Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38399466

RESUMEN

Microfluidic technology is a highly efficient technique used in positron emission tomography (PET) radiochemical synthesis. This approach enables the precise control of reactant flows and reaction conditions, leading to improved yields and reduced synthesis time. The synthesis of two radiotracers, L-[11C]methionine and [11C]choline, was performed, using a microfluidic cassette and an iMiDEVTM module by employing a dose-on-demand approach for the synthesis process. We focused on optimizing the precursor amounts and radiosynthesis on the microfluidic cassette. L-[11C]methionine and [11C]choline were synthesized using a microreactor filled with a suitable resin for the radiochemical reaction. Trapping of the [11C]methyl iodide, its reaction, and solid-phase extraction purification were performed on a microreactor, achieving radiochemical yields of >80% for L-[11C]methionine and >60% for [11C]choline (n = 3). The total synthesis time for both the radiotracers was approximately 20 min. All quality control tests complied with the European Pharmacopeia standards. The dose-on-demand model allows for real-time adaptation to patient schedules, making it suitable for preclinical and clinical settings. Precursor optimization enhanced the cost efficiency without compromising the yield. The importance of dose-on-demand synthesis and optimized precursor utilization to produce L-[11C]methionine and [11C]choline was emphasized in this study. The results demonstrated the feasibility of dose-on-demand adaptations for clinical applications with reduced precursor quantities and high radiochemical yields.

2.
EJNMMI Radiopharm Chem ; 5(1): 18, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728815

RESUMEN

BACKGROUND: [18F]PSMA-1007, a positron emission tomography (PET) tracer, specifically targets prostate-specific membrane antigen (PSMA), which is highly expressed in prostate cancer. PSMA-PET is effective especially for regional detection of biochemical recurrence, which significantly affects patient management. Herein, we established and optimized a one-step radiolabeling protocol to separate and purify [18F]PSMA-1007 with a CFN-MPS200 synthesizer for clinical application. RESULTS: A dedicated single use cassette and synthesis program for [18F]PSMA-1007 was generated using a single-step method for direct precursor radiolabeling. In the cassette, three tube types (fluoro-elastomer, PharMed® BPT, silicone) and two different precursor salts (trifluoroacetic acid or acetic acid) were compared for optimization. Furthermore, three-lot tests were performed under optimized conditions for quality confirmation. Activity yields and mean radiochemical purity of [18F]PSMA-1007 were > 5000 MBq and 95%, respectively, at the end of synthesis, and the decay-corrected mean radiochemical yield from all three cassettes was approximately 40% using a trifluoroacetic acid salt precursor. Fluoro-elastomer tubings significantly increased the amount of non-radioactive PSMA-1007 (8.5 ± 3.1 µg/mL) compared to those with other tubings (0.3 µg/mL). This reduced the molar activity of [18F]PSMA-1007 synthesized in the cassette assembled by fluoro-elastomer tubings (46 GBq/µmol) compared to that with PharMed® BPT and silicone tubings (1184 and 1411 GBq/µmol, respectively). Residual tetrabutylammonium, acetonitrile, and dimethyl sulfoxide levels were <  2.6 µg/mL, < 8 ppm, and <  11 ppm, respectively, and ethanol content was 8.0-8.1% in all three cassettes and two different salts. Higher activity yields, radiochemical purities, and decay-corrected radiochemical yields were obtained using an acetic acid salt precursor rather than a trifluoroacetic acid salt precursor (7906 ± 1216 MBq, 97% ± 0%, and 56% ± 4%). In the three-lot tests under conditions optimized with silicone cassettes and acetic acid salt precursor, all quality items passed the specifications required for human use. CONCLUSIONS: We successfully automated the production of [18F]PSMA-1007 for clinical use and optimized synthesis procedures with a CFN-MPS200 synthesizer using a silicone cassette and acetic acid salt precursor. Cassette availability will facilitate a wide spread use of [18F]PSMA-1007-PET, leading to an effective prostate cancer management.

3.
Appl Radiat Isot ; 127: 245-252, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28662441

RESUMEN

Electrochemical 18F-fluorination of organic compounds provides a means to synthesize Positron-Emission-Tomography (PET) tracers difficult to obtain otherwise. Here, the first automated synthesizer that enables radiolabeling through carrier-added electrochemical 18F-fluorination is described. The system provides capabilities for all necessary operations such as drying of cyclotron derived [18F]fluoride, electrochemical incorporation of the radioisotope into a precursor molecule, subsequent reactions such as protecting group removals, HPLC-purification and formulation of the final tracer. Demonstrated is the aliphatic electrochemical 18F-fluorination of methyl 2-(phenylthio)acetate.

4.
Appl Radiat Isot ; 108: 82-91, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26706993

RESUMEN

Automated radiosynthesizers are critical for the reliable, routine production of PET tracers. To perform reactions in these systems, the temperature of the reactor heater is controlled, and the liquid temperature within the reaction vessel is presumed to closely follow. In reality, the liquid temperature can lag by several minutes and generally does not reach the heater temperature. Furthermore, because different synthesizers have different heating mechanisms and geometries, discrepancies are certain to exist between the actual temperatures experienced by the reaction mixture on different synthesizers. For dissimilar reactors, this can necessitate re-optimization of conditions when adapting a synthesis from one system to another, especially for the short-duration reactions common in radiochemistry. Herein, we study the relationship between the temperatures of the reactor heater and reaction liquid for various solvents using the ELIXYS radiosynthesizer as a representative example of a vial-based system. Our aims are to quantitatively illustrate this discrepancy to the community and provide data necessary to enable efficient translation of protocols between other radiosynthesizers and the ELIXYS.


Asunto(s)
Marcaje Isotópico/métodos , Modelos Químicos , Presión , Generadores de Radionúclidos , Radiofármacos/química , Temperatura , Simulación por Computador , Radioisótopos/química , Manejo de Especímenes/métodos , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA