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Granzimas/metabolismo , Esclerosis Múltiple/genéticaRESUMEN
Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family, which can cause human malignancies including Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman's diseases. KSHV typically maintains a persistent latent infection within the host. However, after exposure to intracellular or extracellular stimuli, KSHV lytic replication can be reactivated. The reactivation process of KSHV triggers the innate immune response to limit viral replication. Here, we found that the transcriptional regulator RUNX3 is transcriptionally upregulated by the NF-κB signaling pathway in KSHV-infected SLK cells and B cells during KSHV reactivation. Notably, knockdown of RUNX3 significantly promotes viral lytic replication as well as the gene transcription of KSHV. Consistent with this finding, overexpression of RUNX3 impairs viral lytic replication. Mechanistically, RUNX3 binds to the KSHV genome and limits viral replication through transcriptional repression, which is related to its DNA- and ATP-binding ability. However, KSHV has also evolved corresponding strategies to antagonize this inhibition by using the viral protein RTA to target RUNX3 for ubiquitination and proteasomal degradation. Altogether, our study suggests that RUNX3, a novel host-restriction factor of KSHV that represses the transcription of viral genes, may serve as a potential target to restrict KSHV transmission and disease development.IMPORTANCEThe reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) from latent infection to lytic replication is important for persistent viral infection and tumorigenicity. However, reactivation is a complex event, and the regulatory mechanisms of this process are not fully elucidated. Our study revealed that the host RUNX3 is upregulated by the NF-κB signaling pathway during KSHV reactivation, which can repress the transcription of KSHV genes. At the late stage of lytic replication, KSHV utilizes a mechanism involving RTA to degrade RUNX3, thus evading host inhibition. This finding helps elucidate the regulatory mechanism of the KSHV life cycle and may provide new clues for the development of therapeutic strategies for KSHV-associated diseases.
Asunto(s)
Subunidad alfa 3 del Factor de Unión al Sitio Principal , Herpesvirus Humano 8 , Infección Latente , Humanos , Línea Celular Tumoral , Regulación Viral de la Expresión Génica , Genoma Viral , Herpesvirus Humano 8/fisiología , FN-kappa B/metabolismo , Activación Viral , Latencia del Virus , Replicación Viral , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismoRESUMEN
Breast cancer severely affects women health. 70% of breast cancer are estrogen receptor positive. Breast cancer stem cells are a group of tumor with plasticity, causing tumor relapse and metastasis. RUNX3 is a tumor suppressor frequently inactivated in estrogen receptor positive breast cancer. However, the mechanism of how RUNX3 is involved in the regualation of cancer stem cell traits in estrogen receptor positive breast cancer remains elusive. In this study, we utilized cut-tag assay to investigate the binding profile RUNX3 in BT474 and T47D cell, and confirmed EXOSC4 as the bona-fide target of RUNX3; RUNX3 could bind to the promoter are of EXOSC4 to suppress its expression. Furthermore, EXOSC4 could increase the colony formation, cell invasion and mammosphere formation ability of breast cancer cells and upregulate the the expression of SOX2 and ALDH1. Consistent with these findings, EXOSC4 was associated with poorer survival for Luminal B/Her2 breast cancer patiens. At last, we confirmed that EXOSC4 mediated the tumor suppressive role of RUNX3 in breast cancer cells. In conclusion, we demonstrate that RUNX3 directly binds to the promoter region of EXOSC4, leading to the suppression of EXOSC4 expression and exerting a tumor-suppressive effect in estrogen receptor postivive breast cancer cells.
Asunto(s)
Neoplasias de la Mama , Subunidad alfa 3 del Factor de Unión al Sitio Principal , Regiones Promotoras Genéticas , Femenino , Humanos , Familia de Aldehído Deshidrogenasa 1/metabolismo , Familia de Aldehído Deshidrogenasa 1/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Retinal-Deshidrogenasa/metabolismo , Retinal-Deshidrogenasa/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXB1/genéticaRESUMEN
Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer, but the early diagnosis rate is low. The RNA-binding ubiquitin ligase MEX3C promotes tumorigenesis in several cancers but its mechanism of action in LUAD is unclear. In this study, the biological activity of MEX3C was assessed in LUAD. MEX3C and RUNX3 mRNA levels in the tissues of LUAD patients were determined using reverse transcriptionquantitative PCR. The involvement of MEX3C in the growth and metastasis of LUAD cells was measured by EdU assay, CCK-8, colony formation, Transwell assay, TUNEL, and flow cytometry. Expression of apoptosis and epithelial-mesenchymal transition related proteins were determined using western blotting analysis. LUAD cells transfected with si-MEX3C were administered to mice subcutaneously to monitor tumor progression and metastasis. We found that MEX3C is strongly upregulated in LUAD tissue sections, and involved in proliferation and migration. A549 and H1299 cells had significantly higher levels of MEX3C expression compared to control HBE cells. Knockdown of MEX3C dramatically decreased cell proliferation, migration, and invasion, and accelerated apoptosis. Mechanistically, we demonstrate MEX3C induces ubiquitylation and degradation of tumor suppressor RUNX3. Moreover, RUNX3 transcriptionally represses Suv39H1, as revealed by RNA pull-down and chromatin immunoprecipitation assays. The in vivo mice model demonstrated that knockdown of MEX3C reduced LUAD growth and metastasis significantly. Collectively, we reveal a novel MEX3C-RUNX3-Suv39H1 signaling axis driving LUAD pathogenesis. Targeting MEX3C may represent a promising therapeutic strategy against LUAD.
Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , MicroARNs , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , Ligasas/genética , Ligasas/metabolismo , Neoplasias Pulmonares/patología , MicroARNs/genética , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , UbiquitinaciónRESUMEN
OBJECTIVE: Researchers are actively investigating new diagnostic and prognostic biomarkers that offer improved sensitivity and specificity for systemic lupus erythematosus (SLE). One area of interest is DNA methylation changes. Previous studies have shown a connection between the RUNX3 gene dysfunction and SLE. In this study, the focus was on examining the methylation level of the RUNX3 promoter in peripheral blood mononuclear cells (PBMCs) of SLE patients and healthy individuals. METHODS: A total of 80 individuals diagnosed with SLE from Iran, along with 77 healthy individuals, were included. The methylation levels of the RUNX3 gene in the extracted DNA were evaluated using the MethyQESD method. To determine the diagnostic effectiveness of the RUNX3 promoter methylation level, a receiver operating characteristic (ROC) curve was generated. RESULTS: The methylation of the RUNX3 promoter was found to be significantly higher in patients with SLE compared to healthy individuals (p < .001). This difference in methylation levels was observed between SLE patients and healthy individuals and between SLE patients with renal involvement and those without renal involvement (86.29 ± 10.30 vs 40.28 ± 24.21, p < .001). ROC analyses revealed that the methylation level of the RUNX3 promoter had a diagnostic power of 0.769 [95% CI (0.681-0.814)] for SLE. Additionally, there was a positive correlation between the RUNX3 methylation level and levels of creatinine and C4. CONCLUSION: The findings of this study emphasize the potential use of RUNX3 methylation levels in PBMCs of SLE patients as biomarkers for diagnosing the disease, predicting renal damage, and assessing disease activity.
Asunto(s)
Leucocitos Mononucleares , Lupus Eritematoso Sistémico , Humanos , Lupus Eritematoso Sistémico/diagnóstico , Metilación de ADN , Biomarcadores , Curva ROCRESUMEN
BACKGROUND: RUNX3 is hypermethylated in multiple cancers. TIMP2 also functions as a regulator of tumors. However, there are only very few reports on the association of methylation of RUNX3 and TIMP2 with lung cancer (LC) in peripheral blood. METHODS: 426 LC patients and 428 age- and sex-matched healthy controls were recruited. DNA methylation in blood was semi-quantitively assessed by mass spectrometry. For the association analysis, binary logistic regression analysis adjusted covariant was applied, and ORs were presented as per +10% methylation. RESULTS: Hypermethylation of CpG_1, CpG_5 and CpG_8 in RUNX3 was significantly associated with LC (ORs = 1.45, 1.35 and 1.35, respectively, adjusted p < 0.05), and even stage I LC. The association between the three RUNX3 CpG sites and LC was enhanced by increased age (> 55 years, ORs ranged from 1.43 to 1.75, adjusted p < 0.05), male gender (ORs ranged from 1.47 to 1.59, adjusted p < 0.05) and tumor stage (stage II&III&IV, ORs ranged from 1.86 to 3.03, adjusted p < 0.05). CONCLUSIONS: This study suggests a significant association between blood-based RUNX3 hypermethylation and LC, especially in elder people, in males and in LC patients with advanced stage.
The blood-based RUNX3 hypermethylation is associated with LC, especially stage I LC.LC-associated blood RUNX3 hypermethylation is increased with age.More LC-associated RUNX3 hypermethylation are found in males.
Asunto(s)
Subunidad alfa 3 del Factor de Unión al Sitio Principal , Metilación de ADN , Neoplasias Pulmonares , Humanos , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/sangre , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/patología , Estudios de Casos y Controles , Masculino , Femenino , Persona de Mediana Edad , Anciano , Islas de CpG/genética , Estadificación de Neoplasias , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genéticaRESUMEN
Long noncoding RNA MIR17HG was involved with the progression of non-small-cell lung cancer (NSCLC), but specific mechanisms of MIR17HG-mediated immune escape of NSCLC cells were still unknown. The present study investigated the function of MIR17HG on regulatory T cell (Treg)-mediated immune escape and the underlying mechanisms in NSCLC. Expression of MIR17HG and miR-17-5p in NSCLC tissue samples were detected using quantitative real-time PCR (qRT-PCR). A549 and H1299 cells were transfected with sh-MIR17HG, miR-17-5p inhibitor, or sh-MIR17HG + miR-17-5p inhibitor, followed by cocultured with Tregs. Cell proliferation was measured using 5-ethynyl-20-deoxyuridine (Edu) staining assay and cell counting kit-8 (CCK-8) assay. Flow cytometry was used for determining positive numbers of FOXP3+CD4+/CD25+/CD8+ Tregs. Through subcutaneous injection with transfected A549 cells, a xenograft nude mouse model was established. Weights and volumes of xenograft tumors were evaluated. Additionally, the expressions of immune-related factors including transforming growth factor beta (TGF-ß), vascular endothelial growth factor A (VEGF-A), interleukin-10 (IL-10), IL-4, and interferon-gamma (IFN-γ) in cultured cells, were evaluated by enzyme-linked immunosorbent assay and western blot analysis. Then, miR-17-5p was decreased and MIR17HG was enhanced in both NSCLC tissues and cell lines. MIR17HG knockdown significantly suppressed cell proliferation, tumorigenicity, and immune capacity of Tregs in A549 and H1299 cells, whereas sh-MIR17HG significantly reduced expression levels of VEGF-A, TGF-ß, IL-4, and IL-10 but promoted the IFN-γ level in vitro and in vivo. Moreover, downregulation of miR-17-5p significantly reversed the effects of sh-MIR17HG. Additionally, we identified that runt- related transcription factor 3 (RUNX3) was a target of miR-17-5p, and sh-MIR17HG and miR-17-5p mimics downregulated RUNX3 expression. In conclusion, downregulation of MIR17HG suppresses tumorigenicity and Treg-mediated immune escape in NSCLC through downregulating the miR-17-5p/RUNX3 axis, indicating that this axis contains potential biomarkers for NSCLC.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Subunidad alfa 3 del Factor de Unión al Sitio Principal , Regulación hacia Abajo , Neoplasias Pulmonares , Ratones Desnudos , MicroARNs , ARN Largo no Codificante , Linfocitos T Reguladores , Animales , Humanos , Ratones , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Ratones Endogámicos BALB C , MicroARNs/genética , ARN Largo no Codificante/genética , Linfocitos T Reguladores/inmunología , Escape del Tumor/genéticaRESUMEN
Breast cancer (BC) ranks as the most prevalent gynecologic tumor globally. Abnormal expression of miRNAs is concerned with the development of cancers such as BC. However, little is known about the role of miR-600 in BC. This work aimed to explore the role of miR-600 in the malignant progression and sorafenib sensitivity of BC cells. Expression and interaction of miR-600/EZH2/RUNX3 were analyzed by bioinformatics. qRT-PCR was utilized to assay RNA expression of miR-600 and mRNA expression of EZH2/RUNX3. The binding relationship between miR-600 and EZH2 was tested by dual luciferase assay and RNA immunoprecipitation (RIP). The effects of miR-600/EZH2/RUNX3 axis on the malignant behavior and sorafenib sensitivity of BC cells were detected by CCK-8 and colony formation assay. Low expression of miR-600 and RUNX3 in BC was found by bioinformatics and molecular assays. High expression of EZH2 in BC was negatively correlated with RUVX3. Dual luciferase assay and RIP demonstrated that MiR-600 could bind to EZH2. Cell assays displayed that miR-600 knockdown could foster the malignant progression of BC cells and reduce the sensitivity of BC cells to sorafenib. EZH2 knockdown or RUNX3 overexpression could offset the effect of miR-600 inhibitor on the malignant behavior and sorafenib sensitivity of BC cells. MiR-600 can hinder the malignant behavior of BC cells and foster sensitivity of BC cells to sorafenib via EZH2/RUNX3 axis, exhibiting the miR-600/EZH2/RUNX3 axis as a feasible therapeutic target for BC patients.
Asunto(s)
Neoplasias de la Mama , MicroARNs , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Sorafenib/farmacologíaRESUMEN
Limited T cell persistence restrains chimeric antigen receptor (CAR)-T cell therapy in solid tumors. To improve persistence, T cells have been engineered to secrete proinflammatory cytokines, but other possible methods have been understudied. Runx3 has been considered a master regulator of T cell development, cytotoxic T lymphocyte differentiation, and tissue-resident memory T (Trm)-cell formation. A study using a transgenic mouse model revealed that overexpression of Runx3 promoted T cell persistence in solid tumors. Here, we generated CAR-T cells overexpressing Runx3 (Run-CAR-T cells) and found that Run-CAR-T cells had long-lasting antitumor activities and achieved better tumor control than conventional CAR-T cells. We observed that more Run-CAR-T cells circulated in the peripheral blood and accumulated in tumor tissue, indicating that Runx3 coexpression improved CAR-T cell persistence in vivo. Tumor-infiltrating Run-CAR-T cells showed less cell death with enhanced proliferative and effector activities. Consistently, in vitro studies indicated that AICD was also decreased in Run-CAR-T cells via downregulation of tumor necrosis factor (TNF) secretion. Further studies revealed that Runx3 could bind to the TNF promoter and suppress its gene transcription after T cell activation. In conclusion, Runx3-armored CAR-T cells showed increased antitumor activities and could be a new modality for the treatment of solid tumors.
Asunto(s)
Neoplasias , Linfocitos T , Animales , Ratones , Neoplasias/genética , Neoplasias/terapia , Inmunoterapia Adoptiva/métodos , Citocinas/metabolismo , Muerte Celular/genética , Línea Celular Tumoral , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Objective: Asthma is a chronic heterogeneous airway disease, and imbalanced T-helper type 1 (Th1) and Th2 cell-mediated inflammation contribute to its pathogenesis. Although it has been suggested that androgen and estrogen were involved in development of asthma, the underlying mechanisms remained largely unclear. Studies have demonstrated that Runx3 could promote naive CD4+ T cells to differentiate into Th1 cells. Hence, our study aimed to explore the potential regulatory mechanism of androgen and estrogen on asthma via modulating Runx3. Methods: First, clinical assessments and pulmonary function tests were conducted on 35 asthma patients and 24 healthy controls. The concentrations of androgen, estrogen, and androgen estrogen ratios were assessed in peripheral blood samples of asthma patients and healthy controls. Then, a murine asthma model was established to explore the effects of estrogen and androgen (alone or in combination) on asthma. Third, an in vitro assay was used to explore the mechanism of combination of androgen and estrogen in asthma. Results: We observed decreased androgen and increased estrogen levels in asthma patients compared with healthy controls. In mice with experimental asthma, there were increased serum concentrations of estrogen and decreased serum concentrations of androgen, intervention with combination of androgen and estrogen alleviated airway inflammations, increased Runx3 expressions and elevated Th1 differentiation. In CD4+ T cells co-cultured with bronchial epithelial cells (BECs), treatment with androgen plus estrogen combination promoted Th1 differentiation, which was mitigated by Runx3 knockdown in BECs and enhanced by Runx3 overexpression. Conclusion: These findings suggest that androgen estrogen combination modulate the Th1/Th2 balance via regulating the expression of Runx3 in BECs, thereby providing experimental evidence supporting androgen and estrogen combination as a novel therapy for asthma.
Asunto(s)
Andrógenos , Asma , Subunidad alfa 3 del Factor de Unión al Sitio Principal , Estrógenos , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Andrógenos/sangre , Asma/tratamiento farmacológico , Asma/inmunología , Asma/sangre , Estudios de Casos y Controles , Diferenciación Celular/efectos de los fármacos , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Modelos Animales de Enfermedad , Células TH1/inmunología , Células TH1/efectos de los fármacos , Células Th2/inmunología , Células Th2/efectos de los fármacosRESUMEN
AIM: The impaired function of tubular mitochondria is critical in diabetic kidney disease (DKD) progression. RUNX3 is down-regulated in DKD models. We intend to explore the effects of RUNX3 on mitochondrial dysfunction and renal tubule injury in DKD and related mechanisms. METHODS: The development of diabetes models involved injecting mice with streptozotocin while treating HK-2 cells with high glucose (HG). By using immunohistochemical techniques, the renal localizations of RUNX3 were identified. Levels of adenosine triphosphate (ATP), mitochondrial membrane potential, and biochemical index were detected by appropriate kits. Reactive oxygen species (ROS) generation was assessed with dihydroethidium and MitoSOX Red staining. Apoptosis was assessed by flow cytometry and TUNEL. RUNX3 ubiquitination was measured. RESULTS: RUNX3 was mainly present in renal tubules. Overexpressing RUNX3 increased Mfn2, Mfn1, ATP levels, and mitochondrial membrane potential, reduced Drp1 and ROS levels and cell apoptosis, as well as Cyt-C release into the cytoplasm. RUNX3 overexpression displayed a reduction in urinary albumin to creatinine ratio, Hemoglobin A1c, serum creatinine, and blood urea nitrogen. Overexpressing TLR4 attenuated the inhibitory effect of RUNX3 overexpression on mitochondrial dysfunction and cell apoptosis. HG promoted RUNX3 ubiquitination and SMURF2 expression. RUNX3 knockdown cancelled the inhibitory effect of SMURF2 on mitochondrial dysfunction and cell apoptosis. CONCLUSION: SMURF2 interference inhibits RUNX3 ubiquitination and TLR4/NF-κB signalling pathway, thereby alleviating renal tubule injury.
Asunto(s)
Subunidad alfa 3 del Factor de Unión al Sitio Principal , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Apoptosis , Línea Celular , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/prevención & control , Túbulos Renales/metabolismo , Túbulos Renales/patología , Potencial de la Membrana Mitocondrial , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genéticaRESUMEN
The Runx3 transcription factor is essential for development and diversification of the dorsal root ganglia (DRGs) TrkC sensory neurons. In Runx3-deficient mice, developing TrkC neurons fail to extend central and peripheral afferents, leading to cell death and disruption of the stretch reflex circuit, resulting in severe limb ataxia. Despite its central role, the mechanisms underlying the spatiotemporal expression specificities of Runx3 in TrkC neurons were largely unknown. Here we first defined the genomic transcription unit encompassing regulatory elements (REs) that mediate the tissue-specific expression of Runx3. Using transgenic mice expressing BAC reporters spanning the Runx3 locus, we discovered three REs-dubbed R1, R2, and R3-that cross-talk with promoter-2 (P2) to drive TrkC neuron-specific Runx3 transcription. Deletion of single or multiple elements either in the BAC transgenics or by CRISPR/Cas9-mediated endogenous ablation established the REs' ability to promote and/or repress Runx3 expression in developing sensory neurons. Our analysis reveals that an intricate combinatorial interplay among the three REs governs Runx3 expression in distinct subtypes of TrkC neurons while concomitantly extinguishing its expression in non-TrkC neurons. These findings provide insights into the mechanism regulating cell type-specific expression and subtype diversification of TrkC neurons in developing DRGs.
Asunto(s)
Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Ganglios Espinales/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Neuronas/metabolismo , Elementos Reguladores de la Transcripción/genética , Animales , Ataxia/genética , Sitios de Unión , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Embrión de Mamíferos , Ganglios Espinales/citología , Eliminación de Gen , Locomoción/genética , Masculino , Ratones , Ratones Transgénicos , Neuronas/citología , Regiones Promotoras Genéticas/genética , Unión Proteica , Factores de Transcripción/metabolismoRESUMEN
We have recently reported that transcription factor Runx3 is required for pulmonary generation of CD8+ cytotoxic T lymphocytes (CTLs) that play a crucial role in the clearance of influenza A virus (IAV). To understand the underlying mechanisms, we determined the effects of Runx3 knockout (KO) on CD8+ T cell local expansion and phenotypes using an inducible general Runx3 KO mouse model. We found that in contrast to the lungs, Runx3 general KO promoted enlargement of lung-draining mediastinal lymph node (mLN) and enhanced CD8+ and CD4+ T cell expansion during H1N1 IAV infection. We further found that Runx3 deficiency greatly inhibited core 2 O-glycosylation of selectin ligand CD43 on activated CD8+ T cells but minimally affected the cell surface expression of CD43, activation markers (CD44 and CD69) and cell adhesion molecules (CD11a and CD54). Runx3 KO had a minor effect on lung effector CD8+ T cell death by IAV infection. Our findings indicate that Runx3 differently regulates CD8+ T cell expansion in mLNs and lungs by H1N1 IAV infection. Runx3 is required for CD43 core 2 O-glycosylation on activated CD8+ T cells, and the involved Runx3 signal pathway may mediate CD8+ T cell phenotype for pulmonary generation of CTLs.
Asunto(s)
Linfocitos T CD8-positivos , Subunidad alfa 3 del Factor de Unión al Sitio Principal , Subtipo H1N1 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Animales , Ratones , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Proliferación Celular , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Glicosilación , Subtipo H1N1 del Virus de la Influenza A/inmunología , Leucosialina/metabolismo , Pulmón/virología , Pulmón/metabolismo , Pulmón/inmunología , Pulmón/patología , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/inmunología , Activación de Linfocitos/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virologíaRESUMEN
Myeloid/natural killer (NK) cell precursor acute leukemia (MNKPL) has been described based on its clinical phenotype and immunophenotype, and proposed as a unique leukemia entity. However, due to its rarity and lack of defined distinctive molecular characteristics, there is currently no international consensus on this disease concept. We performed multi-omics analysis and revealed that MNKPL is distinct from acute myeloid leukemia, T-cell acute lymphoblastic leukemia, and mixed-phenotype acute leukemia. NOTCH1 and RUNX3 activation and BCL11B downregulation are hallmarks of MNKPL. Although NK cells have been classically considered to be lymphoid lineage-derived, our single-cell analysis using MNKPL cells suggested that NK cells and myeloid cells share common progenitor cells. Our retrospective case study uncovered that outcomes of MNKPL are unsatisfactory, even with hematopoietic cell transplantation. Multi-omics analysis and in vitro drug sensitivity assays revealed increased sensitivity to L-asparaginase and reduced levels of asparagine synthetase, supporting the clinically observed effectiveness of L-asparaginase.
Asunto(s)
Células Asesinas Naturales , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapiaRESUMEN
Long-term abuse of methamphetamine (MA) can cause lung toxicity. Intercellular communication between macrophages and alveolar epithelial cells (AECs) is critical for maintaining lung homeostasis. Microvesicles (MVs) are an important medium of intercellular communication. However, the mechanism of macrophage MVs (MMVs) in MA-induced chronic lung injury remains unclear. This study aimed to investigate if MA can augment the activity of MMVs and if circ_YTHDF2 is a key factor in MMV-mediated macrophage-AEC communication, and to explore the mechanism of MMV-derived circ_YTHDF2 in MA-induced chronic lung injury. MA elevated peak velocity of the pulmonary artery and pulmonary artery accelerate time, reduced the number of alveolar sacs, thickened the alveolar septum, and accelerated the release of MMVs and the uptake of MMVs by AECs. Circ_YTHDF2 was downregulated in lung and MMVs induced by MA. The immune factors in MMVs were increased by si-circ_YTHDF. Circ_YTHDF2 knockdown in MMVs induced inflammation and remodelling in the internalised AECs by MMVs, which was reversed by circ_YTHDF2 overexpression in MMVs. Circ_YTHDF2 bound specifically to and sponged miRNA-145-5p. Runt-related transcription factor 3 (RUNX3) was identified as potential target of miR-145-5p. RUNX3 targeted zinc finger E-box-binding homeobox 1 (ZEB1)-related inflammation and EMT of AECs. In vivo, circ_YTHDF2 overexpression-MMVs attenuated MA-induced lung inflammation and remodelling by the circ_YTHDF2-miRNA-145-5p-RUNX3 axis. Therefore, MA abuse can induce pulmonary dysfunction and alveolus injury. The immunoactivity of MMVs is regulated by circ_YTHDF2. Circ_YTHDF2 in MMVs is the key to communication between macrophages and AECs. Circ_YTHDF2 sponges miR-145-5p targeting RUNX3 to participate in ZEB1-related inflammation and remodelling of AECs. MMV-derived circ_YTHDF2 would be an important therapeutic target for MA-induced chronic lung injury. KEY POINTS: Methamphetamine (MA) abuse induces pulmonary dysfunction and alveoli injury. The immunoactivity of macrophage microvesicles (MMVs) is regulated by circ_YTHDF2. Circ_YTHDF2 in MMVs is the key to MMV-mediated intercellular communication between macrophages and alveolar epithelial cells. Circ_YTHDF2 sponges miR-145-5p targeting runt-related transcription factor 3 (RUNX3) to participate in zinc finger E-box-binding homeobox 1 (ZEB1)-related inflammation and remodelling. MMV-derived circ_YTHDF2 would be an important therapeutic target for MA-induced chronic lung injury.
Asunto(s)
Lesión Pulmonar , Metanfetamina , MicroARNs , Humanos , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/genética , Metanfetamina/toxicidad , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Factor de Transcripción 3/metabolismo , Inflamación/metabolismo , Macrófagos , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular , Apoptosis , Proteínas de Unión al ARNRESUMEN
BACKGROUND: Extranodal natural killer/T-cell lymphoma (NKTL) is an aggressive type of non-Hodgkin lymphoma with dismal outcome. A better understanding of disease biology and key oncogenic process is necessary for the development of targeted therapy. Super-enhancers (SEs) have been shown to drive pivotal oncogenes in various malignancies. However, the landscape of SEs and SE-associated oncogenes remain elusive in NKTL. METHODS: We used Nano-ChIP-seq of the active enhancer marker histone H3 lysine 27 acetylation (H3K27ac) to profile unique SEs NKTL primary tumor samples. Integrative analysis of RNA-seq and survival data further pinned down high value, novel SE oncogenes. We utilized shRNA knockdown, CRISPR-dCas9, luciferase reporter assay, ChIP-PCR to investigate the regulation of transcription factor (TF) on SE oncogenes. Multi-color immunofluorescence (mIF) staining was performed on an independent cohort of clinical samples. Various function experiments were performed to evaluate the effects of TOX2 on the malignancy of NKTL in vitro and in vivo. RESULTS: SE landscape was substantially different in NKTL samples in comparison with normal tonsils. Several SEs at key transcriptional factor (TF) genes, including TOX2, TBX21(T-bet), EOMES, RUNX2, and ID2, were identified. We confirmed that TOX2 was aberrantly overexpressed in NKTL relative to normal NK cells and high expression of TOX2 was associated with worse survival. Modulation of TOX2 expression by shRNA, CRISPR-dCas9 interference of SE function impacted on cell proliferation, survival and colony formation ability of NKTL cells. Mechanistically, we found that RUNX3 regulates TOX2 transcription by binding to the active elements of its SE. Silencing TOX2 also impaired tumor formation of NKTL cells in vivo. Metastasis-associated phosphatase PRL-3 has been identified and validated as a key downstream effector of TOX2-mediated oncogenesis. CONCLUSIONS: Our integrative SE profiling strategy revealed the landscape of SEs, novel targets and insights into molecular pathogenesis of NKTL. The RUNX3-TOX2-SE-TOX2-PRL-3 regulatory pathway may represent a hallmark of NKTL biology. Targeting TOX2 could be a valuable therapeutic intervene for NKTL patients and warrants further study in clinic.
Asunto(s)
Transformación Celular Neoplásica , Linfoma Extranodal de Células NK-T , Humanos , Transformación Celular Neoplásica/metabolismo , Oncogenes , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , ARN Interferente Pequeño/metabolismo , Células Asesinas Naturales/patología , Línea Celular Tumoral , Proteínas HMGB/genética , Proteínas HMGB/metabolismoRESUMEN
Disturbances in immune regulation, intestinal dysbiosis and inflammation characterize ankylosing spondylitis (AS), which is associated with RUNX3 loss-of-function variants. ZAP70W163C mutant (SKG) mice have reduced ZAP70 signaling, spondyloarthritis and ileitis. In small intestine, Foxp3+ regulatory T cells (Treg) and CD4+CD8αα+TCRαß+ intraepithelial lymphocytes (CD4-IEL) control inflammation. TGF-ß and retinoic acid (RA)-producing dendritic cells and MHC-class II+ intestinal epithelial cells (IEC) are required for Treg and CD4-IEL differentiation from CD4+ conventional or Treg precursors, with upregulation of Runx3 and suppression of ThPOK. We show in SKG mouse ileum, that ZAP70W163C or ZAP70 inhibition prevented CD4-IEL but not Treg differentiation, dysregulating Runx3 and ThPOK. TGF-ß/RA-mediated CD4-IEL development, T-cell IFN-γ production, MHC class-II+ IEC, tissue-resident memory T-cell and Runx3-regulated genes were reduced. In AS intestine, CD4-IEL were decreased, while in AS blood CD4+CD8+ T cells were reduced and Treg increased. Thus, genetically-encoded TCR signaling dysfunction links intestinal T-cell immunodeficiency in mouse and human spondyloarthropathy.
Asunto(s)
Linfocitos T CD8-positivos , Subunidad alfa 3 del Factor de Unión al Sitio Principal , Espondiloartropatías , Animales , Humanos , Ratones , Linfocitos T CD4-Positivos , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Inflamación , Mucosa Intestinal , Intestinos , Receptores de Antígenos de Linfocitos T alfa-beta , Espondiloartropatías/genética , Factor de Crecimiento Transformador betaRESUMEN
BACKGROUND: Prostate cancer (PCa) is currently acknowledged as the second most widespread cancer among men worldwide. Yet, the lack of dependable diagnostic biomarkers and therapeutic targets has presented considerable hurdles to the progression of prostate cancer treatment. Circular RNAs are implicated in the pathogenesis of numerous diseases, positioning them as promising biomarkers for diverse medical conditions. This study aims to uncover a specific circRNA that could serve as a diagnostic and therapeutic target for detecting and treating PCa. METHODS: The change of circTENM3 expression levels in PCa was detected by qPCR. CCK8 assays, EdU assays, Scratch assay and Transwell migration assay conducted to detect the role of circTENM3 in PCa cells in vitro. RIP assay, RNA-pull down and luciferase reporter assay were performed to explore the mechanism of circTENM3. Gain-of-function analysis was performed to reveal the function of circTENM3 in PCa in vivo. RESULTS: The results revealed that the expression level of circTENM3 was significantly down-regulated in PCa. CircTENM3 overexpression alleviated the progression of PCa in vitro. Mechanistically, circTENM3 enhanced RUNX3 levels via miR-558 sponge. Gain-of-function analysis determined that circTENM3 overexpression could inhibit PCa progression in vitro. CONCLUSIONS: Our research offers profound insights into the protective role played by circTENM3 in PCa. CircTENM3 operates as a sponge for miR-558, thereby triggering the elevation of RUNX3 expression, which subsequently curbs the progression of PCa.
Asunto(s)
MicroARNs , Neoplasias de la Próstata , Masculino , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Neoplasias de la Próstata/patología , Próstata/metabolismo , ARN Circular/genética , Biomarcadores , Proliferación Celular/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión GénicaRESUMEN
BACKGROUND: Radioimmunotherapy with cetuximab and conjugates with various radioisotopes is a feasible treatment option for different tumor models. Scandium-47 (47Sc), one of several ß--particle-emitting radioisotopes, displays favorable physical and chemical properties for conjugation to monoclonal antibodies. However, the therapeutic efficacy of 47Sc in preclinical and clinical studies is largely unknown. Given that intrinsic alterations in tumors greatly contribute to resistance to anti-epidermal growth factor receptor (EGFR)-targeted therapy, research on overcoming resistance to radioimmunotherapy using cetuximab is required. METHODS: 47Sc was produced by irradiation of a CaCO3 target at the HANARO research reactor in KAERI (Korea Atomic Energy Research Institute) and prepared by chromatographic separation of the irradiated target. Cetuximab was conjugated with 47Sc using the bifunctional chelating agent DTPA. Radiochemical purity was determined using instant thin-layer chromatography. The immunoreactivity of 47Sc-DTPA-cetuximab was evaluated using the Lindmo method and an in vitro cell-binding assay. The inhibitory effects of cetuximab and 47Sc-DTPA-cetuximab were confirmed using cell growth inhibition and BrdU cell proliferation assays. Differences in protein expression levels between cetuximab- and 47Sc-DTPA-cetuximab-treated cells were confirmed using western blotting. Complex formation between RUNX3 and DNA repair components was confirmed using immunoprecipitation and western blotting. RESULTS: Cetuximab induces cell cycle arrest and cell death in EGFR-overexpressing NSCLC cells. Radiolabeling of cetuximab with 47Sc led to increased therapeutic efficacy relative to cetuximab alone. Application of 47Sc-DTPA-cetuximab induced DNA damage responses, and activation of RUNX3 significantly enhanced the therapeutic efficacy of 47Sc-DTPA-cetuximab. RUNX3 mediated susceptibility to EGFR-targeted NSCLC therapy using 47Sc-DTPA-cetuximab via interaction with components of the DNA damage and repair machinery. CONCLUSIONS: 47Sc-DTPA-cetuximab promoted cell death in EGFR-overexpressing NSCLC cells by targeting EGFR and inducing DNA damage as a result of ß irradiation emitted from the conjugated 47Sc. Activation of RUNX3 played a key role in DNA damage and repair processes in response to the ionizing radiation and inhibited cell growth, thus leading to more effective tumor suppression. RUNX3 can potentially moderate susceptibility to 47Sc-conjugated cetuximab by modulating DNA damage and repair process mechanisms.